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Abstract

Advertisers have a fundamental need to quan-
tify the effectiveness of their advertising. For
search ad spend, this information provides a
basis for formulating strategies related to bid-
ding, budgeting, and campaign design. One ap-
proach that Google has successfully employed to
measure advertising effectiveness is geo experi-
ments. In these experiments, non-overlapping
geographic regions are randomly assigned to a
control or treatment condition, and each region
realizes its assigned condition through the use of
geo-targeted advertising. This paper describes
the application of geo experiments and demon-
strates that they are conceptually simple, have a
systematic and effective design process, and pro-
vide results that are easy to interpret.

1 Introduction

Every year, advertisers spend billions of dollars
on online advertising to influence consumer be-
havior. One of the benefits of online advertising
is access to a variety of metrics that quantify
related consumer behavior, such as paid clicks,
website visits, and various forms of conversions.
However, these metrics do not indicate the incre-
mental impact of the advertising. That is, they
do not indicate how the consumer would have be-
haved in the absence of the advertising. In order
to understand the effectiveness of advertising, it
is necessary to measure the behavioral changes
that are directly attributable to the ads.

A variety of experimental and observation meth-

ods have been developed to quantify advertis-
ing’s incremental impact (see [1], [5], [3], [2]).
Each method has its own set of advantages and
disadvantages.

Observational methods of measurement impose
the least amount of disruption on an advertiser’s
ongoing campaigns. In an observational study ad
effectiveness is assessed by observing consumer
behavior in the presence of the advertising over
a period of time. The analyses associated with
these studies tend to be complex, and their re-
sults may be viewed with more skepticism, be-
cause there is no control group. That is, a statis-
tical model is used to infer the behavior of a com-
parable set of consumers without ad exposure,
as opposed to directly observing their behavior
via an unexposed control group. At Google, ob-
servational methods have been used to measure
the ad effectiveness of display advertising in the
Google Content Network [1] and Google Search
[2].

The most rigorous method of measurement is
a randomized experiment. One application of
randomized experiments that is used to analyze
search ad effectiveness is a traffic experiment. At
Google, these are performed using the AdWords
Campaign Experiments (ACE) tool [3]. In these
experiments, each incoming search is assigned to
a control or treatment condition and the sub-
sequent user behavior associated with each con-
dition is compared to determine the incremental
impact of the advertising. These experiments are
very effective at providing an understanding of
consumer behavior at the query level. However,
they do not account for changes in user behavior
that occur further downstream from the search.
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For example, conversion level behavior may in-
volve multiple searches and multiple opportuni-
ties for ad exposures, and a traffic experiment
does not follow individual users to track their
initial control/treatment assignment or observe
their longer-term behavior.

An alternative approach is to vary the con-
trol/treatment condition at the cookie level. In
a cookie experiment, each cookie belongs to the
same control/treatment group across time. How-
ever, ad serving consistency is still a concern
with cookie experiments because some users may
have multiple cookies due to cookie churn and
their use of multiple devices to perform online
research. Cookie experiments have been used at
Google to measure display ad effectiveness [5].

This paper describes one additional method for
measuring ad effectiveness; the geo experiment.
In these experiments, a region (e.g. country) is
partitioned into a set of geographic areas, which
we call “geos”. These geos are randomly as-
signed to either a treatment or control condition
and geo-targeting is used to serve ads accord-
ingly. A linear model is used to estimate the
return on ad spend.

2 Geo Experiment Description

Online advertising can impact a variety of con-
sumer behaviors. In this paper, we refer to the
behavior of interest as the response metric. The
response metric might be, for example, clicks
(paid as well as organic), online or offline sales,
website visits, newsletter sign-ups, or software
downloads. The results of an experiment come
in the form of return on ad spend (ROAS), which
is the incremental impact that the ad spend had
on the response metric. For example, the ROAS
for sales indicates the incremental revenue gen-
erated per dollar of ad spend. This metric in-
dicates the revenue that would not have been
realized without the ad spend.

A geo experiment begins with the identification
of a set of geos, or geographic areas, that parti-
tion a region of interest. For a national adver-

tiser, this region may be an entire country. There
are two primary requirements for these geos.
First, it must be possible to serve ads accord-
ing to a geographically based control/treatment
prescription with reasonable accuracy. Second,
it must be possible to track the ad spend and
the response metric at the geo level. Ad serv-
ing inconsistency is a concern due to finite ad
serving accuracy, as well as the possibility that
consumers will travel across geo boundaries. The
location and size of the geos can be used to mit-
igate these issues. It is not generally feasible to
use geos as small as, for example, postal codes.
The generation of geos for geo experiments is
beyond the scope of this paper. In the United
States, one possible set of geos is the 210 DMAs
(Designated Market Areas) defined by Nielson
Media, which is broadly used as a geo-targeting
unit by many advertising platforms.

The next step is to randomly assign each geo to
a control or treatment condition. Randomiza-
tion is an important component of a successful
experiment as it guards against potential hid-
den biases. That is, there could be fundamental,
yet unknown, differences between the geos and
how they respond to the treatment. Random-
ization ensures that these potential differences
are equally distributed - statistically speaking -
across the treatment and control groups. It also
may be helpful to constrain this random assign-
ment in order to better balance the control and
treatment geos across one or more characteris-
tics or demographic variables. For example, we
have found that grouping the geos by size prior
to assignment can reduce the confidence interval
of the ROAS measurement by 10%, or more.

Each experiment contains two distinct time peri-
ods: pretest and test (see Figure 1). During the
pretest period there are no differences in cam-
paign structure across geos (e.g. bidding strat-
egy, keyword set, ad creatives, etc.). In this
time period, all geos operate at the same baseline
level and the incremental differences between the
treatment and control geos in the ad spend and
response metric are zero.

During the test period the campaigns for the
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Figure 1: Diagram of a geo experiment. Ad
spend is modified in one set of geos during the
test period, while it remains unchanged in an-
other. There may be some delay before the cor-
responding change in a response metric is fully
realized

treatment geos are modified. This modification
generates a nonzero differential in the ad spend
in the treatment geos relative to the control geos.
That is, the ad spend differs from what it would
have been if the campaign had not been modi-
fied. This differential will be negative if the cam-
paign change causes the ad spend to decrease
in the treatment geos (e.g. campaigns turned
off), and positive if the change causes an increase
in ad spend (e.g. bids increased or keywords
added). This ad spend differential will gener-
ate a corresponding differential in the response
metric, perhaps with some time delay, ν. Offline
sales is an example of a response metric that is
likely to have a positive value of ν. It takes time
for consumers to complete their research, make
a decision, and then visit a store to make their
purchase. The test period extends beyond the
end of the ad spend change by ν to fully capture
these incremental sales.

3 Linear Model

After an experiment is executed, the results are
analyzed using the following linear model:

yi,1 = β0 + β1yi,0 + β2δi + εi (1)

where yi,1 is the aggregate of the response metric
during the test period for geo i, yi,0 is the aggre-

gate of the response metric during the pretest
period for geo i, δi is the difference between the
actual ad spend in geo i and the ad spend that
would have occurred without the experiment,
and εi is the error term. This model is fit using
weights wi = 1/yi,0 in order to control for het-
eroscedasticity caused by the differences in geo
size.

The first two parameters in the model, β0 and
β1, are used to account for seasonal differences
in the response metric across the pretest and test
periods. The parameter of primary interest is β2,
which is the return on ad spend (ROAS) of the
response metric.

The values of yi,1 and yi,0 (e.g. offline sales) are
generated by the advertiser’s reporting system.
The geo level ad spend is available through Ad-
Words. If there is no ad spend during the pretest
period then the ad spend differential, δi, required
by Equation 1 is simply the ad spend during the
test period. However, if the ad spend is positive
during the pretest period and is either increased
or decreased, as depicted in Figure 1 , then the
ad spend differential is found by fitting a second
linear model:

si,1 = γ0 + γ1si,0 + µi (2)

Here, si,1 is the ad spend in geo i during the test
period, si,0 is the ad spend in geo i during the
pretest period, and µi is the error term. This
model is fit with weights wi = 1/si,0 using only
the control geos (C).

This ad spend model characterizes the impact of
seasonality on ad spend from the pretest period
to the test period, and it is used as a counterfac-
tual 1 to calculate the ad spend differential. The
ad spend differential in the control and treat-
ment geos (T ) is found using the following pre-
scription:

δi =

{
si,1 − (γ0 + γ1si,0) for i ∈ T

0 for i ∈ C (3)

The zero ad spend differential in the control geos
reflects the fact that these geos continue to op-
erate at the baseline level during the test period.

1The counterfactual is the ad spend that would have
occurred in the absence of the treatment.
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4 Example Results

One issue that is of primary concern to adver-
tisers is the potential cannibalization of cost-free
organic clicks by paid search clicks (i.e. users will
click on a paid search link when they would have
clicked on an organic search link). Although
perhaps unlikely, it is also possible that the co-
occurrence of a paid link and an organic link will
make an organic click more likely. Cost per click
(CPC) does not provide the advertiser with a
complete picture of advertising impact because
of competing effects such as these. A more useful
metric is the cost per incremental click (CPIC),
which can be measured with a geo experiment.

One of Google’s advertisers ran an experiment to
measure the effectiveness of their search adver-
tising campaign. During this experiment, which
lasted several weeks, the advertiser’s search ads
were shown in half of the geos. Figure 2 shows
the result of fitting the linear model in Equa-
tion 1 with successively longer sets of test period
data to find the ROAS for clicks. At first, the
confidence interval of this metric is large, but it
decreases quickly as more test period data are
accumulated. Each dollar of ad spend generates
1/3 of an incremental click or, equivalently, the
CPIC is $3. In this case, the reported CPC in
AdWords is $2.40, which underestimates CPIC
by 20% 2. So, the paid clicks do displace some
organic clicks, but certainly not the bulk of them.

To further illustrate the ability of paid search
advertising to generate incremental clicks, Fig-
ure 3 shows the cumulative incremental ad spend
across the test period along with the cumulative
incremental clicks. The number of incremental
clicks is zero at the beginning of the test pe-
riod and increases steadily with time along with
the incremental ad spend. However, once the ad
spend in the test geos returns to a pretest level,
the accumulation of incremental ad spend stops.
At the same time, the accumulation of incremen-
tal clicks stops as well. This behavior indicates

2In [2] the authors define IAC (incremental ad clicks)
as the fraction of paid clicks that are incremental. IAC =
CPC / CPIC, so IAC = 80% in this example.
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Figure 2: Measurement of return on ad spend
for clicks as a function of test period length. The
uncertainty in this estimate decreases until the
ad spend returns to normal levels in all of the
geos.

that, in this case, search advertising does not in-
crease the number of clicks beyond the day in
which the ad spend occurred.

As mentioned in Section 2, the impact of ad
spend is not as time-limited for all response met-
rics. Figure 4 is analogous to Figure 3, except
the response metric is offline sales. Even after
the ad spend differential returns to normal, the
impact of the ad spend continues to generate in-
cremental sales for some period of time before
fading.

5 Design

Design is a crucial aspect of running an effective
geo experiment. Before beginning a test, it is
helpful to understand how characteristics such as
experiment length, test fraction, and magnitude
of ad spend differential will impact the uncer-
tainty of the ROAS measurement. This under-
standing allows for the design of an effective and
efficient experiment. Fortunately, it is possible
to make such assessments for the linear model in
Equation 1.
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Figure 3: Cumulative incremental ad spend and
clicks across the test period. The accumulation
of incremental clicks stops as soon as the ad
spend returns to the pretest level in all geos.
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Figure 4: Cumulative incremental sales across
the length of the test period. Incremental sales
continue to be generated even after the ad spend
returns to pretest levels in all geos.

For an experiment with N geos, let ȳ0 =
(1/N)

∑N
i=1 yi,0 and δ̄ = (1/N)

∑N
i=1 δi. Lin-

ear theory indicates that the variance of β2 from
Equation 1 is

var(β2) =
σ2ε(

1− ρ2yδ
) [∑N

i=1wi(δi − δ̄)2
] (4)

where σε is the residual variance, and

ρ2yδ =

[∑N
i=1wi(yi,0 − ȳ0)(δi − δ̄)

]2
∑N

i=1wi(yi,0 − ȳ0)2
∑N

i=1wi(δi − δ̄)2
(5)

(see Appendix) . Using a set of geo-level pretest
data in the response variable, it is possible to
use this expression to estimate the width of the
ROAS confidence interval for a specified design
scenario.

The first step in the process is to select a consec-
utive set of days from the pretest data to create
pseudo pretest and test periods. The lengths of
the pseudo pretest and test periods should match
the lengths of the corresponding periods in the
hypothesized experiment. For example, an ex-
periment with a 14 day pretest period and a 14
day test period should have pseudo pretest and
test periods that are each 14 days long. The
data from the pseudo pretest period are used to
estimate yi,0 and wi in Equation 4.

The next step is to randomly assign each geo to
the treatment or control group. We have found
that confidence interval estimates are lower by
about 10% when this random assignment is con-
strained in the following manner. The geos are
ranked according to yi,0. Then, this ranked list of
geos is partitioned into groups of size M , where
the test fraction is 1/M . One geo from each
group is randomly selected for assignment to the
treatment group.

It may be possible to directly estimate the value
of δi at the geo level. For example, if the ad
spend will be turned off in the treatment geos,
then δi is just the average daily ad spend for
treatment geo i times the number of days in the
experiment. Otherwise, an aggregate ad spend
differential ∆ can be hypothesized and the geo-
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level ad spend differential can be estimated using

δi =

{
∆(yi,0/

∑
i yi,0) for i ∈ T

0 for i ∈ C (6)

The last value to estimate in Equation 4 is σε.
This estimate is generated by considering the re-
duced linear model;

yi,1 = β̂0 + β̂1yi,0 + ε̂ (7)

This model has the same form as Equation 1
except the ad spend differential term has been
dropped. Fitting this model using the pseudo
pretest and test period data results in a residual
variance of σε̂, which is used to approximate σε.

To avoid any peculiarities associated with a par-
ticular random assignment, Equation 4 is evalu-
ated for many random control/treatment assign-
ments. In addition, different partitions of the
pretest data are used to create the pseudo pretest
and test periods by circularly shifting the data
in time by a randomly selected offset. The half
width estimate for the ROAS confidence interval

is 2

√
var(β2), where var(β2) is the average vari-

ance of β2 across all of the random assignments.
This process can be repeated across a number of
different scenarios to evaluate and compare de-
signs. Note that if a limited set of pretest data
is available, circular shifting of the data makes
it possible to analyze scenarios with extended
test periods. However, doing so requires data
points to be used multiple times in generating
each estimate of var(β2), and the example below
demonstrates that this reuse of the data leads to
estimates that are overly optimistic.

Figure 5 shows the confidence interval predic-
tion as a function of experiment length for the
click example from Section 2. The dashed line
corresponds to the predicted confidence inter-
val half width and the solid line corresponds
to results from the experiment. For this com-
parison, the ad spend differential from the ex-
periment was used as input to the prediction.
The predictions are quite accurate beyond the
very beginning of the test period. Additionally,
they maintain this accuracy until the combined

0 10 20 30 40

0.
00

0.
05

0.
10

0.
15

Confidence Interval Prediction

Time Since Test Start

C
on

fid
en

ce
 In

te
rv

al
 H

al
f W

id
th

 (
95

%
)

0

0.
0

0.
05

0.
10

0.
15

end of
incremental
ad spend

begin multiple
use of

pretest data

Analysis Results
Prediction

Figure 5: ROAS confidence interval prediction
across the length of the test period. The predic-
tion is quite good until the test period becomes
long enough that some of the pretest data must
be used multiple times to generate each estimate
of var(β2).

length of the hypothesized pretest and test peri-
ods becomes longer than the (deliberately) lim-
ited set of pretest data used to generate the es-
timates. The good match between these two
curves demonstrates that the absolute size of the
confidence interval can be predicted quite well,
at least as long as the ad spend differential can
be accurately predicted.

6 Concluding Remarks

Measuring ad effectiveness is a challenging prob-
lem. Currently, there is no single methodology
that works well in all situations. However, geo
experiments are worthy of consideration in many
situations because they provide the rigor of a
randomized experiment, they are easy to under-
stand, they provide results that are easy to in-
terpret, and they have a systematic and effective
design process. Geo experiments can be applied
to measure a variety of user behavior and can
be used with any advertising medium that al-
lows for geo-targeted advertising, Furthermore,
these experiments do not require the tracking of
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individual user behavior over time and therefore
avoid privacy concerns that may be associated
with alternative approaches.
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7 Appendix

To derive Equation 4, consider the centered ver-
sions of the variables yi,1, yi,0, and δi from Equa-
tion 1; y′i,1 = yi,1 − ȳ1, y′i,0 = yi,1 − ȳ0, and δ′i =

δi− δ̄ for i ∈ 1...N and ȳj = (1/N)
∑

i yi,j . With

these translations, the relevant linear model be-
comes

y′i,1 = β1y
′
i,0 + β2δ

′
i + εi (8)

Or,
Y = Xβ + ε (9)

where

Y =


y′1,1
.
.
.

y′N,1

 , X =


y′1,0 δ′1
. .
. .
. .

y′N,0 δ′N



β =

[
β1
β2

]
, ε =


ε1
.
.
.
εN


With the model in this form, the variance-
covariance matrix of the weighted least squares
estimated regression coefficients is:

var(β) = σ2ε (X
TWX)−1 (10)

(see [4]), where W is a diagonal matrix contain-
ing the weights wi,

W =


w1 0 . . 0
0 w2 .
. . .
. . 0
0 . . . wN

 . (11)

Now,

var(β) = σ2ε

[∑
iwiy

′
i,0

2 ∑
iwiy

′
i,0δ
′
1∑

iwiy
′
i,0δ
′
i

∑
iwiδ

′
i
2

]−1
(12)

and the last component of this matrix is the vari-
ance of β2,

var(β2) =
σ2ε
∑

iwiy
′
i,0

2(∑
iwiy

′
i,0

2
)(∑

iwiδ
′
i
2
)
−
(∑

iwiy
′
i,0δ
′
i

)2 .
(13)

Using Equation 5,(∑
i

wiy
′
i,0

2

)(∑
i

wiδ
′
i
2

)
(1− ρyδ)2 =
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(∑
i

wiy
′
i,0

2

)(∑
i

wiδ
′
i
2

)
−

(∑
i

wiy
′
i,0δ
′
i

)2

(14)
which, after substituting into Equation 13, leads
to Equation 4.
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