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Introduction 
In 2018, Google released the BERT (bidirectional encoder representation from transformers) 
model (paper, blog post, and open-source code) which marked a major advancement in NLP by 
dramatically outperforming existing state-of-the-art frameworks across a swath of language 
modeling tasks. To achieve this level of performance, the BERT framework "builds upon recent 
work in pre-training contextual representations — including Semi-supervised Sequence Learning, 
Generative Pre-Training, ELMo, and ULMFit. However, unlike these previous models, BERT is 
the first deeply bidirectional, unsupervised language representation, pre-trained using only a plain 
text corpus (in this case, Wikipedia articles).”3 In less technical terms, the BERT framework is 
exceptional at capturing the fact that the meaning of a word can vary significantly based on the 
context in which it’s used, even in the same document or sentence.  
 

1 Data Scientist, Global Patents, Google 
2 Head of Data Science and Operations, Global Patents, Google 
3 https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html 
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Since its release, the BERT algorithm has demonstrated outstanding performance across a 
number of domains, including search, chatbots, sentiment analysis, and autocomplete.4 In areas 
where the BERT framework has been successful, it generally replaces previously existing 
approaches that are more computationally efficient and less complex but perform worse on tasks 
involving complex textual context. Although there is no precise formula to determine appropriate 
use cases and address tradeoffs between performance and complexity, researchers have 
recently suggested that the BERT algorithm is best suited for domains where large amounts of 
training text is available and the text is complex with ambiguous uses that can be highly context 
specific.5  

Application to Patents 
Patents represent an ideal domain for the application of the BERT algorithm from both a technical 
fit and a business-value perspective. From a technical fit perspective, patents involve a large and 
unique text corpus. Over 20 million active patents and applications exist worldwide with each 
patent containing an average of ~10,000 words and distinct word distributions and written using 
peculiar syntactic structures compared to more generic text corpuses such as Wikipedia.6 From a 
value perspective, patent transactions (including licensing, litigation, and acquisitions) total in the 
hundreds of billions of dollars per year, and patent offices around the world spend upwards of ten 
billion per year in operational costs, so even small efficiency gains could have large monetary 
benefits.7 
 
Thus, any algorithm capable of demonstrating more advanced contextual understanding could 
benefit a large number of use cases for the patents ecosystem including corporations, 
government patent offices, and academia.8  
 
In this article, we introduce the first BERT algorithm trained exclusively on patent text.9 We also 
provide the first attempt at utilizing BERT to generate contextual synonyms for patents. 
Additionally, we provide an open source version of the trained BERT model as well as a Python 
notebook that provides executable Python code to replicate all analyses discussed in this article. 

4 Since the original BERT launch, researchers have published a number of extensions like RoBERTa and 
ALBERT. HuggingFace.io provides a detailed overview of other deep-learning NLP frameworks that utilize 
transformers. 
5 See ‘Contextual Embeddings: When Are they Worth It?’ for a detailed analysis and Viktor Karlsson's 
summary of the article. 
6 We calculated the ~10,000 word average by sampling the mean word count across 10 million randomly 
selected U.S. publications. 
7 See the USPTO’s Intellectual Property and the US Economy report from 2016 for one of the most recent 
and comprehensive analyses of the economic impact of intellectual property. 
8 See ‘The state-of-the-art on Intellectual Property Analytics (IPA)’ for a comprehensive survey of research 
initiatives and empirical methodologies used in the IP space. 
9 To our knowledge, Patent Classification by Fine Tuning BERT Language Model is the first and only 
publication applying a BERT algorithm to patents. 
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The Importance of Synonyms  
Synonyms are a critical part of patent operations because they are a cornerstone of prior art 
searching, i.e., the process of attempting to identify all earlier and relevant innovations to 
determine the extent of novelty for a new potential patent.10 Although ML approaches are 
advancing prior art searching techniques, the majority of practitioners still rely on keyword-based 
boolean searches. One of the main challenges in using boolean searches is knowing which set of 
terms to use. Identifying the right terms is especially difficult for patent searching since a patent, 
by definition, must contain a novel idea, and novel ideas are often described in novel ways. This 
means that a specific term may be used in a way that it has never been used before. Additionally, 
since the same term is often used differently in different substantive domains, practitioners will 
commonly filter their searches by cooperative patent classification (CPC) codes, which are a 
hierarchical classification system applied to patents in major jurisdictions to provide a substantive 
organizational structure and facilitate search and retrieval tasks  
 
To help practitioners form the basis of boolean queries, the United States Patent and Trademark 
Office (USPTO) provides approximately 9,000 examples of synonyms across a subset of the 
100,000 CPC codes. For example, the USPTO provides the following examples for CPC code 
G06F, which covers electric digital processing patents: 
 

 
While useful, the synonym lists that the USPTO provide are not exhaustive (nor are they intended 
to be), as they neither provide comprehensive synonyms for the example base term nor provide 
synonyms for all important terms. Thus, an algorithm that is sufficiently flexible to generate a set 
of synonyms for any given term that account for its surrounding context could be extremely 
useful. 
 
In the remainder of this article, we explain how we achieve this via a BERT implementation.  

BERT Model Architecture  
Since a number of excellent tutorials providing detailed explanations of the BERT model 
architecture already exist, we will not explain the BERT model in detail here. However, since the 
patents corpus contains a number of distinct textual elements compared to more general text 
corpuses (like Wikipedia), we do implement patent-specific custom tokenization techniques that 
are worth further discussion. 

10 Note that we use the term ‘patent document’ to include publications, applications, and issued patents. 
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Synonyms and Keywords 
In patent documents, the following words/expressions are often used as synonyms: 

● " Laptop"," Palmtop"," PDA" 
● " cell phone"," mobile phone","smart phone" 

https://www.epo.org/searching-for-patents/helpful-resources/first-time-here/classification/cpc.html#:~:text=The%20Cooperative%20Patent%20Classification%20(CPC,%2C%20groups%20and%20sub%2Dgroups.
https://www.uspto.gov/web/patents/classification/cpc/html/defG06F.html
https://www.uspto.gov/web/patents/classification/cpc/html/defG06F.html


 

Custom Tokenization 
In theory, the standard tokens from BERT models that are pre-trained on generic text corpuses 
should be applicable across more specific domains. In practice, however, we found that a custom 
tokenizer optimized on patent text yielded better predictive accuracy in masked language 
prediction tasks. Additionally, custom tokenization makes intuitive sense because patent term 
usage is meaningfully different from generic corpuses. The primary reason for generating patent 
specific tokens is that long words that are rare in a generic corpus but more common in the 
patents corpus would be more likely to be split into three or more word pieces. For example, 
standard BERT tokenization would split ‘prosthesis’ into <pro><thes><is> tokens, whereas our 
tokenizer optimized for a patent corpus keeps ‘prosthesis’ as a single token. This not only 
improves predictive accuracy but also enhances interpretability, especially for our synonym 
generation use case below. 

Furthermore, we insert five additional tokens to identify the section of the patent from which the 
text is sampled. For example, claims text is given a <claim> token and abstract text is given a 
<abstract> token. This is because different sections of a patent tend to have meaningfully 
different linguistic structures. During model training, the addition of these tokens improved the 
masked language prediction scores on the evaluation sets by .5%, which is a statistically 
significant amount. 

Hyperparameters 
To train our model, we use a Large BERT training implantation using the core open-sourced 
Python libraries with the following hyperparameters trained on an 8x8 TPU slice on GCP:  

● attention_probs_dropout_prob = 0.1 
● hidden_act: gelu 
● hidden_dropout_prob: 0.1 
● hidden_size: 1024 
● initializer_range: 0.02 
● intermediate_size: 4096 
● max_position_embeddings: 512 
● num_attention_heads: 16 
● num_hidden_layers: 24 
● max_seq_length: 512 
● max_predictions_per_seq: 45 

Masked Term Example from Patent Abstracts 
Before providing additional detail into the synonym generation methodology, it is useful to 
demonstrate the BERT algorithm’s remarkable ability to capture context via a masked term 
prediction task. The goal of the masked prediction task is to take a piece of text, ‘mask’ a term 
(i.e., hide it from the model) within that text, and predict the terms most likely to be the ‘mask’ 
term. At a high level, the BERT model achieves this by taking as input a chunk of text with one 
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term ‘masked’,11 projecting each term into a learned embedding space, passing these 
embeddings through transformer layers where a large number of matrix operations occur that 
account for the order and context of the text, and using the resulting matrix to generate a softmax 
prediction across the entire token space reflecting the likelihood that each term is the masked 
term.12 
 
In each of the three examples below, we attempt to predict a single masked term (i.e., a term that 
is hidden from the model that the algorithm attempts to predict given the surrounding context 
words) from a patent abstract. To generate predictions, the full text of an abstract is passed to the 
BERT model, which then generates a prediction for all ~56,000 terms in the corpus. These 
predictions indicate the likelihood that each term is the masked term (indicated via the [MASK] 
flag in the text). For each example, we show the five terms out of the ~56,000 term vocabulary 
that the algorithm believes to be most likely to be the masked term. For all three patent abstract 
examples, the masked term is ‘eye’. 
 
In each example, the model performs well, with the terms ‘eye’ receiving the highest prediction 
score in the first and third example and the third highest in the second example. Note that each 
abstract is about a fundamentally different technology: the first abstract addresses a power 
saving method in a video processing unit, the second abstract is about a feature of a sewing 
machine, and the third abstract is about a non-invasive medical procedure. Although ‘eye’ ranks 
high for each abstract, the other top predictions are fundamentally different but appropriate given 
the broader context, i.e., surrounding terms. What’s also worth highlighting is the sophistication of 
the algorithm to weight the same context term differently. Note the second and the third examples 
contain the term ‘needle’. However, the algorithm realizes that the traditional relationship between 
‘eye’ and ‘needle’ does not exist given the broader context. This is the power of the BERT 
algorithm. 
 

 

11 During training, it is standard to mask many terms. In our model, up to 45 are masked in a given pass. 
12 A number of great tutorials exist that provide technical details of what’s happening behind the scenes 
including: Allen Institute, 'Building State-of-the-Art Language Models with BERT' and various YouTube 
tutorials such as 'Masked Word Prediction Using Transformer NLP Models (BERT, XLNet, RoBERTa)'. 
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Generating Synonyms  
Synonyms are terms that can be used interchangeably in the same context and convey roughly 
equivalent meaning. Theoretically, the top predictions for a masked term should be synonyms 
because they could be used interchangeably without varying the meaning of the broader chunk of 
text. A quick read of the examples provided above supports this. In the first example, the second 
prediction ‘retina’ could be used in place of ‘eye’ with no substantive impact. Likewise, in the 
second example, the second prediction ‘hole’ carries equivalent meaning as ‘eye’. In both 
instances, the BERT predictions of ‘retina’ and ‘hole’ are synonyms of the word ‘eye’. 

Approach 
The ‘eye’ example from the previous section is relatively straightforward since the different 
usages of the term ‘eye’ in patents resemble common non-patents usages, so algorithmic 
predictions are not as useful. However, for tens of thousands of other terms, usage in patent 
documents is not only different than in common vernacular but also varies considerably based on 
the substantive domain (most easily expressed by the CPC codes assigned to the patent 
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document). As previously mentioned, one of the most important use cases in the patents domain 
for synonyms is prior art searching. Here, we are interested in synonyms that are generally used 
for a given term for a specific field. So, in order to generate synonyms to aid prior art searches, 
rather than taking a single piece of patent text, masking a term, and generating predictions, we 
utilize a broader approach: 
 

1. Select a CPC code. 
2. Select a term. 
3. Query N number of patent documents containing the term within the given CPC code. 
4. Generate predictions for each term for each document. 
5. Calculate aggregate metrics reflecting the highest predicted terms on average across all N 

documents. 

Validity Testing 
Of the over 2,000 terms that the USPTO provides as example synonyms, ~200 exist in multiple 
CPC codes. These synonyms that exist across multiple CPC codes provide a good mechanism to 
test how well the BERT algorithm is able to generate different synonyms for the same term in 
different contexts. To do so, we follow the five general steps outlined above but with a few slight 
modifications. To help illustrate out approach, consider the term ‘priming’, which is provided as a 
synonym with terms [‘cleaning’, ‘maintenance’, ‘recovery’] in CPC 'B41J2/165' (which covers ink 
protuberances for printing mechanisms), and a synonym with terms [‘anchoring’,13 ‘bonding’, 
‘subbing’] in CPC ‘C23G’ (which covers industrial materials).  

1. Select a term (i.e., ‘priming’) provided as a synonym example for two CPC codes.  
2. Sample N abstracts (100 in our example) from each CPC code (i.e., ‘B41J2/165’ and 

‘C23G’) containing the term selected at step 1.  
3. For each set of 100 abstracts, mask the key term (i.e., ‘priming’) and generate predictions 

across the full vocabulary. 
4. Store the rank position of the provided synonyms for each CPC code (i.e., [‘anchor’, 

‘bonding’, ‘subbing’] for CPC 'B41J2/165' and [‘cleaning’, ‘maintenance’, ‘recovery’] for 
CPC ‘C23G’). 

5. Calculate the mean rank for each synonym for each CPC. 
 
This approach is certainly not perfect (the mean can be disproportionately swayed by a few 
outlier results) and more rigorous methodologies could be employed (e.g., using human 
reviewers to rate returned recommended synonyms). However, this approach does provide a 
straightforward and lean validity test: all three synonyms associated with ‘priming’ and CPC 
‘C23G’ should have higher mean predictions than all three synonyms associated with CPC 
‘B41J2/165’ for abstracts sampled from CPC ‘C23G’ and visa versa.  
 

13 Note that ‘anchoring’ is tokenized to ‘anchor’ in the vocabulary. 
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 priming anchoring bonding subbing cleaning maintenance recovery 

‘C23G’ 31.8 143.0 66.2 2.0 262.5 2293.5 1071.0 



 

 
As the table above shows, the algorithm correctly predicts that ‘anchoring’, ‘bonding’, and 
‘subbing’ are more likely to be used synonymously with ‘priming’ in CPC ‘C23G’ than in 
‘B41J2/165’, and that ‘cleaning’, ‘maintenance’, and ‘recovery’ are more likely to be used 
synonymously with ‘priming’ in CPC ‘B41J2/165’ than in ‘C23G’. The terms ‘subbing’ provides the 
starkest distincting, with a mean prediction of 2.0 for CPC ‘C23G’ and 9762.8 for CPC 
‘B41J2/165’. This means that the algorithm predicts that ‘subbing’ and ‘priming’ are used virtually 
interchangeably in CPC ‘C23G’ and virtually never used synonymously with ‘priming’ in CPC 
‘B41J2/165’.  

Using Live 
To use this BERT algorithm to generate synonyms for real-world use like prior art searching, we 
suggest two approaches. The first and most straightforward option is to simply provide a chunk of 
text and the term for which you would like to generate synonyms (i.e., the ‘masked’ term), which 
is identical to the ‘eye’ example in the Masked Term Prediction from Patent Abstracts section. 
This approach is fast and easy as it only needs to generate predictions for a single chunk of text 
and does not need to make any database calls. However, it will return results that only account 
for the context of the provided text which may not be representative of how the term is more 
generally used in a certain substantive domain. 
 
The second option is similar to the sampling framework in the Testing section, but instead of 
calculating the mean prediction of a set list of terms, it returns a ranked list of the count of times a 
word occurs in the top-N predictions. This is conducive to the prior art searching use case as it 
does not require the user to know in advance which terms to return (which is required for the 
methodology in the Testing section which requires the user to provide synonyms and then returns 
their mean rank position) and is more robust to outliers. The image below shows the output of this 
approach generated on a count of occurrence in the top 10 predictions for 100 abstracts from 
CPC ‘B41J2/165’ for the term ‘priming’. 
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‘B41J2/165’ 100.5 14157.9 844.8 9762.8 170.4 242.6 829.0 



 

 
 
This chart reflects that the term ‘cleaning’ occurred in the top 10 most likely terms (out of the 
entire ~56k vocabulary) 64 times out of 100 potential predictions. This chart reflects that the 
masked term (i.e., the actual term) ‘priming’ is the third most predicted term amongst the top 10 
predictions. Two of the three synonyms that the USPTO provides for the term ‘priming’ for this 
CPC code, ‘cleaning’ and ‘maintenance’, were the first and fourth most common among the top 
10 predictions, respectively. Although this is a sample size of one, it provides strong support for 
this methodology. In dozens of tests of other terms in other CPCs, we found consistently strong 
and useful results. We encourage other users to try this on their own. 

Bonus: Extending BERT 
This article focuses primarily on how to use the BERT model to generate synonyms, which is 
"native" to the BERT model and requires almost no customization since it is just a repurposing of 
the masked language optimization. However, the BERT model can be extended to address a 
variety of other use cases. Below, we provide brief explanations of how to leverage the BERT 
model to generate CPC classifications and to build an autocomplete tool.  
 
One way to generate CPC classifications is to use a "[CLS]" token that is prepended to each 
BERT sequence input and contains learned encodings for each full sequence input provided to 
the BERT model. In our case, this means each 512-token length chunk of text generates a 
“[CLS]” token that is a 1x1024 embedding vector. This vector can be used in a number of 
classification tasks. For example, you could take as input any piece of text, be it from a scholarly 
article or product manual, generate the “[CLS]” token vector, and use this vector to build a 
classification model to predict the CPC code for the piece of text.  
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The BERT model also generates a final encoder layer that is a matrix containing a contextual 
representation for each sequence of inputs, with 512 rows (one row for each token specified by 
the hyperparameter max_seq_length) and 1024 columns (specified by the hyperparameter 
hidden_size). 
 
Like the “[CLS]” token vector, this output can also be used to build various classifiers and can 
also be used as the basis for an autocompletion model. While this could present a number of 
interesting research initiatives for academics, autocomplete tools should not be used in actual 
drafting of patent applications since major patent offices have recently deemed that AI systems 
cannot be a named inventor. 
 
A crude autocomplete function can be built following the five high level steps below:  

1. Select a text sequence. 
2. Add a masked token to the end of the sequence. 
3. Use the final encoding layer for that sequence to generate a prediction for the masked 

term. 
4. Append the top prediction for the mask term to the text sequence. 
5. Repeat steps 2-4 N number of times to generate N number of predicted future terms. 

 
Although this approach works, the outputs can be general. BERT leverages bidirectionality, and 
in this case only the preceding tokens are known and provided to the model. For a more robust 
and tuned autocomplete/text generator, the BERT wordpiece embeddings or encoder layer output 
can be successively passed to some RNN type model to produce text generation. The two 
animations below illustrate the iterative process of an autocomplete algorithm using the out of the 
box crude masking approach approach.  
 

 
 

 

Conclusion 
The rate of innovation in deep learning-based NLP has been extraordinary. Recently, 
transformer-based approaches like BERT have supplanted RNN-based models like LSTMs 
across a number of language prediction tasks. As a result, BERT and its extensions have quickly 
become widely adopted. In this article, we provide the first application of the BERT algorithm 
trained exclusively on patent text, focusing primarily on the use case of synonym generation but 
also highlighting additional use cases for general classification and autocomplete. We additionally 
accompany this article with an open source BERT model trained on and optimized for patent 
documents. Our hope is that this can help practitioners in corporations, academia, and 
governmental patent offices get started with the BERT framework and apply it to new use cases 
and research initiatives.  
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