
© 2019 Google Inc.

Application 
modernization 
and the decoupling of 
infrastructure 
services and teams
By Eric Brewer and Jennifer Lin, Google



© 2019 Google Inc.

Application Modernization and the Decoupling of Infrastructure, 

Services and Teams

Summary

Accelerating Application Modernization via Decoupling

Decoupling Infrastructure and Applications: Containers and 

Kubernetes

Decoupling Cloud Teams: Pods and Services

The Power of the Proxy

Microservices and Lifecycle Management with Istio

Zero-Trust Security and Cloud Assurance Modernization

The Declarative Config Model and Kubernetes

Conclusion

Table of Contents



3

© 2019 Google Inc.

Application Modernization and the 
Decoupling of Infrastructure, 
Services and Teams

Summary

Modernizing applications on a public cloud offers many advantages in terms of cost 

and productivity, but these benefits are often presented as an “all or nothing” choice: 

move to the cloud and modernize. Enterprises want to modernize independently 

from the migration to a public cloud, and to enable an incremental path for migration 

that mixes on-prem and cloud-based solutions as needed. This modernization is 

critical to enable business innovation, for example, incorporating advanced machine 

learning and data analytics.

In addition, the various public clouds provide quite different platforms, which makes 

workload portability quite difficult, both technically and in terms of developers’ skills. 

Yet most enterprises want the option to use multiple clouds, change providers over 

time, and in general preserve some independence from their vendors.

These two broad patterns—the need for modernization on-premises and the desire 

for multi-cloud solutions—call for a new platform that can run consistently in many 

environments, and that provides modern, agile development and operations across 

these environments. Kubernetes is the established leader for container orchestration 

and workload portability. It has rapidly become the de facto standard to orchestrate 

platform-agnostic applications. It is the foundation of the broad platform described 

above. By simultaneously addressing the needs of agile development and enterprise 

operations teams, the industry can now focus on its original objective: building a truly 

autonomous cloud service platform—one that allows dynamic distributed systems 

to evolve organically, enables extensive and varied use of machine learning, but that 



4

© 2019 Google Inc.

also delivers a consistent developer experience and a single point of administrative 

control.

Google has built Anthos (formerly known as Cloud Services Platform or CSP) to 

accelerate application modernization for SaaS providers, developers, IT operators 

and their end users. In order to balance developer agility, operational efficiency and 

platform governance, the Anthos framework enables decoupling across critical 

components:

• Infrastructure is decoupled from the applications (via containers and 

Kubernetes)

• Teams are decoupled from each other (via Kubernetes pods and services)

• Development is decoupled from operations (via service and policy 

management)

• Security is decoupled from development and operations (via structured policy 

management)

Successful decoupling of infrastructure, services and teams minimizes the need 

for manual coordination, reduces cost and complexity, and significantly increases 

developer velocity, operational efficiency and business productivity. It delivers a 

framework, implementation, and operating model to ensure consistency across an 

open, hybrid and multi-cloud future.

Figure 1: Paths for Modernization



 1 Google solved the packaging problem internally not via Docker-like containers, but rather by a mix of static linking 
and forced use of some low-level libraries. This works well when you have full control of all your applications, but it is 
heavy handed and not as flexible as the Docker model. See https://research.google.com/pubs/pub43438.html?hl=es

5

© 2019 Google Inc.

Accelerating Application Modernization via 
Decoupling

Decoupling Infrastructure and Applications: 
Containers and Kubernetes

The “cloud-native” transition is really about creating a higher level of abstraction 

beyond just virtual machines. Virtual machines (VMs) help with many challenges, 

but by definition they represent infrastructure not applications. In particular, using 

VM images for applications tightly couples the VM, the operating system (OS), the 

application and its libraries.

Thus the first role of containers, driven by Docker, is to package up an application 

independently from the infrastructure, including ideally the machine, libraries and the 

OS. In fact, one of Docker’s first successful use cases was to build and test applications 

on a laptop and then deploy them to the cloud. For example, the containers define 

the correct library dependencies and bring them to the infrastructure, ignoring what 

might already be there, and thus allow potentially conflicting libraries to coexist on 

the same machine.

The second role of containers, sometimes referred to as “Linux containers,” is to 

provide isolation among different applications on the same machine. Google 

pioneered this line of work over a decade ago so that we could pack many applications 

onto the same hardware without worrying (much) about how they interfere with 

one another. This allows us to view scheduling on a cluster as mostly a bin-packing 

problem that is agnostic to the particular applications.1

Given their success with ‘write once, run anywhere’ portability and performance 

isolation on shared infrastructure, containers have proven to be a critical first 



2 Google’s internal solution, which we are moving away from, was to change DNS to include port numbers and then 
dynamically allocate ports to applications as needed. This is not practical for most packaged applications, and in 
general, we want to avoid needing to change the applications.

6

© 2019 Google Inc.

step to decoupling applications from infrastructure and a foundational element of 

application modernization.

Decoupling Cloud Teams: Pods and Services

For simple applications, containers provide enough structure: a team can build their 

application as a container and then deploy it. But for more complex applications 

involving multiple teams we want to decouple the teams from one another. This 

is evident most clearly with teams responsible for shared infrastructure services, 

such as monitoring or logging. The logging team should be able to evolve logging 

independently from application updates. If the customer uses only a single container 

per app, they must build a version of logging into their container and deploy that 

version. To upgrade logging then requires that customer to deploy a new container 

– coupling the application and logging teams, requiring coordination and slowing 

them both down.

What About Pods?
Kubernetes introduced pods to help with this kind of decoupling. A pod is a group 

of containers that are co-scheduled (run on the same machine), can share machine 

resources such as local volumes, and are allocated a single IP address. In the logging 

example, the pod contains both the application container and the logging container, 

and the two communicate via shared volumes and/or localhost networking. This 

loose coupling enables independent upgrades: the application container only 

includes the logging API client, but not the logging implementation. This pattern of 

having a helper container in the pod is often referred to as a “sidecar.”

Each pod having its own IP address also enables decoupling — every pod has 

the full range of ports available to it. This is critical because by convention most 

applications assume availability of a fixed port, such as port 80 for HTTP. DNS fosters 

this convention by not including port numbers in resolution (in normal use), so the 

port is assumed.2 Traditionally, ports are both an application concept and a machine 



concept, so it follows that to have many applications per machine, we need many IP 

addresses per machine. Pods solve this problem cleanly and in fact, a machine with 

100 pods will have at least 100 IP addresses.

Basic Services
Modern architectures are “service oriented” but before we can answer “what is a 

service?” we will start with the service abstraction that is built into Kubernetes. In 

later sections, we’ll discuss more advanced functionality built on top of these basic 

services.

A basic service in Kubernetes is usually a dynamic set of pods behind a grouping 

mechanism that implements various policies and maintains the service IP. This 

simple kind of service is sometimes called a microservice, but services need not be 

particularly small — it is more about the building block and the team responsible for 

the service. Google runs more than 10,000 services at all times.

By far the most important aspect of a service is that it has a highly available, persistent 

name. The primary name is just an IP address: Kubernetes services use a “service IP” 

that is independent from the IPs of the underlying pods that implement that service.3 

The “grouping mechanism” mentioned above isoften a proxy, but it can also be 

various forms of routing or NAT that map the service IP to the pod IPs dynamically. 

The non-proxy forms are less flexible, but often have better performance.

Decoupling the service’s name from its implementation enables several key 

customer benefits:

• Online upgrades are possible as the lifecycle of services and constituent pods 

are decoupled;

• Scaling is easier as pods can adapt to load (manually or automatically) 

transparently to clients;

• Policy definition and enforcement can be unified via proxies to simplify 

administration for more complex properties such as security and operations.

Services make it easy to mix languages across teams and application components. 

3 Kubernetes also exposes DNS to find services by name

7

© 2019 Google Inc.



4 https://grpc.io/
5 See https://semver.org/ for an example
6 For a good discussion of defining service boundaries and size, see the discussion of “modules” in John Ousterhout’s 
recent book, A Philosophy of Software Design.

8

© 2019 Google Inc.

Each service is implemented by its own pod(s), which can be implemented in any 

language or style. Services represent APIs, which can be defined with IDLs and 

schema descriptions, often JSON over HTTP. Similarly, clients can be handled in 

idiomatic ways in a wide variety of languages. Services that need high performance 

can use protobufs and gRPC4, which are implemented in over a dozen languages.

Language independence is also a big plus for sidecars, like the logging agent. 

Because the communication channel is local, it is quite common for sidecars to be 

written in a different language than the primary application. Only the logging client 

API has to be written in the application’s language, and it can often be generated 

automatically.

Services lead most groups to independently deploy upgrades that are backward 

compatible. Version numbers help decoupled teams understand whether clients 

are safe to use a new version. In practice, teams typically use conventions around 

version numbers to denote semantic changes.5

The basic services in Kubernetes are also stateless. By definition, all of the 

pods in a service come from the same specification and might be restarted from 

that spec at any time. This abstraction is sufficient for most services and also for 

12-factor apps. Such cases assume that durable storage is managed inside another 

service.

Ultimately though, the real goal of services is to decouple teams. A team is 

decoupled if they can mostly deploy their work independently from other teams, 

which has been traditionally easier said than done. Services are the unit of 

deployment — they are the unit of encapsulation and the basis of APIs, a better 

version of “objects” in that they are bigger, long-lived and highly available. All the 

advice about what to hide inside objects also applies to services, and as with object-

oriented programming, microservices can be taken too far.6

https://grpc.io/
https://semver.org/


The Power of the Proxy

As described above, a proxy is a core part of the definition of a service. This has been 

true since at least the 1990s7 and it remains the key to several forms of decoupling, 

and it is our most important control point for implementing policy.

The initial use case for the proxy is just load balancing: spread the incoming requests 

across the active set of pods. In addition to making the service IP highly available, 

this also enables splitting traffic across versions for canary testing and more 

generally for A/B testing. It is also the mechanism used for a progressive rollout of 

a new version.

As described thus far, the proxy operates at Layer 4 (L4), working at the level of TCP 

and IP. This is sufficient for basic services and works well with legacy applications 

that expect DNS, an IP address, and a port number. Services are at layer 7 (L7) 

typically use HTTPS requests, which provide more information and thus enable 

more sophisticated policies. Longer term, we expect L4 to be used for coarse-

grained access control (to a cluster or a namespace within a cluster), and L7 to 

be used to implement the more complex policies required by modern enterprises 

and dynamic applications. These L7 policies can be managed using modern source 

control mechanisms that include explicit review and acceptance of source code 

changes (e.g. GitOps).

The proxy is also a great point for telemetry: it can measure service-level indicators 

(SLIs) for the service, such as request latency and throughput, without needing to 

know anything about the service (a hallmark of decoupling). It can also health check 

pods and remove them from duty, and its telemetry provides one basis for auto-

scaling the service.

We discuss two different uses of proxies in the next two sections. The first kind 

manages the traffic among services within an application, which is sometimes 

7 See https://people.eecs.berkeley.edu/~brewer/papers/TACC-sosp.pdf.

9

© 2019 Google Inc.

https://people.eecs.berkeley.edu/~brewer/papers/TACC-sosp.pdf


8 https://cloud.google.com/blog/products/gcp/istio-modern-approach-to-developing-and

10

© 2019 Google Inc.

called “East-West” traffic based on the typical architecture diagram with users 

on top (North) and services spread left to right (West to East). The second kind 

is a more traditional user-facing proxy, which manages traffic into the application 

(North-South) and provides user authentication, access control, various kinds of 

API management and mediation.

Microservices and Lifecycle Management 
with Istio

Kubernetes proxies provide a service abstraction mechanism, but with somewhat 

limited functionality. Recent proxy implementations (e.g. Envoy) have popularized 

the concept of a sidecar proxy which adds significant functionality and flexibility. As 

it is inefficient to configure individual proxies, seamless injection of and systematic 

management across proxies is required. This is the essence of Istio, an open-source 

project that Google started with Lyft and IBM8 to address the unique challenges of 

microservice management.

Traffic Management
Istio manages a group of proxies that tie together the components of a service mesh. 

The mesh represents the set of services inside of a larger user-facing application. 

Istio manages service-to-servicetraffic (East-West) and relies on proxies in front of 

each service. This enables client-side load balancing across services instances as 

well as ingress capabilities, such as A/B testing and canary releases for user-facing 

services. Mesh proxies also enable egress capabilities such as timeouts, retries and 

circuit breakers and improve fault tolerance when routing to external web services.

Critically, Istio provides systematic centralized management of these proxies, 

and thus of the policies they implement. This is arguably the most important form 

of decoupling: decoupling the policies from the services. In particular, this allows 

developers to avoid encoding policies inside the services, which means they can 

change the policies without redeploying the service. Instead, to change policies 

https://cloud.google.com/blog/products/gcp/istio-modern-approach-to-developing-and


11

© 2019 Google Inc.

they just update the configuration of the relevant proxies. Because the management 

is centralized, it is easy to be consistent across all of the services, and it’s possible 

to apply updates in a controlled rollout to improve safety.

At a higher level, this model also decouples operations from development. A 

classic problem in IT is that operations folks want to enforce policies uniformly, but 

often have to work closely with developers to make sure every service does the 

right thing. This results in expensive coordination, such as blocking launches for 

policy reviews. In the Istio model, less coordination is needed since the policies 

live outside of the services. In turn, development teams have higher velocity, can 

launch every day (or more), and generally have more autonomy and higher morale 

as well. Broadly speaking, we want service developers to be accountable for those 

aspects of operations that have to do with availability and rollouts, while leaving 

broad policy specification and enforcement to more centralized groups.

Istio takes these proxies, as shown in Figure 2, and manages them, providing a 

range of benefits that turn basic services into advanced services with consistent 

properties and policies.

Figure 2: Istio Architecture



9 Istio Mixer adapters allow pluggable backends for data such as metrics and logs (https://istio.io/docs/reference/
config/policy-and-telemetry/adapters/)

12

© 2019 Google Inc.

Security
In addition to traffic management, Istio authenticates services to each other, 

encrypts inter-service traffic (mutual TLS), provides access-control for calling 

services, and generates an audit trail. These features are added transparently 

without the need for application changes or tedious certificate management. Istio 

authentication automates service identity and authorization to enable granular 

application-layer controls.For example, it would be bad if an adversary’s process 

could invoke the the credit card service, and cause unintended payments. (See 

Istio Security for more details.)

Observability
Visibility of services is critical to the goal of running in production securely, and 

understanding telemetry in real time is the cornerstone of building a secure 

platform. Istio automates the instrumentation of services by auto-generating and 

collecting monitoring data and logs for them. By doing instrumentation this way, 

Istio enables consistent data collection across diverse services and backends9. This 

makes it easy to generate dashboards and provide common SLIs such as latency 

distributions, throughput, and error rates. In turn, the consistency of metrics 

simplifies automation tasks such as auto-scaling and health checks (see Istio 

Telemetry examples).

Stateful services and databases
While the majority of Kubernetes workloads today are stateless, Kubernetes can 

accommodate stateful services with the concept of StatefulSets, where each pod 

has a stable identity and dedicated disk that is maintained across restarts. This 

extends container orchestration to distributed databases, streaming data pipelines 

and other stateful services. While Kubernetes focuses on container orchestration 

at scale, new programming models are emerging to develop applications and 

runtimes which can manage business logic, data consistency and increasingly 

distributed workflows.

https://istio.io/docs/concepts/security/
https://istio.io/docs/examples/telemetry/


10 https://ai.google/research/pubs/pub43231
11 https://research.google.com/pubs/pub45728.html?hl=tr

13

© 2019 Google Inc.

Serverless and Events
Open source frameworks such as Knative codify the best practices around 

development of cloud native applications via source-driven functions and dynamic, 

event-driven microservices. Producers can generate events and consumers can 

subscribe to events a priori, only paying for active usage of request-driven compute. 

The Knative serving framework builds on Kubernetes and Istio with middleware that 

enables rapid deployment of serverless containers, auto-scaling to zero, intelligent 

routing and snapshotting of deployed code and configs.

Zero-Trust Security and Cloud Assurance Modernization

Google pioneered the zero-trust access security model using North-South proxies 

to enforce more granular controls while maintaining a consistent user experience 

(see BeyondCorp: A New Approach to Enterprise Security10 and BeyondCorp: 

The Access Proxy11). A key component of the overall Google security architecture 

(more at https://cloud.google.com/security/overview/whitepaper), this context-

aware access model enforces service and user authentication and applies dynamic 

access controls across all applications.

By inserting an application-layer gateway between the user/browser and backend 

Figure 3: The zero-trust model across users, resources and applications/services

https://github.com/knative/serving


14

© 2019 Google Inc.

service endpoints, this approach addresses a key challenge with traditional 

enterprise models, which still rely on a hard network-level perimeter with firewalls 

and VPNs. As cloud SaaS and mobile applications represent the majority of 

enterprise workloads, trusted access uses ‘real-time’ context to properly enforce 

access policies for cloud endpoints and to minimize costly data breaches.

In addition to securing transactions, this proxy-based gateway approach helps to 

ensure that service producers can efficiently develop, deploy and manage the APIs 

serving any cloud backend. 

The granular telemetry, control plane automation and technical/operational 

consistency of open cloud architectures allows enterprises to better assess 

their assets/services/users against cloud controls that reflect the best practices 

of cloud security governance. It also allows enterprises to evolve their ‘shared 

responsibility’ model for cloud, where customized security controls (vertical, region, 

role definitions, managed services, etc.) are defined upstream into the policies 

that govern the infrastructure (compute, storage, network), platform (automated 

CI/CD and GitOps pipelines, secure runtime, service authentication and lifecycle 

management, user identity and access privileges) and the application-layer 

(business logic, user experience).

Modernized end-to-end secure software supply chain and cloud commerce with 

zero-trust principles accelerates development and build, delivery and consumption 

of services, and delivers on these key principles and benefits:

All accesses for users or services are verified and granted via least-privileged 

access policies:

• User access to data is authenticated, authorized and logged against clear 

role-based policies

• Centralized policy/config administration for cloud resources, as well as users 

and services

https://cloud.google.com/solutions/secure-software-supply-chains-on-google-kubernetes-engine


15

© 2019 Google Inc.

• Strong service isolation so that any compromise has limited impact to other 

domains

Application and user context-aware access policies to protect sensitive data (non-

replayable identities):

• Multiple factors (beyond RBAC, tokens) are used to authorize users, 

resources, services

• Data is encrypted at rest by default and data in transit travels across 

encrypted connections

• Binary authorization ensures proper signing and verification of portable 

workloads (VMs, containers)

Central monitoring and ongoing administration of security posture of resources, 

users and services:Consistent telemetry for granular service accesses, not just IP 

and infrastructure logging and monitoring

• Ongoing discovery to locate and index data, and controls to analyze, classify, 

protect data

• All secrets and certificates are signed with a valid root certificate subject to 

ongoing certificate management

• Automated patches and security updates are maintained by trusted industry 

experts

More than ever, enterprises are rapidly embracing open software frameworks 

(Kubernetes, Istio, Knative) in their existing enterprise/IT environments. This 

architectural evolution enables portability of workloads, vendor-agnostic cloud 

service abstractions and centralized administration of policies across heterogeneous 

environments, improving security/cost governance and dramatically simplifying 

future cloud migrations.



16

© 2019 Google Inc.

The Declarative Config Model and Kubernetes

So far we have discussed the use of containers and pods, and the use of managed 

proxies to create well-decoupled advanced services. The final foundational piece 

of our cloud service platform is the configuration model.

Configuration turns out to be one of the hardest aspects of modern applications, 

and over the years, Google has built and thrown out a wide variety of config 

systems, from the very simple to the overly complex. 

Since nearly all aspects of applications and infrastructure require configuration, 

we need a model that is both consistent and extensible, but that at the same time 

works well with automation. Ideally, configuration tools should also be decoupled 

from the systems being configured. 

The first question is what to use for the configuration language. It’s very tempting, 

including at times for Google, to use a general-purpose language such as Python 

or bash scripts. General-purpose languages are very powerful, since they can 

solve pretty much any problem, but they lead to complex systems, can easily 

forfeit clarity, and their interpretation at runtime can lead to unexpected behavior 

in production.

Another challenge is that executing code as part of config makes it much harder to 

do automation. For example, config blocks occasionally fail when they execute. A 

person might be able to interpret that failure and fix it manually, but an automated 

system generally cannot, as it is hard to know what state the system is in after a 

failure. For example, is it OK to simply re-execute the config block? Or did it partially 

complete, leaving side effects that first need to be undone?

Instead, we use a restricted language, YAML, that expresses the desired state of a 

resource, but does not compute on it directly. The goal is to be declarative, that is, 



17

© 2019 Google Inc.

the YAML should represent (“declare”) the desired state of the system. YAML can 

be used directly or it can be easily generated by tools, and we can provide smart 

tools for merging changes when there are multiple actors involved in configuration 

(which becomes common in larger systems).

We still need to enable automation, but rather than use code in the configuration, 

we use background agents, called controllers, to perform automation as needed. 

The basic approach is called reconciliation, and the job of the controller is to make 

adjustments to the running system (such as adding a new pod) such that the actual 

state is brought in line (“reconciled”) with the desired state. This is a robust form of 

eventual consistency — it may take some time for reconciliation to complete, but 

when failures cause the actual state to deviate from the (unchanged) desired state, 

the same process brings it back in line.

Bringing it all together, the YAML file is the intended state, and it is managed using a 

RESTful interface to the apiserver (as shown below). The apiserver can be driven by 

different forms of UI, or by other tools, and it stores the desired state in a durable 

key/value store (currently based on etcd). Controllers watch for changes in the 

desired state and then take action accordingly.

One of the advantages of this declarative model is that it works extremely well with 

modern version-control systems like git: the config files are treated like source 

Figure 4: Kubernetes configuration model



18

© 2019 Google Inc.

code, and can and should be managed with the same notions of versioning, testing, 

and rollout. This system is very general and very consistent; for example, there is 

common metadata for the config files, and well-defined semantics for updates, 

validation, and deletion of resources. The resource business logic resides inside 

the controllers, while the rest is quite generic and thus reusable and extensible. 

For example, developers can create a “custom resource definitions” (CRD) that 

defines the config schema for a new resource, and a controller that implements 

the resource’s behavior. The Kubernetes API server machinery can manage new 

resources as service endpoints without requiring any modification. 

Policy as Code
This extensible, declarative model enables automated configuration management 

for services running in Kubernetes and the cloud. Istio policy specifications 

(YAML-based CRDs) can be enforced via managed controllers that automate 

policy updates to proxies. “Policy as code” and automated CI/CD pipelines ensure 

progressive rollouts and improved governance, such as audits, compliance, and 

cost control.

Declarative policies help scale diverse cloud environments and ensure consistency. 

Namespaces provide a logical service isolation boundary that are not bound 

by proprietary implementations. Namespaces also allow policy admins to set up 

guardrails and delegate tenant-specific (local) policies. Additionally, they can 

be grouped hierarchically for policy inheritance and used with metadata labels 

to enforce cloud tenant policies. Finally, namespaces enable ‘bring your own’ 

and federation of identities for user/service authentication and authorization. 

As enterprises embrace zero-trust access models for their cloud environments, 

namespaces help ensure consistent programmatic access controls and dynamic 

enforcement of user and service identities across existing and future environments. 



19

© 2019 Google Inc.

With Policy as Code, enforcing proprietary data stewardship policies are a 

mandatory component of service definition and activation.

Conclusion

The key to modern development is to decouple teams so that they can be more 

productive. Decoupling shows up in many forms, that together lead to faster 

evolution and better systems in less time and with less toil. We covered several 

forms of decoupling:

• Containers to decouple applications and libraries from the underlying OS and 

machine.

• Basic services in Kubernetes that decouple services from pods, allowing each 

to evolve independently

• Istio proxies to provide capabilities, including security and telemetry, across 

all services in a uniform way that is decoupled from each services’ source code.

• Proxy-enabled policy deployment and enforcement decouples the 

management of policies from specific services so that policies can evolve 

without service disruption and security posture can be improved without 

infrastructure changes (via policy as code)

• The use of services as the unit of deployment that often correspond to 

specific teams, allowing teams to operate more independently. Although this 

may result in hundreds of services for a large-scale application, the Kubernetes 

and Istio service infrastructure makes it simple to manage.

By decoupling infrastructure, services and teams, enterprises can improve 

developer agility and accelerate innovation without compromising operational 

efficiency, security and governance.


