
Antoine Brossault
abrossault@google.com

Key techniques for
fast websites

PIC

Performance metrics

 < Speed Index >

Because without JS
your site can be unusable…we also care about

 how fast JavaScript is executed

First Input Delay :
If a user tries to interact with the page during
that time (e.g. click on a link), there will likely be a
delay between when the click happens and
when the main thread is able to respond.

#1 : Visually render the site asap

#2 : JS execution should be fast

Goals

Use Google Analytics for
RUM monitoring

Performance Objectives across the whole site

Speed IndexFirst Contentful Paint Time to Interactive

 < 2000ms < 3000ms < 5000ms

21 3
Is this happening? Is it useful? Is it usable?

User-centric performance metrics

Performance
budgets

on mSite speed
sl
ow

fa
st

Time (months)

Lo
ad

 T
im

e

github.com
/GoogleChr

om

eLabs/ligh
thousebot

Server Response
Time

Your server should respond in
200ms or less

Quickly verify the Time To First Byte

Quickly verify the Time To First Byte

npm install -g
ttfb-test

Improve TTFB : strategies

Look for uncached db
requests

Move synchronous call to a
web-services to frontend

Precache the slow routes with
a Service Worker

Improve TTFB : Service Workers

Use the service-worker install event to cache less-critical

but still important resources, such as assets for the routes

your user is most likely to go to or below-the-fold content.

If the install succeeds, these secondary resources will be

available the instant they are needed.

https://sw-preload-on.glitch.me
https://sw-preload-off.glitch.me

Register a

Service Worker

We wait for our SW
to be installed

Improve TTFB : Service Workers

Service worker
Client side proxy written

in JavaScript

SW cache

Web server

Local cache

Landing page

fetch a slow route in background

Store the response
in the cache

1

2

3

4

https://sw-preload-on.glitch.me
https://sw-preload-off.glitch.me

Improve TTFB : Service Workers

Service worker
Client side proxy written

in JavaScript

SW cache

Web server

Local cache

Landing page

Requesting an other route

Get the response
from the cache

1

4

Send back the response
3

https://sw-preload-on.glitch.me
https://sw-preload-off.glitch.me

Faster subsequent page-loads by
prefetching in-viewport links during idle time

https://github.com/GoogleChromeLabs/quicklink

When the Service
 Worker

 is

activated we stor
e in the cache

the links which are in the view
port

No slider

Do not use carousel
on mobile

X Bad performance: speed killer

Why sliders should be banned on mobile?

X First slide will get all the clicks - CTR

X Movement leads to distraction

X Move when you read

X Looks like ads

X Need multiple images and JavaScript

✔ Replace with static images

Make the above the fold less JavaScript dependent

A static image is

loaded and the carousel

loads in the background

CSS

Check your Code Coverage

In the Command Menu

(Cmd + Shift + P / Ctrl + Shift + P)

Clean your CSS
Up to 96% unused css code

Code not used on the landing

page but still render blocking

Beware of nesting in CSS with SASS

The Inception Rule: don’t go more than four levels deep.

http://thesassway.com/beginner/the-inception-rule

Split critical - non-critical

github.com/addyosmani/critical

C
rit

ic
al

 C
SS

extraction (node.js) critical.css

https://github.com/addyosmani/critical

N
on

-c
rit

ic
al

 C
SS

Split critical - non-critical

github.com/addyosmani/critical

https://github.com/addyosmani/critical

Split critical - non-critical

github.com/addyosmani/critical

https://github.com/addyosmani/critical

Split critical - non-critical

github.com/addyosmani/critical

https://github.com/addyosmani/critical

JavaScript

Avoid render-blocking scripts

Avoid render-blocking scripts

Optimize JavaScript loading

Use defer and async

Defer : if loading order matters

Async : if the script is standalone

Optimize JavaScript loading

Remove the AB testing script
when you are not

doing mobile testing

No AB-Testing on mobile ?

Your should keep JavaScript
payloads at minimum

Find unused CSS and JS
with the Coverage tab

In the Command Menu
(Cmd + Shift + P / Ctrl + Shift + P)

Analyze your bundle to
find opportunities

Reduce JavaScript payload : analyze

Be sure your app leverages Treeshaking

✔ You have to use a bundler (Webpack, Rollup, Parcel)

✔ You have to use the ES6 syntax for import export

✔ If you use Babel Webpack’s built-in tree shaking works on ES6 module syntax only. If you’re using
Babel’s defaults settings, Babel will compile ES6 modules to CommonJS modules, leaving nothing for
Webpack to work with.

import {camelCase} from ‘
lodash’

Be sure your app leverages Treeshaking

Reduce JavaScript payload : How to fix ?

 chunk

chunk

Split your bundle

✔ you will save ~6 sec

Images

Load images to the correct size

● For most sites, serving 3-5
different sizes of an image
works best.

5 sizes3 sizes

Serve Multiple Image Sizes

Image Resizing Tooling

npm packages:

Sharp
+ Fastest image resizing tool
- Installation requires compiling C++/C

Source: bit.ly/sharp-benchmarks

Image Resizing Tooling

npm packages:

Source: bit.ly/sharp-benchmarks

Jimp
+ Installation does not

require compiling C++/C

Serve Multiple Image Sizes

Lazyload your images

Use Lazy Loading

LazySizes

Lazy loading allow you to trigger
the image download before the
user need it.

https://github.com/aFarkas/lazysizes

Use Lazy Loading

LazySizes

https://github.com/aFarkas/lazysizes

Do not use GIFs
 use video instead

X 5MB !

Demo

http://speedchecklist.com/_playground/img-demo/scholl/

Compress your images

Lossless Lossy

Lossless Lossy

Lossy Compression

Lossy Compression

0 20 40 60 80 100

Lossy Compression

For most images, 80-85 quality will reduce
file size by 30-40% with minimal effect on
image quality.

Source: bit.ly/808-85q

Imagemin

imagemin(['source/*.jpg'],'destination',{

 plugins: [

 imageminMozjpeg({quality: 80})

]});

JPEG PNG GIF SVG WebP

Lossless imagemin-
jpegtran

imagemin-
optipng

imagemin-
gifsicle imagemin-

svgo
imagemin-

webp
Lossy imagemin-

mozjpeg
imagemin-
pngquant

imagemin-
giflossy

Imagemin
Popular Imagemin Plugins

Example Usage

https://www.npmjs.com/package/imagemin-mozjpeg
https://www.npmjs.com/package/imagemin-jpegtran
https://www.npmjs.com/package/imagemin-jpegtran
https://www.npmjs.com/package/imagemin-mozjpeg
https://www.npmjs.com/package/imagemin-optipng
https://www.npmjs.com/package/imagemin-optipng
https://www.npmjs.com/package/imagemin-mozjpeg
https://www.npmjs.com/package/imagemin-gifsicle
https://www.npmjs.com/package/imagemin-gifsicle
https://www.npmjs.com/package/imagemin-mozjpeg
https://www.npmjs.com/package/imagemin-svgo
https://www.npmjs.com/package/imagemin-svgo
https://www.npmjs.com/package/imagemin-mozjpeg
https://www.npmjs.com/package/imagemin-webp
https://www.npmjs.com/package/imagemin-webp
https://www.npmjs.com/package/imagemin-mozjpeg
https://www.npmjs.com/package/imagemin-mozjpeg
https://www.npmjs.com/package/imagemin-mozjpeg
https://www.npmjs.com/package/imagemin-pngquant
https://www.npmjs.com/package/imagemin-pngquant
https://www.npmjs.com/package/imagemin-mozjpeg
https://www.npmjs.com/package/imagemin-giflossy
https://www.npmjs.com/package/imagemin-giflossy

Compressed with MozJPEG 75%

87% smaller (20.6KB)X Original 155KB

squoosh.app

Image compression issues

https://squoosh.app/

Preload important images

Preload the image to

trigger an early download

Fonts

Improve font loading
Generate a woff2

fontsquirrel.com/tools/webfont-generator

https://www.fontsquirrel.com/tools/webfont-generator

Avoid FOIT

“Flash of Invisible Text” (FOIT)

Improve font loading

Preload the font

Use font-display : swap

Preload and use font-display swap

Improve font loading
font-display : properties

“Flash of Unstyled Text” (FOUT)

Thank you

ne-speedrace@google.com

Twitter : @antoineBr

mailto:ne-speedrace@google.com

