
Inside the eDreams ODIGEO
data mesh
A platform engineering view

Authors: Carlos Saona (eDreams ODIGEO), Luis Velasco (Google Cloud)

eDreams ODIGEO
data mesh journey

Page 8

Data products
architecture

Page 17

Lessons learned

Page 27

 Technical customer case study
November 2023

Table of contents

Chapter 1 Chapter 1 3

Introduction

Evolution stages 3

Central data warehouse 3

Data silos 4

Data mesh 5

Data mesh journey 8

Envision 8

Foundation 8

Sponsorship 9

Minimum viable product 9

Limited adoption 10

General adoption 10

Silo decommission/transformation 10

Summary 10

Chapter 2 12

Introduction 12

Context: The eDO ecommerce platform 12

Technical challenges and requirements 13

Data platform architecture 14

Data products architecture 17

Domain events 17

Snapshots (aggregates) 19

Derivatives 22

Quality records 23

Data product usage 24

Technical stack rationales 25

Summary 26

Chapter 3 27

Introduction 27

Lessons learned

Culture and transformation management 27

Software engineering processes 28

Design and architecture 29

Future work 31

The history of data at eDreams
ODIGEO: from a data monolith to
a data mesh

Chapter 2

The eDreams ODIGEO data mesh
architecture

Chapter 3

Lessons learned and the future
of the eDreams ODIGEO data
mesh

2

The history of data at eDreams ODIGEO: from a
data monolith to a data mesh
Introduction

For three years, eDreams ODIGEO (eDO) has been
working on an ambitious transformation program
inspired by Zhamak Dehghani’s article[1], Data Mesh
Principles and Logical Architecture. This program
harnesses the full benefits of the data mesh
approach to data analytics.

eDO is one of the world’s leading online travel
companies, serving 20 million customers in 44
countries. The evolution of its ecommerce platform
has been driven by canary and AB testing, with data
as an integral part of the culture.

This whitepaper shares eDO’s experience of building
a data mesh. Rather than outlining a specific
process, it provides a framework for companies
considering data mesh options. It provides
information on how the project evolved, what
decisions were made and why, and their positive and
negative outcomes.

The document is structured in three chapters. In the
first chapter, we will follow the evolution of the data
architecture of eDO. We look at how it started, why it
evolved to include a traditional data warehouse and
several silos, and why this ecosystem eventually
became limiting. We look at why a data mesh was
chosen over a data lake, and at how the
transformation project was planned and executed.

In the second chapter we look at the technical
architecture of the platform and the taxonomy of
data contracts that the platform supports. We
describe the process of creating new data products,
as well as discussing data quality and governance.

The third chapter is structured as a learning
exercise where we will review the outcomes of the
decisions made and explore some alternative paths.
We will also share the planned roadmap for the data
mesh rollout at eDO and end with our conclusions
on the project.

EVOLUTION STAGES

Stage I - The central data warehouse

Like most startups at the time, eDO’s founding
architecture blueprint was based on a modular
monolithic application shared by several teams. The
construction of an analytical informational vision
was relatively simple. Every few minutes, database
physical replication was used to copy the
production database to a read-only replica. It was
then transformed into a usable model for a
traditional data warehouse system (DWH) using
ETLs.

At this stage, the key characteristics were:

● A unified, company-wide data model for
analysts.

● A unified data model owned by a central
team (the Business Intelligence team, or BI).

● The central data team had most of the
responsibility for governance and had a
comprehensive understanding of the
business. They translated information from
the operational data model (the production
database) to the unified data model, which
catered for analyst teams.

Chapter 1

3
[1] https://martinfowler.com/articles/data-mesh-principles.html

https://martinfowler.com/articles/data-mesh-principles.html
https://martinfowler.com/articles/data-mesh-principles.html

The central team was in charge of adapting the data
warehouse to match changes in the operational data
model. This was a challenge because of the frequent
monolith releases, but the mandatory canary release
policy alleviated this. Because there could be two
versions of the monolith in production, development
teams had to change the database in backward and
forward compatible ways. This gave the central team
more time to adapt.

This initial stage worked well, even when the monolith
underwent migrations and re-writes. The underlying
method was used during the development of new
features in separate services (SOA) and with separate
database schemas. It survived because physical
replication worked as long as the database instance
was shared. The limiting factors were functional
complexity and the rate of change, as the data team
needed a high-level view of the whole business and
had to keep up-to-date with all changes. As the
business grew, it became clear that a new approach
was needed.

EVOLUTION STAGES

Stage II - Data silos

To scale with rapid business growth over time, the
application architecture used a distributed paradigm
to support fast release cycles. The monolith eventually
broke down into over 300 microservices structured
around 30 business domains such as flights, hotels,
insurance, payments, and fraud. This removed the
release bottleneck and allowed the company to scale
the development team. Figure 1 shows how breaking
the platform into microservices allowed release
speeds to be sustained and improved as the number
of developers increased.

The need for data analytics increased as the business
grew. The microservice transformation put stress on
the DWH setup because physical replication created a
tight coupling between the DWH and the operational
microservices. Tables and columns could not be
changed or renamed without risking a catastrophic
impact on the ETLs and the DWH.

To resolve this, a set of dedicated microservices
replaced physical replication. These periodically
pushed the operational data into a staging DB with an
intermediate data model between the operational
world and the DWH world. A new set of ETLs
transformed the staging DB model into the final DWH.

As the development workforce expanded in line with
commercial growth, the DWH team struggled to keep
up with the proliferation of business domains and
features in their centralized model. This led teams to
look for alternatives. In some cases, this meant
creating their own services and pushing data into
silos, but the most popular approach was based on
logical table replication. DBAs set a simple job in one
of the read-only production replicas to make partial
copies of some schemas to a DB owned by an
analytical team. This let them create their own ETLs or
query the copy directly. Some analytical teams even
coordinated to share raw and transformed data
between them to improve efficiency. The main reason
behind the popularity of this option was that it did not
need involvement from the development teams.

4

2008 2015 2022

Developers
(Teams)

20 ~150 (11) 300 (50)

Architecture Monolith 1 monolith + 29
services

250
microservices

Avg Daily
releases

1 10
(coordinated)

60
(autonomous)

Figure 1 - The evolution of the eDO e-commerce platform
architecture driven by its release life cycles

The key characteristics of this stage were:
● A central DWH owned by a central team and

providing a unified, company-wide model.
Over time, this no longer provided a
comprehensive view of the company.

● Silos grew (or were created) organically in
response to demands for new or differently
structured data.

● The central DWH operated in parallel with
multiple data systems. Some contained
subsets of the DWH data or catered for a
specific purpose, others contained data not
present in the DWH, and others contained
both.

● Different silos employed different data sharing
mechanisms. Data replication was most
common, followed by ad-hoc contracts and
data pipelines.

● As a general rule, data silos were not
interoperable. Partial interoperability was
sometimes accomplished with ad-hoc ETLs.

Data silos were limited by poor interoperability and
governance, especially for silos without contracts
where producers had minimal information on how data
sharing worked.

Overall, the data silo stage increased analytical teams’
data accessibility while reducing and hiding
development costs. This fueled a data-driven culture
but also created future challenges. eDO looked for
ways to address these issues.

EVOLUTION STAGES

Stage III - Data mesh

Over time, the limitations of the data silo approach
became clear. These included high maintenance
costs, no common standards for data quality, absence
of a unified global data source, and data trust issues
causing discrepancies between silos.

The most visible challenge was data producers’ lack
of ownership. For example, when one product team
changed their tables, this often created a chain
reaction in analytical teams. In many cases individual
teams were unaware tables were being copied and
used by others. Even when they were aware of this,
waiting until other teams had time to adapt to
changes in their tables created friction.

Silos were problematic because there was no contract
between producers and consumers, and data sharing
was achieved by coupling operational and analytical
data. Without an agreement between consumers and
producers, lack of alignment priorities eventually
eroded data quality in the silo (Figure 2). The need for
a unified company-wide view with discovery and
search was required to provide data science teams a
higher level of insight.

In order to meet these challenges, eDO adopted a
new data strategy, beginning with an RFI process in
2018. Professional consulting advice suggested that
new data strategies should be built around the
concept of a data lake, unifying all data in one place
under the control of a centralized data team.

5

In environments where software release cycles are
measured in months, the centralized management
structure of a data lake is ideal. This approach was not
suitable for eDO because of the much faster release
speed of the microservices platform. This made it
impossible to design a stable data layout in the data
lake without affecting development speed.

A data lake was also unsuitable because of the degree
of functional dependencies between eDO business
domains. There were strong functional relationships
between domains such as flights and hotels because
they were part of the same customer journey, rather
than completely isolated entities. This made it difficult
for a central data team to bring together knowledge
from all domains.

When Zhamak Dehghani’s article[1], Data Mesh
Principles and Logical Architecture was published in
2020, it validated eDO’s doubts about the feasibility
of centralized data lakes in domain-oriented
microservices architectures. It also provided a new
conceptualization for a distributed data architecture -
the data mesh. This is a sociotechnical paradigm that
builds on the concept of decentralizing data
ownership. It is achieved by leveraging a
domain-oriented data model and priming a
self-service data infrastructure.

The data mesh core principles (“Domain-oriented
decentralized data ownership”, “Data as a product”,
“Self-serve data infrastructure as a platform”, and
“Federated computational governance”) aligned with
eDO’s culture as a product-focused organization
structured around business-oriented domains. eDO
also has software engineering at its core and a strong
data-driven mindset.

6

Figure 2 - The two possible final states of a data silo. When the missions of the consumers and producers match, the data silo stays aligned. Otherwise, the
silo will eventually decay (dotted line) because alignment was purely the result of a management push and was thus short lived. Decay will also occur when

the cost for the producer gets too high: backlog prioritization pushes back items with a low gain/cost ratio.

https://martinfowler.com/articles/data-mesh-principles.html
https://martinfowler.com/articles/data-mesh-principles.html

Implementing a data mesh is both a technological and
cultural change because it alters the data paradigm in
the organization. Figure 3 shows how ownership of
activities in the end-to-end data process changes in a
data mesh.

Instead of being monitored for quality by a centralized
team, data in a mesh is treated as a first-party asset
by producers. Teams producing and sharing data treat
it as part of their product. They model data, and are
accountable for its quality once they have agreed on
data quality SLAs with consumers.

The data team no longer owns data, but instead
focuses on building a domain-agnostic, self-service
data platform that can be used by producers and
consumers. Governance is still needed to ensure
consistency between the data shared by domain
teams (i.e., data products), but this is accomplished
by automation and by federation of domain and data
modeling experts. By implementing a data mesh, the
data team stops being a bottleneck that prevents an
increase in the number of domain-oriented
development teams.

After adopting the data mesh paradigm, eDo had to
plan the transition away from data silos. This involved
changes in technology, shifts in ownership of critical
functions, and a general change in the culture around
data. This process is still in progress at eDO, but can
be divided into the following phases: envision,
foundation, sponsorship, minimum viable product,
limited adoption, general adoption, and silo
decommission.

7

Figure 3 - Task distribution in a data mesh setting vs a centralized deployment (consumers can agree SLAs directly with producers)

DATA MESH JOURNEY

Envision

The first step of the envision phase was to pinpoint
problems with the current data setup and find better
options. For eDO, this meant choosing a data mesh
over a data lake. The next step was to map the general
principles of the data mesh paradigm onto eDO’s
specific needs and to establish goals and constraints
for the project.

On top of the established data mesh foundational
principles, eDO added one of its own, based on data
silo experience: favor shifting effort from producers
to consumers. The primary reason for drift in the data
silos was misalignment of priorities between
consumers and producers of data, and the second
was the excessive burden on producers (Figure 2).

Typically, data systems are created after a business
case is pushed by data consumers. If the producer’s
mission is not initially aligned with the consumer’s, or
if its mission changes, the data silo will eventually
suffer. This frustrates consumers because their
improvements and fixes do not get prioritized.

The same happens if production costs get too high, as
other items in the backlog with a better gain/cost ratio
take priority. Following this logic, one solution to
improve prioritization of data product features is to
reduce cost on the producer’s side as much as
possible by increasing automation and by transferring
the cost to consumers. Because of this, eDO data
contracts are tailored to align with producers, whether
they are source or consumer aligned. Consumers
carry out any required transformation, aggregation, or
stitching themselves. This helps prevent misalignment
and reduces costs for producers.

Foundation

The previous phase helped clarify ideas and enabled
eDO to create a draft proposal. The initial vision was
then shared with two key stakeholder groups: the
central data team in charge of the data warehouse
(BI) and the analytical team with the greatest data
needs (Data Science). They were told about the
advantages of the new paradigm and asked to help
refine the project to make it more feasible. This
stakeholder feedback provided real-life details about
ownership, data quality, and data transformation rules.
This improved the vision, goals, principles, and
constraints of the project. It also made it possible to
create a high-level overview of how the
implementation would take place. Another important
outcome was a set of principles for the transformation
itself:

● No data products without consumers.
A mandatory requirement for any dataset
added to the mesh was the existence of a real
consumer and use case (the consumer and
producer could be the same team).

● Slow, controlled bootstrap.
Rather than designing a unified model from
scratch, an iterative approach was used.
Initially, datasets were hand-picked to allow
freedom to make mistakes and roll back
decisions without severe impacts on the
business. This also enabled learning from real
use cases and created generalized modeling
and federation principles.

● Federated governance.
Experienced engineers were selected to
review all data contracts. Every business
domain was represented by at least one
expert. Because one of the principles stated
that the modeling would be aligned with the
producers, this expertise was limited to
knowledge of the data produced, not of the
use cases for consumption (which was
planned to happen case-by-case as data
contracts were produced).

8

DATA MESH JOURNEY

Sponsorship

This phase involved establishing executive team
buy-in, which was essential due to the magnitude,
impact, and scope of the transformation. The team
were presented with the analysis of the current data
situation and the outline previously agreed on by the
initial stakeholders. Other stakeholders were added to
the conversation at this stage, and posed additional
questions and challenges.

The general approach to the transformation rollout
was to start small, as per the transformation principles
discussed previously, and expand along with maturity.
One of the biggest issues was the future of data silos.
To avoid creating uncertainty and wasted effort
around silo decommissioning, forced
decommissioning was postponed for several years
and it was agreed that the cost of migrating to the
data mesh would be evaluated before improving data
silos or creating new ones.

The rollout plan was divided into three phases. The
first phase created a minimum viable product and
tested it with a simple, low-risk data product. The
second phase increased testing with higher-risk data
products until the system was considered mature
enough to add data products without constraints.

Minimum viable product

The first step of the rollout was to create the new
domain-agnostic data platform. Keeping the data
platform and its team separate from business domains
ensured that they could grow without facing scaling
issues if requirements did not grow in line with domain
complexity.

The data team focused on developing self-service
systems to reduce cost for producers and enable data
governance for consumers. For producers, the system
needed to provide a self-service platform that
minimized the cost of sharing data.

For consumers, the system needed to automate data
governance so that they could trust the data in the
system. Data quality parameters formed part of the
contract between each consumer and producer
instead of being globally imposed.

This task was given to a team that already owned
generic business-agnostic microservices for the
company. This ensured that the solution was
decoupled from business knowledge.

On the business-aware side, the federated team in
charge of reviewing all data contracts started working
on an initial set of guidelines. One of the key decisions
was modeling policy as data, forcing contracts to be
declarative, as a combination of Avro schemas for the
data structure and a YAML file with policies expressed
as properties, such as which fields contain personal or
financial information, or for how long data should be
retained.

The first data contract implemented was a simple
dataset that helped the production team monitor the
business performance of a microservice. Choosing a
use case that was new, and where the producer and
consumer were on the same team, helped reduce risk.
The new data team carried out the implementation to
ensure they had experience of using the required
tools.

The data platform was not fully automated at this
stage, which meant that the process of registering
new data products required manual intervention from
the data team. This was an acceptable compromise
because it accelerated feedback from data users,
while also keeping the process moving forward.

9

DATA MESH JOURNEY

Limited adoption

Once the first data product was in production, more
use cases were selected and teams began
implementing their own data products using the tools
developed in the previous phase.

As the number of live data products increased,
automation of the whole system was improved to
meet demand. Initially, only one type of data product,
based on domain events, was supported (see Chapter
2). Although this limited scope, it made learning
easier. As the system gained stability, support was
added for more data product types. Data quality
measurement and alert features were also added in
this phase. Finally, the initial modeling guidelines
generated by the federated governance team
improved as more use cases were added.

General adoption
Once the catalog of data product types covered all
known use cases, the system was considered mature
enough to allow unlimited addition of data products as
long as there was a consumer behind them.

This phase involved both organic and directed data
product growth. Organic growth came from teams
creating new data contracts. The main limitation of
organic growth is that it does not always result in
complete coverage of all the data products needed.
The most complex use cases require data products
from multiple teams and domains, and this requires
coordination from multiple producers in different parts
of the organization. This coordination sometimes
happens organically, but is not guaranteed. Directed
projects were established to complement organic
growth and ensure complex cases were also
addressed.

During this phase, the data platform was already in a
regular product dynamic that was centered on
improving data governance with features such as
additional methods to measure data quality.

Silo decommission and transformation
A key initial project principle was that data silos would
not be immediately decommissioned or altered.
However, as the system matured, the trust level of
some of the teams consuming data increased, and
plans were made to decommission some of the silos
after all the required datasets migrated to the new
data mesh.

In some cases, silos were transformed rather than
decommissioned because they were tailored to
specific business domains. Provisioning pipelines were
refactored to source data from the data mesh, which
became the source of truth.

This phase is ongoing and is expected to last several
years. Some silos have already started transformation,
but none have yet been decommissioned.

Summary

Data at eDO has gone through three different stages
(Figure 4). The driving factor behind the evolution of
the system has always been the increase in the
number of people developing it. As teams grow,
people and data communication channels can break.

Systems often start with a centralized data team in
charge of a data warehouse. Strong coupling is not a
major problem because the number of teams is small
enough to enable good communication between
developers and the data team. The functional
complexity is simple enough for one team to
understand and manage. Data is easily available to
everybody in the company, and there is a high level of
trust and quality.

As teams and businesses grow, adding new data to
the warehouse or adapting it to increasing functional
complexity creates a bottleneck. Some analytical
teams respond by creating their own pipelines and
data systems. This creates data trust, quality, and
ownership problems, but these are mitigated by the
advantages of data availability and team autonomy.

10

The problems with data silos are also exacerbated as
businesses grow, teams get larger, and functional
complexity increases. This highlights the need for a
unified company-wide data model. The growth of AI
and data science teams further emphasizes this need.

In 2019, the natural next step for eDO would have
been to revert to a centralized model overseen by a
single data team. However, this was incompatible with
the distributed nature of its ecommerce platform,
which is organized around business domains and
autonomous teams. Instead, eDO chose a
business-agnostic data team and a distributed data
architecture aligned with that of the platform and
teams.

11

This chapter has outlined the history of data at eDO.
In the next chapter we will examine the technical
implementation of this new data mesh paradigm. We
will look at technical challenges, data contracts and
products, and the business-agnostic data platform.
We will also look at how this links with the overall
architecture of the company.

Figure 4 - The evolution of data architectures at eDO

The eDreams ODIGEO data mesh architecture
Chapter 2

12

Introduction

In the last chapter we looked at why eDO decided to
take a fresh approach to data analytics based on
data mesh principles. In this chapter we will focus on
the architectural solution from both data and
platform perspectives.

First, we will describe the context of the eDO
ecommerce platform. We will then explain the main
technical challenges of implementing a data mesh at
scale in terms of data volumes as well as functional
and organizational complexity. We will review the
architecture of the components of the data platform
and examine data product taxonomy. We will explain
each of the four data product types, why they exist,
and how they are typically used by consumers.
Finally, we will explain the reasons behind the choices
made in the technical stack that underlies the whole
system.

Context: The eDO ecommerce platform
Before discussing the data platform, we will provide a
brief overview of the ecommerce platform. Many of
its characteristics influenced the architectural design
of the data mesh.

● Microservices architecture: The platform is
built around microservices (over 300 as of
early 2023), breaking down the entire
ecommerce model into independently
deployable services grouped by business
domains. Microservices can communicate
synchronously using REST or asynchronously
using Apache Kafka. Both styles can coexist
in the same microservice depending on the
degree of coupling accepted or the tolerance
to failures.

● Fast-paced release cycles: To speed
up time-to-market and ensure platform
availability, eDO implements strict
continuous integration and deployment
practices. All microservices use canary
releases and the release pipeline
provides tools to compare technical and
functional KPIs against benchmark
canary and stable versions. Canary
versions can be automatically promoted
to stable versions when all indicators are
neutral or positive. There is no release
coordination function and teams deploy
when they are ready without external
synchronization.

● AI and data-driven: Data and AI are
pervasive across teams. Around 1000 AB
tests are performed each year, and the
multiple ML models in production
execute almost two billion daily
predictions.

● 100% cloud: eDO started migrating to
the cloud over a decade ago, first with
SaaS workspace software (Google Mail,
Docs, etc.). This was followed by IaaS for
testing and continuous integration and
data warehouse infrastructure. Migration
continued with PaaS for the complete
ecommerce platform running on
Kubernetes. Traffic demand on the
platform is seasonal, with daily customer
searches peaking at well over 100 million
and CPU core usage peaking at around
30,000. This makes extensive use of
Google Cloud’s autoscaling capabilities
to optimize latency and cost.

● DevOps: eDO has a long history of
DevOps practices and automation,
having used Puppet for over a decade
and embracing Terraform and Helm
when the on-prem Mesos system was
migrated to Google Cloud and
Kubernetes. Automation is key to
keeping the cost of creating and
maintaining microservices as low as
possible.

Technical challenges and requirements

The data mesh community agrees that the biggest
challenges for adoption relate to culture, organization,
and ownership. However, there are also significant
engineering challenges because the design of
automated processes often influences people to
change their existing work habits.

● Data volumes. A unified repository requires
the data system to operate with terabytes or
petabytes of data. This scale of data creates
two challenges:

○ Data access. Data users expect to be
able to query large amounts of data in
a few seconds.

○ Capacity planning and budgeting.
Cost and infrastructure resources
grow with the amount of data and with
the number of users consuming it.
From a capacity planning perspective,
the system needs to provision
infrastructure on-the-go. From a
budgeting perspective, the team in
charge of the system needs to know
each data user’s expected
consumption in advance. Because the
aim of a data mesh is to provide a
single data system, system budgeting
must consider the data needs of all
the teams in the company.

● Data interoperability. Interoperability poses
two challenges. From a pure data point of
view, consumers need to be able to link
datasets modeled in different business
domains. From a platform point of view, the
system needs to be able to efficiently join data
from multiple sets, preferably without
requiring users to know in advance which
queries they will perform (i.e., without needing
to include indexing in the system design).

13

● Data versioning. Change management is
a key challenge because the system needs
to operate in self-service mode for both
producers and consumers. Producers need
to be able to change their contracts
without being blocked by consumers
updating their queries, jobs, or
dashboards. Consumers need to be able to
rely on stable data contracts so their
queries, jobs, and dashboards do not
break due to the actions of data
producers. Typical data retention (over
months or years) makes this balance more
challenging because multiple versions of a
data schema may coexist in each single
dataset or data product. For existing
queries to work properly in this scenario,
the system needs to guarantee both
backward and forward compatibility. This
includes compatibility between one
version and the next as well as between
each version present in a dataset (i.e., full
transitive compatibility). Generally, data
versions can only be decommissioned
when data retention policies apply and
eliminate them from the dataset.

● Documentation availability and
trustworthiness. Documentation is
essential for the data mesh to function
effectively. Traditionally, data pipelines
have only been responsible for processing
data, with documentation handled
separately. This can lead to outdated
documentation. To avoid this, each
product team is responsible for writing and
maintaining documentation for their data
product.

● Maintenance overhead. The cost of
maintaining data products needs to be
reduced so that product teams embrace the
new paradigm and own the data they publish.

● Self-service, business-agnostic data
platform. The new paradigm only works if the
data platform can scale independently of the
number of teams and domains using it. This
requires no knowledge of the specifics of
domains in the platform, making it easy for
producers and consumers to publish or
access data.

Data platform architecture
This section outlines the design of the data mesh
system. The relationships between the high-level
components are shown in Figure 5. The sub-sections
below describe each component in the system. They
follow the data life cycle from data ideation on the
producer side to its ingestion and storage and finally
to its use on the consumer side.

DATA CONTRACTS

A data product starts with a contract. Most of the key
features of the data mesh are enabled by the way
data contracts are modeled:

● Each data contract is owned exclusively by a
single microservice, its producer. By
extension, each data contract is owned
exclusively by a single team, as microserves
are not shared.

● Data contracts are implemented declaratively
using a file with the Avro schema and a YAML
file.

● Documentation is part of the data schema as
supported by Avro. It is written and maintained
by the team owning the contract.

14

● YAML files contain policies and metadata
such as data retention, data quality SLAs,
and tags marking fields that contain
private or financial data. They also contain
hints for physical optimizations of data at
rest, such as which fields should be used
for partitioning (in declarative form).

● Avro and YAML files are maintained in a
source code repository associated with
the microservice that owns the contract.

Declarative contracts allow automation of
ingestion and data quality in the ingestion pipeline
without requiring any knowledge of business
domains. Making contracts exclusive to one
microservice and recording them as
human-readable files associated with the
microservice git repository helps producers own
the contract, and embedding documentation in the
data schema makes it easier to keep it updated.

STREAMING PLATFORM

Microservices publish data to the streaming
platform in real time. This platform is built on Kafka
and Kafka Registry. Kafka dynamically validates
messages carrying data products and rejects any
that do not comply with the data schema defined
in their contract. Kafka Registry is used to define a
company-wide schema compatibility policy. This
policy needs to be set to mandate backward and
forward compatibility between all schema versions
that are live in the mesh. The streaming platform
enforces the policy by rejecting any messages that
violate it. If consumers and producers agree to
break compatibility, the streaming platform can be
directed to use a more relaxed policy for a given
contract. Developers also have tools and tests to
verify that their changes are compliant.

INGESTION PIPELINE

As data is published to the streaming platform in real
time, the ingestion sub-system consumes it and
updates the data repository in semi-real time. This
sub-system is composed of several pieces. The key
component is a microservice that reads messages
from Kafka and writes their content in BigQuery. This
microservice holds a registry of all the data contracts
approved by the federated governance process. It can
recognize which messages to process and ignores the
rest. The goal of this process is to provide
interoperability by using a company-wide federated
governance to ensure all data contracts use
consistent terminology and language within the
constraints of each domain.

When data from a contract is published for the first
time, the service automatically creates a table in
BigQuery to match the schema described in the Avro
file, with retention, partitioning, and clustering policies
as defined in the YAML file. The service also uses the
metadata in the YAML file to tag columns and enforce
data mesh policies regarding personal and financial
information.

Defining data contracts declaratively is the key to
enabling the ingestion pipeline to be business
agnostic.

DATA REPOSITORY

Data at rest is implemented as a set of tables in
BigQuery (one per data product). BigQuery lets data
consumers use standard SQL to query terabytes of
data in a few seconds. At the platform level, it allows
security policies to comply with privacy and financial
regulations such as GDPR and PCI.

The design of the ingestion architecture guarantees
that the data in BigQuery and the data in the
streaming platform is identical. The only difference is
the type of read access provided and its duration. In
effect, the eDO data mesh offers consumers two
different interfaces. Data products can be consumed
within the operational platform by reading from Kafka,
or outside the operational platform by using SQL
queries in BigQuery.

15

Kafka offers shorter retention periods and fewer
querying capabilities than SQL, but data quality is
the same. How a microservice publishes data
impacts both the operational platform (because
other microservices may be consuming it directly
from Kafka) and the analytical platform (because
multiple analytical teams may be consuming it via
SQL queries or ETLs). This helps producers
improve data quality because the more issues a
potential fix solves, the easier it is to prioritize it in
the backlog.

REPORTING

Most product and analyst teams use Google
Looker Studio to create self-service, serverless
dashboards for reporting. The eDO data team
plans to speed up the creation of new dashboards
by providing templates for the most common use
cases. These can be copied and altered by teams
to suit their needs.

DATA CATALOG

Dataplex offers consumers a centralized
web-based UI for the documentation of all data
contracts. Producers document their contracts
within the Avro schema. The ingestion pipeline
automatically creates and updates entries in the
data catalog for each data contract. This
guarantees that the data catalog is always in sync
with the distributed documentation source. It also
reconciles the distributed ownership of data
contracts with the convenience of having a single
entry point for all documentation. The catalog
encourages data accountability because it shows
the ownership of each data set. The ingestion
pipeline updates this from the YAML of the data
contract.

16

Figure 5 - The data mesh architecture at eDO

DATA QUALITY MONITORING

The quality sub-system is built with a set of
microservices and automated processes that allow
producers and consumers to self-register their data
quality agreements as part of their declarative data
contracts. Quality contracts can be declared as
validations of foreign keys or as custom SQL queries
that output indicators.

Foreign keys can be used to detect data losses in the
pipeline. Delays in fixing data losses are often caused
by problems diagnosing the location of the loss.
Without this information, it is unclear whether the fix
needs to be done by the platform data team or by the
owner of the contract. Teams can inform to the quality
sub-system of the presence of foreign keys in other
tables that link to their own primary key. The quality
sub-system will regularly query foreign keys and try to
match them to primary keys. When a foreign key is not
present as a primary key (BigQuery does not enforce
foreign key integrity) this is usually because the row
with the primary key is lost. This is more likely than the
foreign key having the wrong value, as each table is
owned by a different microservice. If data losses are
occurring at the pipeline, they will suddenly increase
in multiple tables due to the business agnosticism of
the ingestion pipeline. If losses are only occurring in
one table, the problem is likely to be with the
microservice that sources the data.

Alternatively, teams can create their own custom
indicators by registering a SQL query and
establishing an execution frequency. The system
will run the query at the indicated frequency, store
the result in a dedicated table in the data
repository, and export it as a normal metric in the
operational monitoring system. This means both
producers and consumers can set up standard
alerts for when the indicator diverges from the
expected values. Product teams can use this to
monitor business KPIs that involve data from
multiple microservices or domains. This helps
address data quality problems with the same level
of care as technical or functional problems in the
platform.

The data platform is independent of changes in
business domains and can scale as development
teams grow. Data validation starts with consumers
and producers agreeing on their SLAs, and ends
with producers declaring these SLAs as part of the
data contract. The data platform developers only
need to be involved if the agreed SLA uses a type
of metric not yet implemented by the platform.

Data products architecture

Now that we have a good understanding of the architecture of the data system, we will discuss the data it
manages. The platform currently has four types of data products: domain events, snapshots, derivatives,
and quality records. We will explain each in the sub-sections below.

17

DATA PRODUCT: DOMAIN EVENTS

Domain events represent something that happened within the boundaries of a business domain. They are
immutable. They were the first data product type used in the system because of their simplicity. They are
modeled according to the following principles:

● Facts: The name of an event shall end with a verb in the past tense (e.g., BookingConfirmed).
● Accountability: An event shall be owned and published by one microservice only.
● Integrity: An event shall have an explicit, versioned schema, enforced by the pipeline.
● Interoperability: All events shall share a common set of company-wide data (UUID, occurrence,

publisher, versions, etc.) and functional relationships shall be modeled and cross-referenceable for
aggregation.

● Single source of truth: Events shall only include fact data generated by their microservice.
○ Events can reference other entities by ID, or by ID+version when the state of the other is

relevant.
○ Exceptionally, events can include pieces of data from other entities if the other entity is mutable,

lacks versioning, and its temporary state at the time of the event is relevant to the nature of the
event.

● Maintainability: Events shall only include minimal data. They shall not include the entire state of the
associated entities (e.g., a BookingCancelled event should include the ID of the booking, but should
not include the destination as this is irrelevant to the cancellation itself).

These principles differ significantly from event sourcing. There are two possible approaches to modeling events:
semantic and changelog. The semantic approach captures the context and meaning of changes. The changelog
approach abstracts all changes to one of three types: creation, update, and deletion. Typically, the entire state
of the entity or the subset that has changed is included. The changelog approach is usually used for for event
sourcing because the final state of an entity can be recreated by subscribing to the stream of events. The
semantic approach provides more information, but recreating the final state is not straightforward and requires
modeling all possible semantic changes.

eDO chose the semantic approach for several reasons. First, abstracting changes as inserts, updates, and
deletes loses contextual information, even when the entire final state is included. For example, a booking can be
canceled by the customer or by the airline. If the microservice in charge of the booking state is sufficiently
granular, the resulting state of the booking might be the same, even though the business process is very
different. Domain events can be used to represent this information by modeling
BookingVoluntarilyCancelled and BookingInvoluntarilyCancelled separately. It is possible to have
this in a changelog approach by adding context to the entity model, but it complicates the model and raises
costs for producers.

18

DATA PRODUCT: DOMAIN EVENTS

Because the semantic approach minimizes the amount of data in events and makes them highly granular, it
maximizes maintainability for producers. This is aligned with the goal of minimizing production costs. For
example, an event called BookingPaid includes the booking ID and data about the payment (i.e., amount,
currency, buyer) but does not include data about what was been booked (these details can be retrieved from a
different event if needed). This imposes extra work on consumers who want an overview of business
transactions. On the positive side, it also reduces coupling. The frequency of schema changes in granular events
is much lower than changes to full-fledged data products representing a complete entity such as Booking.
When high granularity is too much of a burden, the system offers a different kind of data product, called
snapshots, which are covered in the next subsection. Note also that, unlike event sourcing, there is no aspiration
to model all business events. Instead, only the ones that are requested by data consumers are modeled.

Data producers use the following process to create a new domain event:

1. The producer creates the data contract after discussing it with the prospective consumer. It is
composed of two files:

a. An Avro schema file with the event model and documentation.
b. A YAML file with declarative policy metadata such as fields containing personal or financial

information, retention policies, the microservice owning the event, hints for optimization in
BigQuery, etc. (see Figure 6).

2. The new event is reviewed, changed if needed, and registered in the pipeline.
a. Registration materializes as a commit in a git repository owned by the data team.
b. Because the event is independent of the internal representation of data in the microservice, this

step does not block the producer from releasing new versions of their code.
3. The producer integrates a common library into their microservice to publish the event. The library is

maintained by the data team and guarantees that the standard data part of the event is present and
correct (UUID, timestamp, name of the microservice publishing the event, version, etc.).

4. If applicable, the library can guarantee transactional consistency. The event can be attached to a
running database transaction and will only be published if the transaction commits. This guarantee is
critical to ensure data quality in transactional environments. The library uses a temporary table for
publishing that is read asynchronously. Using a sidecar instead of a library was discarded, despite
having several advantages, because it would have made it harder to ensure transactional safety.

5. Once the first version of the microservice that is publishing the event is released to production, the team
is accountable for data quality as agreed with consumers. The team is in charge of revising data with
every microservice release. As data is part of the microservice code, it can be tested like any other code
in the microservice. This makes data and code harder to desynchronize.

19

DATA PRODUCT: DOMAIN EVENTS

Data mesh products are not the only messages shared in the Kafka streaming system. If teams want to share
their data with the rest of the company via the data mesh, they can publish and consume asynchronous
messages in Kafka whether or not they are data mesh events. They can do this without going through the
federated governance process required by the data mesh. The self-service automations of the data platform
(versioning, schema validations, monitoring, etc.) provide efficiencies, although this means extra responsibilities
for teams in terms of data quality and data contract interoperability.

Figure 6 - An example of a YAML file implementing “policy as data” for a domain event

DATA PRODUCT: SNAPSHOTS (AGGREGATES)

Even though many data consumers benefit from the reduced coupling of domain events, this is not always the
case. Some data consumers need to model a parallel representation of entire business entities. Using domain
events for this is cumbersome and increases coupling because it requires understanding the semantics of all
the possible changes in the entity. It also forces producers to model all possible changes as domain events.
This is unfeasible for business entities that can be modified by a high number of processes or use cases, such
as flights or hotel bookings.

This consumption use case is better served by a snapshot, which typically corresponds with an aggregate in
domain-driven design [2] parlance. A snapshot is a data product that shows the state of an entity owned by a
microservice at a specific moment in time. It exposes a subset of the internal state and typically uses a
different data schema.

[2] https://en.wikipedia.org/wiki/Domain-driven_design

https://en.wikipedia.org/wiki/Domain-driven_design
https://en.wikipedia.org/wiki/Domain-driven_design

20

DATA PRODUCT: SNAPSHOTS (AGGREGATES)

The main challenge with snapshots is minimizing the effort of publishing them. Aspect Oriented Programming
(AOP) offers a solution by intercepting all operations against the database. However, this has several problems:

● It is not uncommon to use SQL scripts to update rows en masse (e.g., as part of a bug fix), bypassing the
microservice code. This makes using AOP unfeasible.

● For snapshots to be self-service for producers, they need to integrate a library with the AOP code (as
they do for domain events). There is a difference between a library that is used explicitly on demand for
the sole purpose of publishing a data product and a library that intercepts all operations within the
database. The latter can alter transactions and degrade performance.

Trigger-based interception is another possible solution, but it requires developers to implement triggers table by
table. This is time consuming and risky because bugs in the triggered code can cause transaction problems and
performance issues.

CDC is another database-level solution. It is transparent for the development team and does not alter the
execution of transactions because it is typically implemented by asynchronously reading the database’s
transaction journal. In most cases, the production database will be physically replicated as a read-only copy,
allowing CDC activation in the replica and eliminating performance impacts on the production database.

All three solutions share one major challenge: it is not straightforward to take a snapshot of an aggregate using
data from a transaction. In most non-straightforward cases, business aggregates are modeled with multiple
tables. The code is optimized to implement business use cases by altering just a few tables, without loading the
full state in memory. Transaction information passed through AOP (or with triggers, or in the CDC stream) will
not always include the aggregate primary key. Inferring this from the primary key of a child table requires logic
that understands foreign keys and can traverse them until it reaches the root table. This logic cannot be
domain-agnostic. It is completely coupled to the business domain and to the internal database model of the
microservice.

The ideal solution splits the logic coupled to the domain (i.e., the internal representation) from the remaining
logic, leaving business-agnostic logic as a separate self-service pipeline (see Figure 7). The data team is in
charge of a generic snapshot aggregator service that listens to CDC events and publishes data products to the
streaming platform.

21

DATA PRODUCT: SNAPSHOTS (AGGREGATES)

Data producers use the following process to create a new snapshot:

1. The producer creates the data contract.
2. The new snapshot contract is reviewed, changed if needed, and registered in the pipeline. Registration

involves two extra steps:
a. The producer provides the name of the database schema.
b. The data team enables CDC in the database of the service.

3. The producer implements two public endpoints in the microservice that owns the snapshot:
a. One endpoint returns the value of the ID of the snapshot when given the name of a table in the

schema of the service and a primary key for that table. The service needs to know how to
navigate relationships in its own schema so that it can calculate which row in the root table is
the ancestor of the row passed as a parameter. Figure 7 shows a case where the transaction
only updates a table that is a grandchild of the root table of the aggregate.

b. The other endpoint returns the snapshot when given its ID (primary key).
4. Once the first snapshot is published, the data producer is accountable for data quality (as agreed with

consumers).

Figure 7 - Example: Generating a snapshot for a fictitious booking aggregate

22

DATA PRODUCT: SNAPSHOTS (AGGREGATES)

The ingestion pipeline consumes snapshots from the streaming platform and writes them to BigQuery verbatim.
The pipeline also maintains two BigQuery tables for each snapshot data product. One contains the latest
snapshot and the other contains the history of all snapshots. This solution has several limitations:

● Snapshots are only supported for microservices with persistent and transactional storage.
● Snapshots are eventually consistent (in the sense that there is a latency between the aggregate

changing and its snapshot being available). There is no option to make snapshot generation
transactional.

● There is no guarantee that all intermediate states will be published due to the latency between an
aggregate changing and its snapshot being taken. If several transactions occur very quickly one after
the other and change the state of a given aggregate instance, the intermediate states will have
disappeared by the time the pipeline retrieves the state. This means the resulting snapshot will
accumulate multiple transactions.

Despite using CDC, the ingestion pipeline is decoupled from internal microservice data representation. Teams
are free to change their DB schemas if they update the two methods imposed by the contract. In exchange,
they are free from all the logic regarding updates and from the publication itself in the streaming platform.
Teams can also configure a table filter to avoid their endpoints being queried for tables that do not alter the
snapshot. In this case coupling is restricted to table names; teams only need to review the pipeline configuration
when adding or renaming tables.

DATA PRODUCT: DERIVATIVES

Derivative data products are generated inside the analytical part of the data mesh (i.e., BigQuery) and use other
data products as sources. As the number of data products grows and their usage increases, some data
transformations start repeating on the consumer side. Letting consumers reuse these transformations increases
efficiency. If this reuse is generic enough to be applied broadly, it can be implemented as a new derivative data
product type that encapsulates the transformation logic.

Derivatives have several key characteristics:

● Instead of being aligned with a microservice, they are aligned with a processing logic that reads and
transforms data from one or more data products. The table schema is predefined and agreed up front.

● The owner is usually an analytical team willing to take on the burden of maintaining the data product to
benefit other teams.

● Derivatives are implemented using materialized BigQuery views. BigQuery automatically keeps the view
in sync with its source tables without any user input.

23

DATA PRODUCT: SNAPHOSTS (AGGREGATES)

Figure 8 - Derivative data product construction detail

DATA PRODUCT: QUALITY RECORDS

The final data product is used to store the quality metrics of the other data products. The system architecture
includes a self-service component where producers and consumers can register contracts on data quality. The
system automatically evaluates the contracts, stores the results in BigQuery, and exports them to the
monitoring system of the company to allow alert configuration.

Consumers carrying out historical data analysis need to be able to query historical data quality. This can be
accessed like any other data product using SQL. Having data quality in the same repository as data itself also
allows users to write SQL queries that filter data and quality metrics together.

The data mesh currently supports two types of data metrics:

● The system can detect loss of data using foreign keys (although BigQuery does not currently support
enforcing foreign key integrity). By regularly querying which foreign keys in table X do not have the
corresponding primary key in table Y, the platform can detect the percentage of rows “lost” in table Y.
This helps identify whether data loss is caused by the pipeline itself or by a bug in the microservice that
owns table X. When the cause is the pipeline, the loss will increase across all tables.

● Teams can register their own custom SQL queries into a YAML file. The system will regularly execute the
SQL query and export it to the monitoring system. Analytical and product teams can use this to monitor
data quality and stay alert to problems. Development teams can use the data mesh to detect
operational or functional issues in the ecommerce platform as well as data pipeline problems (Figure 9).

24

DATA PRODUCT: QUALITY RECORDS

Figure 9 - Measuring data quality, recording it as another type of data product, and integrating it into the APM system

Data products usage

Consumers often use multiple data products for a
single use case. This follows the principle of modeling
producer data and moving the stitching effort to
consumers. For example, an analytical team interested
in eDO Prime subscription performance might use a
snapshot of the Prime membership aggregate along
with domain events relating to successful and failed
signups and renewals. This information can be used to
calculate renewal success ratios.

It is more straightforward to use events (rather than
snapshots) to calculate these ratios, especially in
conjunction with payment attempt events published
by the collection domain. The analytical team might
also use one or more quality records to monitor data
quality and get alerts when it drops below certain
thresholds agreed with the producers.

Domain events are the most frequent data product
on the platform, with over 200 deployments.
Snapshots are much less frequent. Derivatives are
rare because aggregation logic that is useful for
analytics is also useful on the online platform.
Aggregation is typically implemented in two ways,
neither of which use derivatives. For the simplest
cases, it is implemented as a dedicated
microservice that consumes the source snapshots
and domain events and joins them locally (e.g., to
compute ranks such as the most popular routes
booked) In more complex cases, such as when
data volumes require parallel serverless stream
processing, it is implemented using Apache Beam.

25

Figure 10 - The four main types of data mesh products architecture

Technical stack rationales

There are several reasons behind eDO’s product
choices for their data mesh technical stack:

● BigQuery sits at the center of the
architecture because all data products are
stored as BigQuery tables. eDo chose
BigQuery for storing data at rest for several
reasons:

○ It can query terabytes of data in a few
seconds without requiring prior
knowledge of the type of joins
between tables (removing the need to
pre-index).

○ It supports standard SQL, which is
widely used for analysis by both
developers and data users.

○ It is serverless, which means no
maintenance cost and no need to plan
capacity in advance. This is valuable
at the start of the project because it
lowers up-front costs and remains
useful once the system is stable.

○ It allows costs to be attributed to
producers and consumers
separately. This solves for
budgeting challenges because the
cost was previously owned by the
producers despite largely being
driven by consumer queries.

○ It has native support for Avro
payloads.

○ It was already being used for one
of the eDO data silos with good
results.

● Data Catalog provides a simple but
powerful web-based UI. As it is part of the
Dataplex suite, it is simple to integrate
with the ingestion platform and BigQuery.
It is integrated with the Google console,
which makes it easy for data users to
access data documentation, lineage, and
ownership.

26

● Datastream was selected as the CDC system
because it is serverless and supports all the
transactional databases currently used at
eDO.

● Google Dataflow was chosen as the
execution runner for Apache Beam because it
provides fast, serverless parallel stream
processing.

● Google Looker Studio was chosen because it
is serverless and can be used in self-service
mode by any team wanting to create its own
dashboards using data in the mesh. It has not
replaced the BI systems in eDO because it
lacks many features present in the standard
reporting heavyweights, but its simplicity has
enabled some product and analytical teams to
create their own dashboards autonomously.

● Apache Avro was selected as a schema
language and binary serialization protocol for
several reasons:

○ Kafka can validate messages that
fulfill the schema and reject those
that do not.

○ The schema language supports
custom logic types.

○ The schema language helps with
version compatibility changes,
particularly with enums via default
values.

○ Documentation is written as part of
the schema, which makes it much
easier for producers to keep it
up-to-date.

○ Avro is supported by Kafka, Kafka
Registry, and BigQuery.

● Apache Kafka was already used extensively
in eDO before the data mesh project, so it was
a natural choice. The versioning enforcement
features of Kafka Registry cemented this
decision.

● All the microservices in the data platform run
in Google Kubernetes Engine, as it was
already running the entire ecommerce
platform.

● Terraform and Helm were chosen to
implement infrastructure-as-code, taking
advantage of Terraform’s integration with
Google Cloud. Again, they were already used
for the entire ecommerce platform

○

Summary

So far, this whitepaper has outlined how eDO
implemented a business-agnostic data platform,
how it operates in self-service mode, and how it
isolates development teams from data
infrastructure concerns. We have also looked at
how eDO isolates its data platform team from
business knowledge to avoid overloading them
with the ever-increasing functional complexity of
the system.

We have examined how eDO achieves its data
mesh goals by using declarative data contracts
expressing both data schema and data policies,
and by using CDC technologies as a trigger for
data sharing without coupling the data pipeline to
the internal data representation of the
microservice producing the data.

We have also covered the four types of data
contracts in eDO (Figure 10) and examined how
domain events and snapshots can be used for
different consumer use cases.

In the final chapter, we will discuss the main
lessons learned during the deployment of the data
mesh and consider the platform’s future.

Lessons learned and the future of the
eDreams ODIGEO data mesh

Introduction

In this chapter we will cover the lessons learned in the
four years since the data mesh project began. We will
also look at improvements and new features planned
for the future.

Key takeaways can be categorized into three main
areas: cultural and transformation management,
software engineering processes, and software design
and architecture. We will discuss the decisions taken
and look at the positive and negative outcomes, as
well as exploring alternative options.

LESSONS LEARNED

Culture and transformation management

We learned important lessons about dealing with
people, culture, and the large-scale transformation
that a data mesh entails. This is important even in
companies like eDO with a strong data-driven culture.
A data mesh is a paradigm, and the most difficult part
of the journey is changing the culture of the
organization to ensure successful adoption of this
new paradigm.

Decision: Hand-pick consumer stakeholders that
are willing and able to be early adopters.

The good: This speeds up the process and allows for
earlier implementation testing with real problems. The
ideal early adopter is a team whose main pain points
are addressed by the data mesh and who are willing
to absorb the extra cost of early adoption. They also
need a data mindset strong enough to provide
constructive feedback. In eDO’s case, the data
science team was the perfect match because they
needed a cohesive global data source to meet the
challenges of implementing AI across multiple
business domains.

Their frustration with data silos was higher than other
analyst teams, and their affinity with engineering
culture ensured actionable and constructive
feedback.

BI was part of the project from its inception, showing
that early involvement did not need to be limited to
teams adopting the data mesh. As the owners of the
initial centralized data warehouse, they had a unique
view on many implementation challenges, such as
data quality measurements and data corner cases tied
to their domain-specific knowledge. This experience
helped make the initial design fit for purpose.

The bad: Not involving all data consumers from the
start may have come at a cost. The teams most
satisfied with the changes were those involved from
the beginning. Some teams that adopted a data mesh
later were satisfied with the results, but others were
more skeptical. Later involvement seemed to correlate
to skepticism.

Potential improvement: While it is not feasible to
involve all consumers from the beginning without
risking the whole project, it is clear that there were
some mistakes, frustrations, and misunderstandings
with consumers who became involved later in the
process. These could have been avoided with more
frequent communication. Explanations given at the
beginning of a multi-year transformation need to be
refreshed periodically. More communication in this
area would have helped increase satisfaction.

Decision: Make onboarding optional.

The good: Pushing decommissioning into the future
and making data silo replacement optional helped
unblock project progress. Taking migration concerns
out of the conversation made teams more open to the
benefits of the new system. Teams that joined when
they were comfortable with the maturity of the
platform were more satisfied than teams that had to
use it because other teams had adopted it.

Chapter 3

27

The bad: Organic adoption creates problems with
transitive dependencies. Until all data is present in the
data mesh, teams can face a situation where part of
the data they need is in a silo and another part is in
the mesh. This can happen when developing new
functionalities that share data using the mesh. In
complex use cases where analysis is done over
multiple domains across transitive dependencies, this
gap may not be immediately obvious to producers.
eDO is addressing this by handling the most complex
use cases with specific migration projects that
complement organic growth.

Potential improvement: Timing of specific migration
projects is crucial for avoiding problems caused by
some data being present in the data mesh but not in
silos. It is best to assume a worst-case scenario of
organic growth never succeeding except for in small
use cases.

Decision: Foster feedback loops with data
producers.

The good: The best way to ensure data quality is to
have data owners consume their own data. eDO
created feedback loops that accelerated the rate of
domain teams deciding to create new data contracts.
They created these feedback loops by providing
self-service dashboards, fast SQL access to data,
common libraries to lower the cost of producing data,
and self-service alerting and operational indicators,

The bad: Some producer teams prioritize data
contracts for their own benefit. This can give a false
measure of progress if most data contracts are
feedback loops. This activity can be detected by
measuring the number of consumers in each function
or division, as producers are typically in the
engineering division.

Decision: Data quality is variable and agreed
between producers and consumers, instead of
decided by a central team.

The good: Giving consumers and producers control
over the degree of acceptable data errors makes the
system scalable. Centralizing control requires a single
team to understand what all datasets mean and how
they are used, which does not scale as datasets and
consumers grow.

The bad: Consumers are sometimes reluctant to
implement cultural changes because of the extra
workload involved in talking with producers (“I just
want the data to be there and be right”). The same is
true of producers, particularly because in their case
the required data quality is the maximum between all
their consumers. Even though the new explicit cost is
lower than the implicit previous costs, the latter are
more intangible.

Potential improvement: Template SLAs could help
producers and consumers align. The templates could
be based on business impact or on degrees of overall
data quality. They could also use decision trees
suggesting indicators and thresholds based on
business impact. However, there is a risk that
templates will not be useful without real, complex
cases to base them on.

LESSONS LEARNED

Software engineering processes

There are many companies with experience of
implementing a data mesh, but not yet enough to
provide a well-established set of patterns and
practices to follow. Currently, data mesh
implementation is a complex journey that requires
careful planning and an adaptable mindset with the
ability to react quickly to unforeseen obstacles.

28

Decision: Plan for iterative creation of data
products, driven by real consumption.

The good: Despite the recent popularity of the data
mesh paradigm, data mesh transformation is still far
from being a predictable software project. In the case
of eDO, it helped that the project started small and
with realistic expectations about its maturity. Early
adopters were willing to accept that the platform
would have issues in the beginning and could not
guarantee perfect backward compatibility, and knew
they might be asked to redo some work. It also helped
that the first data products were domain events that
had short retention periods and a small number of
columns. Finally, not having to design a complete
unified data model for the whole company made
getting feedback much faster and required a much
lower initial investment.

The bad: Small domain events solved more cases than
anticipated, but sometimes this came at the cost of
unwanted complexity for consumers. Source-aligned
domain events carried the project a long way before
snapshots and derived data products were added,
despite conveying less data than snapshots and
requiring more work for consumers. In some cases
consumer teams achieved this by building very
complex queries - the exact scenario that snapshots
avoid. Because the first consumers were data
scientists and data engineers, this behavior might not
generalize to other companies with less
SQL-experienced analytical teams.

Controversial alternative: More bias towards data
product type diversity (rather than towards actual
consumer satisfaction) would have been useful. For
example, snapshots were added after quality records
because actual consumers of domain events wanted
to measure data quality. Had snapshots taken
precedence, more teams would have been involved
earlier on.

Decision: Make data backlogs part of team
product backlogs.

The good: It is simpler to use a single backlog to
prioritize all the work of a team because decisions
take all concerns into consideration (customer
features, tech debt, security, performance, data, fixes,
etc.). This elevates data to a first-class product. The
best way to get data prioritized in a backlog is to
lower the cost of production with automation and
increase its value by re-using it as much as possible.

The bad: Letting data concerns compete in the
backlog on equal terms can leave some neglected.
This is less likely to happen with normal maintenance
because automation lowers the cost. It is more likely
to happen with the initial investment needed to create
data products. Critical data products can be tackled
with ad-hoc projects, but not all data products have
enough organizational visibility to achieve this.

Controversial alternative: Consumers typically push
for a reserved allotment in the prioritization process to
avoid issues being neglected. However, setting up and
managing capacity reservation is not straightforward.

LESSONS LEARNED

Design and architecture

The relative novelty of the data mesh paradigm means
there is a lack of commodity software available to
build the platform. Being cloud native goes a long way,
but it is not enough by itself. Strong engineering
capabilities are also needed because developing a
business-agnostic data platform that can build a
cohesive data repository iteratively is technically
much more difficult than building multiple data silos
aligned with each business domain.

29

Decision: Include modeling of data contracts in
federated governance, as it is the hardest and
riskiest part.

The good: Achieving the promise of a company-wide,
trustworthy data repository requires interoperability.
Having multiple and diverse domain experts review the
models in the contracts does not guarantee this, but
helps promote it. Data modeling is one of the
higher-risk elements of the project because of the
complexity of managing data over time. Retention
makes changes to data contracts much more difficult
than service contracts (APIs). Unlike APIs, old data
versions need to remain supported for years, and
company-wide SQL consumption means that the most
pragmatic way to decommission old schema versions
is usually to wait until they expire.

The bad: Federated governance overhead caused
frustration with some development teams. This is
highly correlated with teams that are not aware of the
problems created on the consumer side by data
contracts that are not explicit, not documented, or not
interoperable. This is aggravated in teams that
(inadvertently) share data via DB replication, because
the mesh involves more (explicit) work. Although the
overall workload balance is positive for producers
because changes in their databases will no longer
cause them problems in the form of a data crisis,
some feel as if their workload has increased.

Potential improvement: As with consumers, it is not
enough to communicate only at the beginning of the
project. Ongoing communication needs to clearly
outline why the overhead of federated governance is
better than the alternatives.

Decision: Approach data mesh adoption as a
challenging engineering project for both domain
and platform teams.

The good: The technical solution has not had any
significant issues, and there has been no need for a
re-write or re-architecture of the system. While
cultural change is the hardest part of the data mesh
shift, this does not mean that the technical part is
easy.

The bad: This approach requires a significant
investment to get to a state where adoption is feasible
in the first place, as well as during the data mesh
project itself. For eDO, who deal with hundreds of
millions of searches per day, a data mesh could not
have been deployed effectively if the platform had not
already been 100% on the cloud and teams had not
already had substantial cloud experience. People with
strong technical skills are vital, particularly at the data
platform level.

Potential alternative: eDO is an ecommerce company
where software engineering is a core asset and data is
part of the culture. Companies where software
engineering is not a core asset or that do not have an
engrained data culture will need a technology partner
with strong engineering skills.

Decision: Embed documentation into data
contracts and tailor it to readers who are
knowledgeable about the domain of the contract.

The good: Embedded documentation is less likely to
become outdated because developers will see the
documentation when they are changing the contract.
Leaving the context of the domain out of
documentation makes it easier to write and easier to
read for consumers who are already familiar with it.

The bad: If documentation is attached to each
contract, it cannot provide an overview of the domain.
Domain concepts cannot be documented unless the
same explanation is repeated in multiple contracts.
This would make maintaining documentation
impossible because any change in the concept would
mean changing multiple contracts. For the same
reasons, business processes cannot be documented
in this way. At eDO, these problems existed before the
data mesh but were highlighted when it was rolled out.

30

Potential improvement: Implement several layers of
documentation. At the contract level, the current
approach works and is optimal in terms of
maintenance. However, more abstract layers are
needed to enable full self-service consumption.

Future work

eDO does not consider the data mesh initiative
finalized, even after four years of work. First, there are
still teams using data silos. Second, teams’
requirements for data quality and availability are
increasing as they benefit from better data in the
mesh. eDo has several plans for addressing these
issues.

● Improved data quality SLAs. The existing
system uses foreign keys to measure data
completeness. Teams can write SQL queries to
detect anomalies in data products. eDO plans
to enrich the quality system to include ways to
measure inconsistencies between analytical
and operational data (i.e., data accuracy)
caused by either bugs in the pipeline or bugs
created in producer team code (e.g., when
calculating the primary key of a snapshot
given the primary key of a child table). This will
enable better SLAs between data consumers
and producers.

● Self-motivated decommissions. Instead of
forcing analytical teams to decommission their
data silos, eDO is experimenting with a more
outcome-oriented way of achieving data
convergence by piloting a new Data Maturity
Assessment framework. This gives analytical
teams an evaluation of their current data use
cases in relation to data availability,
completeness, accuracy, lineage,
accountability, trustworthiness, stability,
timeliness, and compliance. These metrics are
measured from the consumer point of view.
The evaluation also suggests a plan to
overcome any gaps. Typically, this will involve
a migration to the data mesh. The aim is to
provide consumers with information on the
value they gain by moving towards a better
data environment.

● Third-party aligned data contracts. Most of
eDO’s data originates within the organization,
but some comes from third-party providers.
Governance of this data cannot operate within
the same parameters, so eDO plans to create
different pipelines or types of data contracts
for these scenarios.

● Faster data timeliness. Domain events and
snapshots are available in real time in the
streaming platform, but it takes up to 15
minutes to get them in BigQuery. eDO plans to
reduce maximum latency to one minute, to
help reduce the overall mean-time-to-repair
metric of the company (remember mesh data
is also available for operation teams).

● Multi-layered documentation. One layer of
documentation is not enough. Extra levels are
required to document data contracts along
with business domain concepts and
processes. This capability is independent of
data mesh implementation, but is necessary
to enable self-service consumption of a large
multi-domain data repository.

31

Summary and conclusions

To end this technical use case, here is a summary of what we have shared:

● We presented a data journey in three stages. This journey started with a data warehouse where
functional complexity and organizational scale were manageable by a central team, before moving to
decentralized, spontaneous, and disconnected data silo growth. The journey ended with a data mesh
where data is distributed and aligned with domain data teams. We believe this journey is typical of any
organization where the software architecture has migrated to microservices based in autonomous teams
organized around business domains.

● We demonstrated a successful and fully-functional implementation that has improved data
availability, quality, and governance in a complex real-world use case. It is too early in the existence of the
data mesh paradigm to provide definitive patterns, but we believe discussing our implementation will help
advance data mesh principles.

● We shared our key takeaways from the beginning of the project. Even though more information and
help is available than when we began, adopting a data mesh is still a challenging process. It requires
strong transformational skills, organizational awareness, and capable engineering, operational, and
project management practices.

Adopting the data mesh paradigm is complex and high risk. Companies who use uses microservices in a similar
way to eDO are likely encounter the problems described here at some point in their journey. We hope that the
ideas and solutions we have shared here can help others solve challenges around their data.

3232

Inside the
eDreams ODIGEO
data mesh
A platform engineering
view

November 2023

Interested in
getting started?

Contact us
to learn more.

https://cloud.google.com/contact

