

Leveraging the BERT algorithm for
Patents with TensorFlow and BigQuery
November 2020, 2020
Rob Srebrovic1, Jay Yonamine2

Introduction

Application to Patents
The Importance of Synonyms

BERT model architecture
Custom Tokenization
Hyperparameters
Masked Term Example from Patent Abstracts

Generating Synonyms
Approach
Validity Testing
Using Live

Bonus - Extending BERT

Conclusion

Introduction
In 2018, Google released the BERT (bidirectional encoder representation from transformers)
model (paper, blog post, and open-source code) which marked a major advancement in NLP by
dramatically outperforming existing state-of-the-art frameworks across a swath of language
modeling tasks. To achieve this level of performance, the BERT framework "builds upon recent
work in pre-training contextual representations — including Semi-supervised Sequence Learning,
Generative Pre-Training, ELMo, and ULMFit. However, unlike these previous models, BERT is
the first deeply bidirectional, unsupervised language representation, pre-trained using only a plain
text corpus (in this case, Wikipedia articles).”3 In less technical terms, the BERT framework is
exceptional at capturing the fact that the meaning of a word can vary significantly based on the
context in which it’s used, even in the same document or sentence.

1 Data Scientist, Global Patents, Google
2 Head of Data Science and Operations, Global Patents, Google
3 https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html

1

https://arxiv.org/abs/1810.04805
https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html
https://github.com/google-research/bert
https://arxiv.org/abs/1511.01432
https://blog.openai.com/language-unsupervised/
https://allennlp.org/elmo
https://arxiv.org/abs/1801.06146
https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html

Since its release, the BERT algorithm has demonstrated outstanding performance across a
number of domains, including search, chatbots, sentiment analysis, and autocomplete.4 In areas
where the BERT framework has been successful, it generally replaces previously existing
approaches that are more computationally efficient and less complex but perform worse on tasks
involving complex textual context. Although there is no precise formula to determine appropriate
use cases and address tradeoffs between performance and complexity, researchers have
recently suggested that the BERT algorithm is best suited for domains where large amounts of
training text is available and the text is complex with ambiguous uses that can be highly context
specific.5

Application to Patents
Patents represent an ideal domain for the application of the BERT algorithm from both a technical
fit and a business-value perspective. From a technical fit perspective, patents involve a large and
unique text corpus. Over 20 million active patents and applications exist worldwide with each
patent containing an average of ~10,000 words and distinct word distributions and written using
peculiar syntactic structures compared to more generic text corpuses such as Wikipedia.6 From a
value perspective, patent transactions (including licensing, litigation, and acquisitions) total in the
hundreds of billions of dollars per year, and patent offices around the world spend upwards of ten
billion per year in operational costs, so even small efficiency gains could have large monetary
benefits.7

Thus, any algorithm capable of demonstrating more advanced contextual understanding could
benefit a large number of use cases for the patents ecosystem including corporations,
government patent offices, and academia.8

In this article, we introduce the first BERT algorithm trained exclusively on patent text.9 We also
provide the first attempt at utilizing BERT to generate contextual synonyms for patents.
Additionally, we provide an open source version of the trained BERT model as well as a Python
notebook that provides executable Python code to replicate all analyses discussed in this article.

4 Since the original BERT launch, researchers have published a number of extensions like RoBERTa and
ALBERT. HuggingFace.io provides a detailed overview of other deep-learning NLP frameworks that utilize
transformers.
5 See ‘Contextual Embeddings: When Are they Worth It?’ for a detailed analysis and Viktor Karlsson's
summary of the article.
6 We calculated the ~10,000 word average by sampling the mean word count across 10 million randomly
selected U.S. publications.
7 See the USPTO’s Intellectual Property and the US Economy report from 2016 for one of the most recent
and comprehensive analyses of the economic impact of intellectual property.
8 See ‘The state-of-the-art on Intellectual Property Analytics (IPA)’ for a comprehensive survey of research
initiatives and empirical methodologies used in the IP space.
9 To our knowledge, Patent Classification by Fine Tuning BERT Language Model is the first and only
publication applying a BERT algorithm to patents.

2

https://blog.google/products/search/search-language-understanding-bert/
https://towardsdatascience.com/how-to-train-your-chatbot-with-simple-transformers-da25160859f4
https://medium.com/southpigalle/how-to-perform-better-sentiment-analysis-with-bert-ba127081eda
https://www.nytimes.com/2018/11/18/technology/artificial-intelligence-language.html
https://github.com/google/patents-public-data/blob/master/models/BERT%20for%20Patents.md
https://github.com/google/patents-public-data/blob/master/examples/BERT_For_Patents.ipynb
https://github.com/google/patents-public-data/blob/master/examples/BERT_For_Patents.ipynb
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1909.11942
https://huggingface.co/transformers/
https://www.aclweb.org/anthology/2020.acl-main.236/
https://medium.com/dair-ai/when-are-contextual-embeddings-worth-using-b509008cc325
https://www.uspto.gov/sites/default/files/documents/IPandtheUSEconomySept2016.pdf
https://www.sciencedirect.com/science/article/pii/S0172219018300103
https://arxiv.org/pdf/1906.02124.pdf

The Importance of Synonyms
Synonyms are a critical part of patent operations because they are a cornerstone of prior art
searching, i.e., the process of attempting to identify all earlier and relevant innovations to
determine the extent of novelty for a new potential patent.10 Although ML approaches are
advancing prior art searching techniques, the majority of practitioners still rely on keyword-based
boolean searches. One of the main challenges in using boolean searches is knowing which set of
terms to use. Identifying the right terms is especially difficult for patent searching since a patent,
by definition, must contain a novel idea, and novel ideas are often described in novel ways. This
means that a specific term may be used in a way that it has never been used before. Additionally,
since the same term is often used differently in different substantive domains, practitioners will
commonly filter their searches by cooperative patent classification (CPC) codes, which are a
hierarchical classification system applied to patents in major jurisdictions to provide a substantive
organizational structure and facilitate search and retrieval tasks

To help practitioners form the basis of boolean queries, the United States Patent and Trademark
Office (USPTO) provides approximately 9,000 examples of synonyms across a subset of the
100,000 CPC codes. For example, the USPTO provides the following examples for CPC code
G06F, which covers electric digital processing patents:

While useful, the synonym lists that the USPTO provide are not exhaustive (nor are they intended
to be), as they neither provide comprehensive synonyms for the example base term nor provide
synonyms for all important terms. Thus, an algorithm that is sufficiently flexible to generate a set
of synonyms for any given term that account for its surrounding context could be extremely
useful.

In the remainder of this article, we explain how we achieve this via a BERT implementation.

BERT Model Architecture
Since a number of excellent tutorials providing detailed explanations of the BERT model
architecture already exist, we will not explain the BERT model in detail here. However, since the
patents corpus contains a number of distinct textual elements compared to more general text
corpuses (like Wikipedia), we do implement patent-specific custom tokenization techniques that
are worth further discussion.

10 Note that we use the term ‘patent document’ to include publications, applications, and issued patents.

3

Synonyms and Keywords
In patent documents, the following words/expressions are often used as synonyms:

● " Laptop"," Palmtop"," PDA"
● " cell phone"," mobile phone","smart phone"

https://www.epo.org/searching-for-patents/helpful-resources/first-time-here/classification/cpc.html#:~:text=The%20Cooperative%20Patent%20Classification%20(CPC,%2C%20groups%20and%20sub%2Dgroups.
https://www.uspto.gov/web/patents/classification/cpc/html/defG06F.html
https://www.uspto.gov/web/patents/classification/cpc/html/defG06F.html

Custom Tokenization
In theory, the standard tokens from BERT models that are pre-trained on generic text corpuses
should be applicable across more specific domains. In practice, however, we found that a custom
tokenizer optimized on patent text yielded better predictive accuracy in masked language
prediction tasks. Additionally, custom tokenization makes intuitive sense because patent term
usage is meaningfully different from generic corpuses. The primary reason for generating patent
specific tokens is that long words that are rare in a generic corpus but more common in the
patents corpus would be more likely to be split into three or more word pieces. For example,
standard BERT tokenization would split ‘prosthesis’ into <pro><thes><is> tokens, whereas our
tokenizer optimized for a patent corpus keeps ‘prosthesis’ as a single token. This not only
improves predictive accuracy but also enhances interpretability, especially for our synonym
generation use case below.

Furthermore, we insert five additional tokens to identify the section of the patent from which the
text is sampled. For example, claims text is given a <claim> token and abstract text is given a
<abstract> token. This is because different sections of a patent tend to have meaningfully
different linguistic structures. During model training, the addition of these tokens improved the
masked language prediction scores on the evaluation sets by .5%, which is a statistically
significant amount.

Hyperparameters
To train our model, we use a Large BERT training implantation using the core open-sourced
Python libraries with the following hyperparameters trained on an 8x8 TPU slice on GCP:

● attention_probs_dropout_prob = 0.1
● hidden_act: gelu
● hidden_dropout_prob: 0.1
● hidden_size: 1024
● initializer_range: 0.02
● intermediate_size: 4096
● max_position_embeddings: 512
● num_attention_heads: 16
● num_hidden_layers: 24
● max_seq_length: 512
● max_predictions_per_seq: 45

Masked Term Example from Patent Abstracts
Before providing additional detail into the synonym generation methodology, it is useful to
demonstrate the BERT algorithm’s remarkable ability to capture context via a masked term
prediction task. The goal of the masked prediction task is to take a piece of text, ‘mask’ a term
(i.e., hide it from the model) within that text, and predict the terms most likely to be the ‘mask’
term. At a high level, the BERT model achieves this by taking as input a chunk of text with one

4

https://github.com/google-research/bert
https://github.com/google-research/bert
https://cloud.google.com/tpu/docs/types-zones

term ‘masked’,11 projecting each term into a learned embedding space, passing these
embeddings through transformer layers where a large number of matrix operations occur that
account for the order and context of the text, and using the resulting matrix to generate a softmax
prediction across the entire token space reflecting the likelihood that each term is the masked
term.12

In each of the three examples below, we attempt to predict a single masked term (i.e., a term that
is hidden from the model that the algorithm attempts to predict given the surrounding context
words) from a patent abstract. To generate predictions, the full text of an abstract is passed to the
BERT model, which then generates a prediction for all ~56,000 terms in the corpus. These
predictions indicate the likelihood that each term is the masked term (indicated via the [MASK]
flag in the text). For each example, we show the five terms out of the ~56,000 term vocabulary
that the algorithm believes to be most likely to be the masked term. For all three patent abstract
examples, the masked term is ‘eye’.

In each example, the model performs well, with the terms ‘eye’ receiving the highest prediction
score in the first and third example and the third highest in the second example. Note that each
abstract is about a fundamentally different technology: the first abstract addresses a power
saving method in a video processing unit, the second abstract is about a feature of a sewing
machine, and the third abstract is about a non-invasive medical procedure. Although ‘eye’ ranks
high for each abstract, the other top predictions are fundamentally different but appropriate given
the broader context, i.e., surrounding terms. What’s also worth highlighting is the sophistication of
the algorithm to weight the same context term differently. Note the second and the third examples
contain the term ‘needle’. However, the algorithm realizes that the traditional relationship between
‘eye’ and ‘needle’ does not exist given the broader context. This is the power of the BERT
algorithm.

11 During training, it is standard to mask many terms. In our model, up to 45 are masked in a given pass.
12 A number of great tutorials exist that provide technical details of what’s happening behind the scenes
including: Allen Institute, 'Building State-of-the-Art Language Models with BERT' and various YouTube
tutorials such as 'Masked Word Prediction Using Transformer NLP Models (BERT, XLNet, RoBERTa)'.

5

https://demo.allennlp.org/masked-lm?text=The%20doctor%20ran%20to%20the%20emergency%20room%20to%20see%20%5BMASK%5D%20patient.
https://medium.com/saarthi-ai/bert-how-to-build-state-of-the-art-language-models-59dddfa9ac5d
https://youtu.be/q5OmCB7CN-U

Generating Synonyms
Synonyms are terms that can be used interchangeably in the same context and convey roughly
equivalent meaning. Theoretically, the top predictions for a masked term should be synonyms
because they could be used interchangeably without varying the meaning of the broader chunk of
text. A quick read of the examples provided above supports this. In the first example, the second
prediction ‘retina’ could be used in place of ‘eye’ with no substantive impact. Likewise, in the
second example, the second prediction ‘hole’ carries equivalent meaning as ‘eye’. In both
instances, the BERT predictions of ‘retina’ and ‘hole’ are synonyms of the word ‘eye’.

Approach
The ‘eye’ example from the previous section is relatively straightforward since the different
usages of the term ‘eye’ in patents resemble common non-patents usages, so algorithmic
predictions are not as useful. However, for tens of thousands of other terms, usage in patent
documents is not only different than in common vernacular but also varies considerably based on
the substantive domain (most easily expressed by the CPC codes assigned to the patent

6

document). As previously mentioned, one of the most important use cases in the patents domain
for synonyms is prior art searching. Here, we are interested in synonyms that are generally used
for a given term for a specific field. So, in order to generate synonyms to aid prior art searches,
rather than taking a single piece of patent text, masking a term, and generating predictions, we
utilize a broader approach:

1. Select a CPC code.
2. Select a term.
3. Query N number of patent documents containing the term within the given CPC code.
4. Generate predictions for each term for each document.
5. Calculate aggregate metrics reflecting the highest predicted terms on average across all N

documents.

Validity Testing
Of the over 2,000 terms that the USPTO provides as example synonyms, ~200 exist in multiple
CPC codes. These synonyms that exist across multiple CPC codes provide a good mechanism to
test how well the BERT algorithm is able to generate different synonyms for the same term in
different contexts. To do so, we follow the five general steps outlined above but with a few slight
modifications. To help illustrate out approach, consider the term ‘priming’, which is provided as a
synonym with terms [‘cleaning’, ‘maintenance’, ‘recovery’] in CPC 'B41J2/165' (which covers ink
protuberances for printing mechanisms), and a synonym with terms [‘anchoring’,13 ‘bonding’,
‘subbing’] in CPC ‘C23G’ (which covers industrial materials).

1. Select a term (i.e., ‘priming’) provided as a synonym example for two CPC codes.
2. Sample N abstracts (100 in our example) from each CPC code (i.e., ‘B41J2/165’ and

‘C23G’) containing the term selected at step 1.
3. For each set of 100 abstracts, mask the key term (i.e., ‘priming’) and generate predictions

across the full vocabulary.
4. Store the rank position of the provided synonyms for each CPC code (i.e., [‘anchor’,

‘bonding’, ‘subbing’] for CPC 'B41J2/165' and [‘cleaning’, ‘maintenance’, ‘recovery’] for
CPC ‘C23G’).

5. Calculate the mean rank for each synonym for each CPC.

This approach is certainly not perfect (the mean can be disproportionately swayed by a few
outlier results) and more rigorous methodologies could be employed (e.g., using human
reviewers to rate returned recommended synonyms). However, this approach does provide a
straightforward and lean validity test: all three synonyms associated with ‘priming’ and CPC
‘C23G’ should have higher mean predictions than all three synonyms associated with CPC
‘B41J2/165’ for abstracts sampled from CPC ‘C23G’ and visa versa.

13 Note that ‘anchoring’ is tokenized to ‘anchor’ in the vocabulary.

7

 priming anchoring bonding subbing cleaning maintenance recovery

‘C23G’ 31.8 143.0 66.2 2.0 262.5 2293.5 1071.0

As the table above shows, the algorithm correctly predicts that ‘anchoring’, ‘bonding’, and
‘subbing’ are more likely to be used synonymously with ‘priming’ in CPC ‘C23G’ than in
‘B41J2/165’, and that ‘cleaning’, ‘maintenance’, and ‘recovery’ are more likely to be used
synonymously with ‘priming’ in CPC ‘B41J2/165’ than in ‘C23G’. The terms ‘subbing’ provides the
starkest distincting, with a mean prediction of 2.0 for CPC ‘C23G’ and 9762.8 for CPC
‘B41J2/165’. This means that the algorithm predicts that ‘subbing’ and ‘priming’ are used virtually
interchangeably in CPC ‘C23G’ and virtually never used synonymously with ‘priming’ in CPC
‘B41J2/165’.

Using Live
To use this BERT algorithm to generate synonyms for real-world use like prior art searching, we
suggest two approaches. The first and most straightforward option is to simply provide a chunk of
text and the term for which you would like to generate synonyms (i.e., the ‘masked’ term), which
is identical to the ‘eye’ example in the Masked Term Prediction from Patent Abstracts section.
This approach is fast and easy as it only needs to generate predictions for a single chunk of text
and does not need to make any database calls. However, it will return results that only account
for the context of the provided text which may not be representative of how the term is more
generally used in a certain substantive domain.

The second option is similar to the sampling framework in the Testing section, but instead of
calculating the mean prediction of a set list of terms, it returns a ranked list of the count of times a
word occurs in the top-N predictions. This is conducive to the prior art searching use case as it
does not require the user to know in advance which terms to return (which is required for the
methodology in the Testing section which requires the user to provide synonyms and then returns
their mean rank position) and is more robust to outliers. The image below shows the output of this
approach generated on a count of occurrence in the top 10 predictions for 100 abstracts from
CPC ‘B41J2/165’ for the term ‘priming’.

8

‘B41J2/165’ 100.5 14157.9 844.8 9762.8 170.4 242.6 829.0

This chart reflects that the term ‘cleaning’ occurred in the top 10 most likely terms (out of the
entire ~56k vocabulary) 64 times out of 100 potential predictions. This chart reflects that the
masked term (i.e., the actual term) ‘priming’ is the third most predicted term amongst the top 10
predictions. Two of the three synonyms that the USPTO provides for the term ‘priming’ for this
CPC code, ‘cleaning’ and ‘maintenance’, were the first and fourth most common among the top
10 predictions, respectively. Although this is a sample size of one, it provides strong support for
this methodology. In dozens of tests of other terms in other CPCs, we found consistently strong
and useful results. We encourage other users to try this on their own.

Bonus: Extending BERT
This article focuses primarily on how to use the BERT model to generate synonyms, which is
"native" to the BERT model and requires almost no customization since it is just a repurposing of
the masked language optimization. However, the BERT model can be extended to address a
variety of other use cases. Below, we provide brief explanations of how to leverage the BERT
model to generate CPC classifications and to build an autocomplete tool.

One way to generate CPC classifications is to use a "[CLS]" token that is prepended to each
BERT sequence input and contains learned encodings for each full sequence input provided to
the BERT model. In our case, this means each 512-token length chunk of text generates a
“[CLS]” token that is a 1x1024 embedding vector. This vector can be used in a number of
classification tasks. For example, you could take as input any piece of text, be it from a scholarly
article or product manual, generate the “[CLS]” token vector, and use this vector to build a
classification model to predict the CPC code for the piece of text.

9

The BERT model also generates a final encoder layer that is a matrix containing a contextual
representation for each sequence of inputs, with 512 rows (one row for each token specified by
the hyperparameter max_seq_length) and 1024 columns (specified by the hyperparameter
hidden_size).

Like the “[CLS]” token vector, this output can also be used to build various classifiers and can
also be used as the basis for an autocompletion model. While this could present a number of
interesting research initiatives for academics, autocomplete tools should not be used in actual
drafting of patent applications since major patent offices have recently deemed that AI systems
cannot be a named inventor.

A crude autocomplete function can be built following the five high level steps below:

1. Select a text sequence.
2. Add a masked token to the end of the sequence.
3. Use the final encoding layer for that sequence to generate a prediction for the masked

term.
4. Append the top prediction for the mask term to the text sequence.
5. Repeat steps 2-4 N number of times to generate N number of predicted future terms.

Although this approach works, the outputs can be general. BERT leverages bidirectionality, and
in this case only the preceding tokens are known and provided to the model. For a more robust
and tuned autocomplete/text generator, the BERT wordpiece embeddings or encoder layer output
can be successively passed to some RNN type model to produce text generation. The two
animations below illustrate the iterative process of an autocomplete algorithm using the out of the
box crude masking approach approach.

Conclusion
The rate of innovation in deep learning-based NLP has been extraordinary. Recently,
transformer-based approaches like BERT have supplanted RNN-based models like LSTMs
across a number of language prediction tasks. As a result, BERT and its extensions have quickly
become widely adopted. In this article, we provide the first application of the BERT algorithm
trained exclusively on patent text, focusing primarily on the use case of synonym generation but
also highlighting additional use cases for general classification and autocomplete. We additionally
accompany this article with an open source BERT model trained on and optimized for patent
documents. Our hope is that this can help practitioners in corporations, academia, and
governmental patent offices get started with the BERT framework and apply it to new use cases
and research initiatives.

10

https://www.jonesday.com/en/insights/2020/05/reboot-required-artificial-intelligence-system-cannot-be-named-as-an-inventor-under-us-patent-law-uspto-says
https://www.jonesday.com/en/insights/2020/05/reboot-required-artificial-intelligence-system-cannot-be-named-as-an-inventor-under-us-patent-law-uspto-says
https://github.com/google/patents-public-data/blob/master/models/BERT%20for%20Patents.md

