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The history of data at eDreams ODIGEO: from a 
data monolith to a data mesh
Introduction

For three years, eDreams ODIGEO (eDO) has been 
working on an ambitious transformation program 
inspired by Zhamak Dehghani’s article[1], Data Mesh 
Principles and Logical Architecture. This program 
harnesses the full benefits of the data mesh 
approach to data analytics. 

eDO is one of the world’s leading online travel 
companies, serving 20 million customers in 44 
countries. The evolution of its ecommerce platform 
has been driven by canary and AB testing, with data 
as an integral part of the culture.

This whitepaper shares eDO’s experience of building 
a data mesh. Rather than outlining a specific 
process, it provides a framework for companies 
considering data mesh options. It provides 
information on how the project evolved, what 
decisions were made and why, and their positive and 
negative outcomes.

The document is structured in three chapters. In the 
first chapter, we will follow the evolution of the data 
architecture of eDO. We look at how it started, why it 
evolved to include a traditional data warehouse and 
several silos, and why this ecosystem eventually 
became limiting. We look at why a data mesh was 
chosen over a data lake, and at how the 
transformation project was planned and executed.

In the second chapter we look at the technical 
architecture of the platform and the taxonomy of 
data contracts that the platform supports. We 
describe the process of creating new data products, 
as well as discussing data quality and governance.

The third chapter is structured as a learning 
exercise where we will review the outcomes of the 
decisions made and explore some alternative paths. 
We will also share the planned roadmap for the data 
mesh rollout at eDO and end with our conclusions 
on the project.

EVOLUTION STAGES

Stage I - The central data warehouse

Like most startups at the time, eDO’s founding 
architecture blueprint was based on a modular 
monolithic application shared by several teams. The 
construction of an analytical informational vision 
was relatively simple. Every few minutes, database 
physical replication was used to copy the 
production database to a read-only replica. It was 
then transformed into a usable model for a 
traditional data warehouse system (DWH) using 
ETLs.

At this stage, the key characteristics were:

● A unified, company-wide data model for 
analysts. 

● A unified data model owned by a central 
team (the Business Intelligence team, or BI). 

● The central data team had most of the 
responsibility for governance and had a 
comprehensive understanding of the 
business. They translated information from 
the operational data model (the production 
database) to the unified data model, which 
catered for analyst teams. 

Chapter 1
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The central team was in charge of adapting the data 
warehouse to match changes in the operational data 
model. This was a challenge because of the frequent 
monolith releases, but the mandatory canary release 
policy alleviated this. Because there could be two 
versions of the monolith in production, development 
teams had to change the database in backward and 
forward compatible ways. This gave the central team 
more time to adapt.

This initial stage worked well, even when the monolith 
underwent migrations and re-writes. The underlying 
method was used during the development of new 
features in separate services (SOA) and with separate 
database schemas. It survived because physical 
replication worked as long as the database instance 
was shared. The limiting factors were functional 
complexity and the rate of change, as the data team 
needed a high-level view of the whole business and 
had to keep up-to-date with all changes. As the 
business grew, it became clear that a new approach 
was needed.

EVOLUTION STAGES

Stage II - Data silos

To scale with rapid business growth over time, the 
application architecture used a distributed paradigm 
to support fast release cycles. The monolith eventually 
broke down into over 300 microservices structured 
around 30 business domains such as flights, hotels, 
insurance, payments, and fraud. This removed the 
release bottleneck and allowed the company to scale 
the development team. Figure 1 shows how breaking 
the platform into microservices allowed release 
speeds to be sustained and improved as the number 
of developers increased. 

The need for data analytics increased as the business 
grew. The microservice transformation put stress on 
the DWH setup because physical replication created a 
tight coupling between the DWH and the operational 
microservices. Tables and columns could not be 
changed or renamed without risking a catastrophic 
impact on the ETLs and the DWH. 

To resolve this, a set of dedicated microservices 
replaced physical replication. These periodically 
pushed the operational data into a staging DB with an 
intermediate data model between the operational 
world and the DWH world. A new set of ETLs 
transformed the staging DB model into the final DWH.

As the development workforce expanded in line with 
commercial growth, the DWH team struggled to keep 
up with the proliferation of business domains and 
features in their centralized model. This led teams to 
look for alternatives. In some cases, this meant 
creating their own services and pushing data into 
silos, but the most popular approach was based on 
logical table replication. DBAs set a simple job in one 
of the read-only production replicas to make partial 
copies of some schemas to a DB owned by an 
analytical team. This let them create their own ETLs or 
query the copy directly. Some analytical teams even 
coordinated to share raw and transformed data 
between them to improve efficiency. The main reason 
behind the popularity of this option was that it did not 
need involvement from the development teams.
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2008 2015 2022

Developers 
(Teams)

20 ~150 (11) 300 (50)

Architecture Monolith 1 monolith + 29 
services

250 
microservices

Avg Daily 
releases

1 10 
(coordinated)

60 
(autonomous)

Figure 1 - The evolution of the eDO e-commerce platform 
architecture driven by its release life cycles 



The key characteristics of this stage were:
● A central DWH owned by a central team and 

providing a unified, company-wide model. 
Over time, this no longer provided a 
comprehensive view of the company.

● Silos grew (or were created) organically in 
response to demands for new or differently 
structured data.

● The central DWH operated in parallel with 
multiple data systems. Some contained 
subsets of the DWH data or catered for a 
specific purpose, others contained data not 
present in the DWH, and others contained 
both.

● Different silos employed different data sharing 
mechanisms. Data replication was most 
common, followed by ad-hoc contracts and 
data pipelines.

● As a general rule, data silos were not 
interoperable. Partial interoperability was 
sometimes accomplished with ad-hoc ETLs.

Data silos were limited by poor interoperability and 
governance, especially for silos without contracts 
where producers had minimal information on how data 
sharing worked. 

Overall, the data silo stage increased analytical teams’ 
data accessibility while reducing and hiding 
development costs. This fueled a data-driven culture 
but also created future challenges. eDO looked for 
ways to address these issues.

EVOLUTION STAGES

Stage III - Data mesh

Over time, the limitations of the data silo approach 
became clear. These included high maintenance 
costs, no common standards for data quality, absence 
of a unified global data source, and data trust issues 
causing discrepancies between silos. 

The most visible challenge was data producers’ lack 
of ownership. For example, when one product team 
changed their tables, this often created a chain 
reaction in analytical teams. In many cases individual 
teams were unaware tables were being copied and 
used by others. Even when they were aware of this, 
waiting until other teams had time to adapt to 
changes in their tables created friction.

Silos were problematic because there was no contract 
between producers and consumers, and data sharing 
was achieved by coupling operational and analytical 
data. Without an agreement between consumers and 
producers, lack of alignment priorities eventually 
eroded data quality in the silo (Figure 2). The need for 
a unified company-wide view with discovery and 
search was required to provide data science teams a 
higher level of insight.

In order to meet these challenges, eDO adopted a 
new data strategy, beginning with an RFI process in 
2018. Professional consulting advice suggested that 
new data strategies should be built around the 
concept of a data lake, unifying all data in one place 
under the control of a centralized data team.
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In environments where software release cycles are 
measured in months, the centralized management 
structure of a data lake is ideal. This approach was not 
suitable for eDO because of the much faster release 
speed of the microservices platform. This made it 
impossible to design a stable data layout in the data 
lake without affecting development speed.
 
A data lake was also unsuitable because of the degree 
of functional dependencies between eDO business 
domains. There were strong functional relationships 
between domains such as flights and hotels because 
they were part of the same customer journey, rather 
than completely isolated entities. This made it difficult 
for a central data team to bring together knowledge 
from all domains. 

When Zhamak Dehghani’s article[1], Data Mesh 
Principles and Logical Architecture was published in 
2020, it validated eDO’s doubts about the feasibility 
of centralized data lakes in domain-oriented 
microservices architectures. It also provided a new 
conceptualization for a distributed data architecture - 
the data mesh. This is a sociotechnical paradigm that 
builds on the concept of decentralizing data 
ownership. It is achieved by leveraging a 
domain-oriented data model and priming a 
self-service data infrastructure.

The data mesh core principles (“Domain-oriented 
decentralized data ownership”, “Data as a product”, 
“Self-serve data infrastructure as a platform”, and 
“Federated computational governance”) aligned with 
eDO’s culture as a product-focused organization 
structured around business-oriented domains. eDO 
also has software engineering at its core and a strong 
data-driven mindset. 
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Figure 2 -  The two possible final states of a data silo. When the missions of the consumers and producers match, the data silo stays aligned. Otherwise, the 
silo will eventually decay (dotted line) because alignment was purely the result of a management push and was thus short lived. Decay will also occur when 

the cost for the producer gets too high: backlog prioritization pushes back items with a low gain/cost ratio.
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Implementing a data mesh is both a technological and 
cultural change because it alters the data paradigm in 
the organization. Figure 3 shows how ownership of 
activities in the end-to-end data process changes in a 
data mesh.

Instead of being monitored for quality by a centralized 
team, data in a mesh is treated as a first-party asset 
by producers. Teams producing and sharing data treat 
it as part of their product. They model data, and are 
accountable for its quality once they have agreed on 
data quality SLAs with consumers.

The data team no longer owns data, but instead 
focuses on building a domain-agnostic, self-service 
data platform that can be used by producers and 
consumers. Governance is still needed to ensure 
consistency between the data shared by domain 
teams (i.e., data products), but this is accomplished 
by automation and by federation of domain and data 
modeling experts. By implementing a data mesh, the 
data team stops being a bottleneck that prevents an 
increase in the number of domain-oriented 
development teams.  

After adopting the data mesh paradigm, eDo had to 
plan the transition away from data silos. This involved 
changes in technology, shifts in ownership of critical 
functions, and a general change in the culture around 
data. This process is still in progress at eDO, but can 
be divided into the following phases: envision, 
foundation, sponsorship, minimum viable product, 
limited adoption, general adoption, and silo 
decommission.
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DATA MESH JOURNEY

Envision

The first step of the envision phase was to pinpoint 
problems with the current data setup and find better 
options. For eDO, this meant choosing a data mesh 
over a data lake. The next step was to map the general 
principles of the data mesh paradigm onto eDO’s 
specific needs and to establish goals and constraints 
for the project.

On top of the established data mesh foundational 
principles, eDO added one of its own, based on data 
silo experience: favor shifting effort from producers 
to consumers. The primary reason for drift in the data 
silos was misalignment of priorities between 
consumers and producers of data, and the second 
was the excessive burden on producers (Figure 2).

Typically, data systems are created after a business 
case is pushed by data consumers. If the producer’s 
mission is not initially aligned with the consumer’s, or 
if its mission changes, the data silo will eventually 
suffer. This frustrates consumers because their 
improvements and fixes do not get prioritized. 

The same happens if production costs get too high, as 
other items in the backlog with a better gain/cost ratio 
take priority. Following this logic, one solution to 
improve prioritization of data product features is to 
reduce cost on the producer’s side as much as 
possible by increasing automation and by transferring 
the cost to consumers. Because of this, eDO data 
contracts are tailored to align with producers, whether 
they are source or consumer aligned. Consumers 
carry out any required transformation, aggregation, or 
stitching themselves. This helps prevent misalignment 
and reduces costs for producers.

Foundation

The previous phase helped clarify ideas and enabled 
eDO to create a draft proposal. The initial vision was 
then shared with two key stakeholder groups: the 
central data team in charge of the data warehouse 
(BI) and the analytical team with the greatest data 
needs (Data Science). They were told about the 
advantages of the new paradigm and asked to help 
refine the project to make it more feasible. This 
stakeholder feedback provided real-life details about 
ownership, data quality, and data transformation rules. 
This improved the vision, goals, principles, and 
constraints of the project. It also made it possible to 
create a high-level overview of how the 
implementation would take place. Another important 
outcome was a set of principles for the transformation 
itself: 

● No data products without consumers. 
A mandatory requirement for any dataset 
added to the mesh was the existence of a real 
consumer and use case (the consumer and 
producer could be the same team).

● Slow, controlled bootstrap. 
Rather than designing a unified model from 
scratch, an iterative approach was used. 
Initially, datasets were hand-picked to allow 
freedom to make mistakes and roll back 
decisions without severe impacts on the 
business. This also enabled learning from real 
use cases and created generalized modeling 
and federation principles.

● Federated governance. 
Experienced engineers were selected to 
review all data contracts. Every business 
domain was represented by at least one 
expert. Because one of the principles stated 
that the modeling would be aligned with the 
producers, this expertise was limited to 
knowledge of the data produced, not of the 
use cases for consumption (which was 
planned to happen case-by-case as data 
contracts were produced).
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DATA MESH JOURNEY

Sponsorship

This phase involved establishing executive team 
buy-in, which was essential due to the magnitude, 
impact, and scope of the transformation. The team 
were presented with the analysis of the current data 
situation and the outline previously agreed on by the 
initial stakeholders. Other stakeholders were added to 
the conversation at this stage, and posed additional 
questions and challenges. 

The general approach to the transformation rollout 
was to start small, as per the transformation principles 
discussed previously, and expand along with maturity. 
One of the biggest issues was the future of data silos. 
To avoid creating uncertainty and wasted effort 
around silo decommissioning, forced 
decommissioning was postponed for several years 
and it was agreed that the cost of migrating to the 
data mesh would be evaluated before improving data 
silos or creating new ones. 

The rollout plan was divided into three phases. The 
first phase created a minimum viable product and 
tested it with a simple, low-risk data product. The 
second phase increased testing with higher-risk data 
products until the system was considered mature 
enough to add data products without constraints. 

Minimum viable product

The first step of the rollout was to create the new 
domain-agnostic data platform. Keeping the data 
platform and its team separate from business domains 
ensured that they could grow without facing scaling 
issues if requirements did not grow in line with domain 
complexity. 

The data team focused on developing self-service 
systems to reduce cost for producers and enable data 
governance for consumers. For producers, the system 
needed to provide a self-service platform that 
minimized the cost of sharing data.

For consumers, the system needed to automate data 
governance so that they could trust the data in the 
system. Data quality parameters formed part of the 
contract between each consumer and producer 
instead of being globally imposed.

This task was given to a team that already owned 
generic business-agnostic microservices for the 
company. This ensured that the solution was 
decoupled from business knowledge.

On the business-aware side, the federated team in 
charge of reviewing all data contracts started working 
on an initial set of guidelines. One of the key decisions 
was modeling policy as data, forcing contracts to be 
declarative, as a combination of Avro schemas for the 
data structure and a YAML file with policies expressed 
as properties, such as which fields contain personal or 
financial information, or for how long data should be 
retained.

The first data contract implemented was a simple 
dataset that helped the production team monitor the 
business performance of a microservice. Choosing a 
use case that was new, and where the producer and 
consumer were on the same team, helped reduce risk. 
The new data team carried out the implementation to 
ensure they had experience of using the required 
tools.

The data platform was not fully automated at this 
stage, which meant that the process of registering 
new data products required manual intervention from 
the data team. This was an acceptable compromise 
because it accelerated feedback from data users, 
while also keeping the process moving forward.
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DATA MESH JOURNEY

Limited adoption

Once the first data product was in production, more 
use cases were selected and teams began 
implementing their own data products using the tools 
developed in the previous phase. 

As the number of live data products increased, 
automation of the whole system was improved to 
meet demand. Initially, only one type of data product, 
based on domain events, was supported (see Chapter 
2). Although this limited scope, it made learning 
easier. As the system gained stability, support was 
added for more data product types. Data quality 
measurement and alert features were also added in 
this phase. Finally, the initial modeling guidelines 
generated by the federated governance team 
improved as more use cases were added.

General adoption
Once the catalog of data product types covered all 
known use cases, the system was considered mature 
enough to allow unlimited addition of data products as 
long as there was a consumer behind them.

This phase involved both organic and directed data 
product growth. Organic growth came from teams 
creating new data contracts. The main limitation of 
organic growth is that it does not always result in 
complete coverage of all the data products needed. 
The most complex use cases require data products 
from multiple teams and domains, and this requires 
coordination from multiple producers in different parts 
of the organization. This coordination sometimes 
happens organically, but is not guaranteed. Directed 
projects were established to complement organic 
growth and ensure complex cases were also 
addressed.

During this phase, the data platform was already in a 
regular product dynamic that was centered on 
improving data governance with features such as 
additional methods to measure data quality.

Silo decommission and transformation
A key initial project principle was that data silos would 
not be immediately decommissioned or altered. 
However, as the system matured, the trust level of 
some of the teams consuming data increased, and 
plans were made to decommission some of the silos 
after all the required datasets migrated to the new 
data mesh. 

In some cases, silos were transformed rather than 
decommissioned because they were tailored to 
specific business domains. Provisioning pipelines were 
refactored to source data from the data mesh, which 
became the source of truth. 

This phase is ongoing and is expected to last several 
years. Some silos have already started transformation, 
but none have yet been decommissioned.

Summary

Data at eDO has gone through three different stages 
(Figure 4). The driving factor behind the evolution of 
the system has always been the increase in the 
number of people developing it. As teams grow, 
people and data communication channels can break. 

Systems often start with a centralized data team in 
charge of a data warehouse. Strong coupling is not a 
major problem because the number of teams is small 
enough to enable good communication between 
developers and the data team. The functional 
complexity is simple enough for one team to 
understand and manage. Data is easily available to 
everybody in the company, and there is a high level of 
trust and quality.

As teams and businesses grow, adding new data to 
the warehouse or adapting it to increasing functional 
complexity creates a bottleneck. Some analytical 
teams respond by creating their own pipelines and 
data systems. This creates data trust, quality, and 
ownership problems, but these are mitigated by the 
advantages of data availability and team autonomy.
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The problems with data silos are also exacerbated as 
businesses grow, teams get larger, and functional 
complexity increases. This highlights the need for a 
unified company-wide data model. The growth of AI 
and data science teams further emphasizes this need. 

In 2019, the natural next step for eDO would have 
been to revert to a centralized model overseen by a 
single data team. However, this was incompatible with 
the distributed nature of its ecommerce platform, 
which is organized around business domains and 
autonomous teams. Instead, eDO chose a 
business-agnostic data team and a distributed data 
architecture aligned with that of the platform and 
teams.
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This chapter has outlined the history of data at eDO. 
In the next chapter we will examine the technical 
implementation of this new data mesh paradigm. We 
will look at technical challenges, data contracts and 
products, and the business-agnostic data platform. 
We will also look at how this links with the overall 
architecture of the company. 

Figure 4 - The evolution of data architectures at eDO



The eDreams ODIGEO data mesh architecture
Chapter 2
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Introduction

In the last chapter we looked at why eDO decided to 
take a fresh approach to data analytics based on 
data mesh principles. In this chapter we will focus on 
the architectural solution from both data and 
platform perspectives.

First, we will describe the context of the eDO 
ecommerce platform. We will then explain the main 
technical challenges of implementing a data mesh at 
scale in terms of data volumes as well as functional 
and organizational complexity. We will review the 
architecture of the components of the data platform 
and examine data product taxonomy. We will explain 
each of the four data product types, why they exist, 
and how they are typically used by consumers. 
Finally, we will explain the reasons behind the choices 
made in the technical stack that underlies the whole 
system.

Context: The eDO ecommerce platform
Before discussing the data platform, we will provide a 
brief overview of the ecommerce platform. Many of 
its characteristics influenced the architectural design 
of the data mesh. 

● Microservices architecture: The platform is 
built around microservices (over 300 as of 
early 2023), breaking down the entire 
ecommerce model into independently 
deployable services grouped by business 
domains. Microservices can communicate 
synchronously using REST or asynchronously 
using Apache Kafka. Both styles can coexist 
in the same microservice depending on the 
degree of coupling accepted or the tolerance 
to failures.

● Fast-paced release cycles: To speed 
up time-to-market and ensure platform 
availability, eDO implements strict 
continuous integration and deployment 
practices. All microservices use canary 
releases and the release pipeline 
provides tools to compare technical and 
functional KPIs against benchmark 
canary and stable versions. Canary 
versions can be automatically promoted 
to stable versions when all indicators are 
neutral or positive. There is no release 
coordination function and teams deploy 
when they are ready without external 
synchronization.

● AI and data-driven: Data and AI are 
pervasive across teams. Around 1000 AB 
tests are performed each year, and the 
multiple ML models in production 
execute almost two billion daily 
predictions.

● 100% cloud: eDO started migrating to 
the cloud over a decade ago, first with 
SaaS workspace software (Google Mail, 
Docs, etc.). This was followed by IaaS for 
testing and continuous integration and 
data warehouse infrastructure. Migration 
continued with PaaS for the complete 
ecommerce platform running on 
Kubernetes. Traffic demand on the 
platform is seasonal, with daily customer 
searches peaking at well over 100 million 
and CPU core usage peaking at around 
30,000. This makes extensive use of 
Google Cloud’s autoscaling capabilities 
to optimize latency and cost.

● DevOps: eDO has a long history of 
DevOps practices and automation, 
having used Puppet for over a decade 
and embracing Terraform and Helm 
when the on-prem Mesos system was 
migrated to Google Cloud and 
Kubernetes. Automation is key to 
keeping the cost of creating and 
maintaining microservices as low as 
possible.



Technical challenges and requirements

The data mesh community agrees that the biggest 
challenges for adoption relate to culture, organization, 
and ownership. However, there are also significant 
engineering challenges because the design of 
automated processes often influences people to 
change their existing work habits.

● Data volumes. A unified repository requires 
the data system to operate with terabytes or 
petabytes of data. This scale of data creates 
two challenges:

○ Data access. Data users expect to be 
able to query large amounts of data in 
a few seconds.

○ Capacity planning and budgeting. 
Cost and infrastructure resources 
grow with the amount of data and with 
the number of users consuming it. 
From a capacity planning perspective, 
the system needs to provision 
infrastructure on-the-go. From a 
budgeting perspective, the team in 
charge of the system needs to know 
each data user’s expected 
consumption in advance. Because the 
aim of a data mesh is to provide a 
single data system, system budgeting 
must consider the data needs of all 
the teams in the company.

● Data interoperability. Interoperability poses 
two challenges. From a pure data point of 
view, consumers need to be able to link 
datasets modeled in different business 
domains. From a platform point of view, the 
system needs to be able to efficiently join data 
from multiple sets, preferably without 
requiring users to know in advance which 
queries they will perform (i.e., without needing 
to include indexing in the system design).  
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● Data versioning. Change management is 
a key challenge because the system needs 
to operate in self-service mode for both 
producers and consumers. Producers need 
to be able to change their contracts 
without being blocked by consumers 
updating their queries, jobs, or 
dashboards. Consumers need to be able to 
rely on stable data contracts so their 
queries, jobs, and dashboards do not 
break due to the actions of data 
producers. Typical data retention (over 
months or years) makes this balance more 
challenging because multiple versions of a 
data schema may coexist in each single 
dataset or data product. For existing 
queries to work properly in this scenario, 
the system needs to guarantee both 
backward and forward compatibility. This 
includes compatibility between one 
version and the next as well as between 
each version present in a dataset (i.e., full 
transitive compatibility). Generally, data 
versions can only be decommissioned 
when data retention policies apply and 
eliminate them from the dataset.

● Documentation availability and 
trustworthiness. Documentation is 
essential for the data mesh to function 
effectively. Traditionally, data pipelines 
have only been responsible for processing 
data, with documentation handled 
separately. This can lead to outdated 
documentation. To avoid this, each 
product team is responsible for writing and 
maintaining documentation for their data 
product.



● Maintenance overhead. The cost of 
maintaining data products needs to be 
reduced so that product teams embrace the 
new paradigm and own the data they publish. 

● Self-service, business-agnostic data 
platform. The new paradigm only works if the 
data platform can scale independently of the 
number of teams and domains using it. This 
requires no knowledge of the specifics of 
domains in the platform, making it easy for 
producers and consumers to publish or 
access data.

Data platform architecture
This section outlines the design of the data mesh 
system. The relationships between the high-level 
components are shown in Figure 5. The sub-sections 
below describe each component in the system. They 
follow the data life cycle from data ideation on the 
producer side to its ingestion and storage and finally 
to its use on the consumer side.

DATA CONTRACTS

A data product starts with a contract. Most of the key 
features of the data mesh are enabled by the way 
data contracts are modeled:

● Each data contract is owned exclusively by a 
single microservice, its producer. By 
extension, each data contract is owned 
exclusively by a single team, as microserves 
are not shared.

● Data contracts are implemented declaratively 
using a file with the Avro schema and a YAML 
file.

● Documentation is part of the data schema as 
supported by Avro. It is written and maintained 
by the team owning the contract.
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● YAML files contain policies and metadata 
such as data retention, data quality SLAs, 
and tags marking fields that contain 
private or financial data. They also contain 
hints for physical optimizations of data at 
rest, such as which fields should be used 
for partitioning (in declarative form).

● Avro and YAML files are maintained in a 
source code repository associated with 
the microservice that owns the contract.

Declarative contracts allow automation of 
ingestion and data quality in the ingestion pipeline 
without requiring any knowledge of business 
domains. Making contracts exclusive to one 
microservice and recording them as 
human-readable files associated with the 
microservice git repository helps producers own 
the contract, and embedding documentation in the 
data schema makes it easier to keep it updated.

STREAMING PLATFORM

Microservices publish data to the streaming 
platform in real time. This platform is built on Kafka 
and Kafka Registry. Kafka dynamically validates 
messages carrying data products and rejects any 
that do not comply with the data schema defined 
in their contract. Kafka Registry is used to define a 
company-wide schema compatibility policy. This 
policy needs to be set to mandate backward and 
forward compatibility between all schema versions 
that are live in the mesh. The streaming platform 
enforces the policy by rejecting any messages that 
violate it. If consumers and producers agree to 
break compatibility, the streaming platform can be 
directed to use a more relaxed policy for a given 
contract. Developers also have tools and tests to 
verify that their changes are compliant.



INGESTION PIPELINE

As data is published to the streaming platform in real 
time, the ingestion sub-system consumes it and 
updates the data repository in semi-real time. This 
sub-system is composed of several pieces. The key 
component is a microservice that reads messages 
from Kafka and writes their content in BigQuery. This 
microservice holds a registry of all the data contracts 
approved by the federated governance process. It can 
recognize which messages to process and ignores the 
rest. The goal of this process is to provide 
interoperability by using a company-wide federated 
governance to ensure all data contracts use 
consistent terminology and language within the 
constraints of each domain.

When data from a contract is published for the first 
time, the service automatically creates a table in 
BigQuery to match the schema described in the Avro 
file, with retention, partitioning, and clustering policies 
as defined in the YAML file. The service also uses the 
metadata in the YAML file to tag columns and enforce 
data mesh policies regarding personal and financial 
information. 

Defining data contracts declaratively is the key to 
enabling the ingestion pipeline to be business 
agnostic.

DATA REPOSITORY

Data at rest is implemented as a set of tables in 
BigQuery (one per data product). BigQuery lets data 
consumers use standard SQL to query terabytes of 
data in a few seconds. At the platform level, it allows 
security policies to comply with privacy and financial 
regulations such as GDPR and PCI. 

The design of the ingestion architecture guarantees 
that the data in BigQuery and the data in the 
streaming platform is identical. The only difference is 
the type of read access provided and its duration. In 
effect, the eDO data mesh offers consumers two 
different interfaces. Data products can be consumed 
within the operational platform by reading from Kafka, 
or outside the operational platform by using SQL 
queries in BigQuery. 
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Kafka offers shorter retention periods and fewer 
querying capabilities than SQL, but data quality is 
the same. How a microservice publishes data 
impacts both the operational platform (because 
other microservices may be consuming it directly 
from Kafka) and the analytical platform (because 
multiple analytical teams may be consuming it via 
SQL queries or ETLs). This helps producers 
improve data quality because the more issues a 
potential fix solves, the easier it is to prioritize it in 
the backlog.

REPORTING

Most product and analyst teams use Google 
Looker Studio to create self-service, serverless 
dashboards for reporting. The eDO data team 
plans to speed up the creation of new dashboards 
by providing templates for the most common use 
cases. These can be copied and altered by teams 
to suit their needs.

DATA CATALOG

Dataplex offers consumers a centralized 
web-based UI for the documentation of all data 
contracts. Producers document their contracts 
within the Avro schema. The ingestion pipeline 
automatically creates and updates entries in the 
data catalog for each data contract. This 
guarantees that the data catalog is always in sync 
with the distributed documentation source. It also 
reconciles the distributed ownership of data 
contracts with the convenience of having a single 
entry point for all documentation. The catalog 
encourages data accountability because it shows 
the ownership of each data set. The ingestion 
pipeline updates this from the YAML of the data 
contract.
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Figure 5 - The data mesh architecture at eDO

DATA QUALITY MONITORING

The quality sub-system is built with a set of 
microservices and automated processes that allow 
producers and consumers to self-register their data 
quality agreements as part of their declarative data 
contracts. Quality contracts can be declared as 
validations of foreign keys or as custom SQL queries 
that output indicators.

Foreign keys can be used to detect data losses in the 
pipeline. Delays in fixing data losses are often caused 
by problems diagnosing the location of the loss. 
Without this information, it is unclear whether the fix 
needs to be done by the platform data team or by the 
owner of the contract. Teams can inform to the quality 
sub-system of the presence of foreign keys in other 
tables that link to their own primary key. The quality 
sub-system will regularly query foreign keys and try to 
match them to primary keys. When a foreign key is not 
present as a primary key (BigQuery does not enforce 
foreign key integrity) this is usually because the row 
with the primary key is lost. This is more likely than the 
foreign key having the wrong value, as each table is 
owned by a different microservice. If data losses are 
occurring at the pipeline, they will suddenly increase 
in multiple tables due to the business agnosticism of 
the ingestion pipeline. If losses are  only occurring in 
one table, the problem is likely to be with the 
microservice that sources the data.

Alternatively, teams can create their own custom 
indicators by registering a SQL query and 
establishing an execution frequency. The system 
will run the query at the indicated frequency, store 
the result in a dedicated table in the data 
repository, and export it as a normal metric in the 
operational monitoring system. This means both 
producers and consumers can set up standard 
alerts for when the indicator diverges from the 
expected values. Product teams can use this to 
monitor business KPIs that involve data from 
multiple microservices or domains. This helps 
address data quality problems with the same level 
of care as technical or functional problems in the 
platform. 

The data platform is independent of changes in 
business domains and can scale as development 
teams grow. Data validation starts with consumers 
and producers agreeing on their SLAs, and ends 
with producers declaring these SLAs as part of the 
data contract. The data platform developers only 
need to be involved if the agreed SLA uses a type 
of metric not yet implemented by the platform. 



Data products architecture

Now that we have a good understanding of the architecture of the data system, we will discuss the data it 
manages. The platform currently has four types of data products: domain events, snapshots, derivatives, 
and quality records. We will explain each in the sub-sections below.
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DATA PRODUCT: DOMAIN EVENTS

Domain events represent something that happened within the boundaries of a business domain. They are 
immutable. They were the first data product type used in the system because of their simplicity. They are 
modeled according to the following principles:

● Facts: The name of an event shall end with a verb in the past tense (e.g., BookingConfirmed).
● Accountability: An event shall be owned and published by one microservice only.
● Integrity: An event shall have an explicit, versioned schema, enforced by the pipeline.
● Interoperability: All events shall share a common set of company-wide data (UUID, occurrence, 

publisher, versions, etc.) and functional relationships shall be modeled and cross-referenceable for 
aggregation.

● Single source of truth: Events shall only include fact data generated by their microservice.
○ Events can reference other entities by ID, or by ID+version when the state of the other is 

relevant.
○ Exceptionally, events can include pieces of data from other entities if the other entity is mutable, 

lacks versioning, and its temporary state at the time of the event is relevant to the nature of the 
event.

● Maintainability: Events shall only include minimal data. They shall not include the entire state of the 
associated entities (e.g., a BookingCancelled event should include the ID of the booking, but should 
not include the destination as this is irrelevant to the cancellation itself).

These principles differ significantly from event sourcing. There are two possible approaches to modeling events: 
semantic and changelog. The semantic approach captures the context and meaning of changes. The changelog 
approach abstracts all changes to one of three types: creation, update, and deletion. Typically, the entire state 
of the entity or the subset that has changed is included. The changelog approach is usually used for for event 
sourcing because the final state of an entity can be recreated by subscribing to the stream of events. The 
semantic approach provides more information, but recreating the final state is not straightforward and requires 
modeling all possible semantic changes. 

eDO chose the semantic approach for several reasons. First, abstracting changes as inserts, updates, and 
deletes loses contextual information, even when the entire final state is included. For example, a booking can be 
canceled by the customer or by the airline. If the microservice in charge of the booking state is sufficiently 
granular, the resulting state of the booking might be the same, even though the business process is very 
different. Domain events can be used to represent this information by modeling 
BookingVoluntarilyCancelled and BookingInvoluntarilyCancelled separately. It is possible to have 
this in a changelog approach by adding context to the entity model, but it complicates the model and raises 
costs for producers.
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DATA PRODUCT: DOMAIN EVENTS

Because the semantic approach minimizes the amount of data in events and makes them highly granular, it 
maximizes maintainability for producers. This is aligned with the goal of minimizing production costs. For 
example, an event called BookingPaid includes the booking ID and data about the payment (i.e., amount, 
currency, buyer) but does not include data about what was been booked (these details can be retrieved from a 
different event if needed). This imposes extra work on consumers who want an overview of business 
transactions. On the positive side, it also reduces coupling. The frequency of schema changes in granular events 
is much lower than changes to full-fledged data products representing a complete entity such as Booking. 
When high granularity is too much of a burden, the system offers a different kind of data product, called 
snapshots, which are covered in the next subsection. Note also that, unlike event sourcing, there is no aspiration 
to model all business events. Instead, only the ones that are requested by data consumers are modeled.

Data producers use the following process to create a new domain event:

1. The producer creates the data contract after discussing it with the prospective consumer. It is 
composed of two files:

a. An Avro schema file with the event model and documentation.
b. A YAML file with declarative policy metadata such as fields containing personal or financial 

information, retention policies, the microservice owning the event, hints for optimization in 
BigQuery, etc. (see Figure 6). 

2. The new event is reviewed, changed if needed, and registered in the pipeline.
a. Registration materializes as a commit in a git repository owned by the data team.
b. Because the event is independent of the internal representation of data in the microservice, this 

step does not block the producer from releasing new versions of their code.
3. The producer integrates a common library into their microservice to publish the event. The library is 

maintained by the data team and guarantees that the standard data part of the event is present and 
correct (UUID, timestamp, name of the microservice publishing the event, version, etc.).

4. If applicable, the library can guarantee transactional consistency. The event can be attached to a 
running database transaction and will only be published if the transaction commits. This guarantee is 
critical to ensure data quality in transactional environments. The library uses a temporary table for 
publishing that is read asynchronously. Using a sidecar instead of a library was discarded, despite 
having several advantages, because it would have made it harder to ensure transactional safety.

5. Once the first version of the microservice that is publishing the event is released to production, the team 
is accountable for data quality as agreed with consumers. The team is in charge of revising data with 
every microservice release. As data is part of the microservice code, it can be tested like any other code 
in the microservice. This makes data and code harder to desynchronize.
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DATA PRODUCT: DOMAIN EVENTS

Data mesh products are not the only messages shared in the Kafka streaming system. If teams want to share 
their data with the rest of the company via the data mesh, they can publish and consume asynchronous 
messages in Kafka whether or not they are data mesh events. They can do this without going through the 
federated governance process required by the data mesh.  The self-service automations of the data platform 
(versioning, schema validations, monitoring, etc.) provide efficiencies, although this means extra responsibilities 
for teams in terms of data quality and data contract interoperability.  

Figure 6 - An example of a YAML file implementing “policy as data” for a domain event

DATA PRODUCT: SNAPSHOTS (AGGREGATES)

Even though many data consumers benefit from the reduced coupling of domain events, this is not always the 
case. Some data consumers need to model a parallel representation of entire business entities. Using domain 
events for this is cumbersome and increases coupling because it requires understanding the semantics of all 
the possible changes in the entity. It also forces producers to model all possible changes as domain events. 
This is unfeasible for business entities that can be modified by a high number of processes or use cases, such 
as flights or hotel bookings.

This consumption use case is better served by a snapshot, which typically corresponds with an aggregate in 
domain-driven design [2] parlance. A snapshot is a data product that shows the state of an entity owned by a 
microservice at a specific moment in time. It exposes a subset of the internal state and typically uses a 
different data schema.

[2] https://en.wikipedia.org/wiki/Domain-driven_design 

https://en.wikipedia.org/wiki/Domain-driven_design
https://en.wikipedia.org/wiki/Domain-driven_design
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DATA PRODUCT: SNAPSHOTS (AGGREGATES)

The main challenge with snapshots is minimizing the effort of publishing them. Aspect Oriented Programming 
(AOP) offers a solution by intercepting all operations against the database. However, this has several problems: 

● It is not uncommon to use SQL scripts to update rows en masse (e.g., as part of a bug fix), bypassing the 
microservice code. This makes using AOP unfeasible.

● For snapshots to be self-service for producers, they need to integrate a library with the AOP code (as 
they do for domain events). There is a difference between a library that is used explicitly on demand for 
the sole purpose of publishing a data product and a library that intercepts all operations within the 
database. The latter can alter transactions and degrade performance.

Trigger-based interception is another possible solution, but it requires developers to implement triggers table by 
table. This is time consuming and risky because bugs in the triggered code can cause transaction problems and 
performance issues.

CDC is another database-level solution. It is transparent for the development team and does not alter the 
execution of transactions because it is typically implemented by asynchronously reading the database’s 
transaction journal. In most cases, the production database will be physically replicated as a read-only copy, 
allowing CDC activation in the replica and eliminating performance impacts on the production database.

All three solutions share one major challenge: it is not straightforward to take a snapshot of an aggregate using 
data from a transaction. In most non-straightforward cases, business aggregates are modeled with multiple 
tables. The code is optimized to implement business use cases by altering just a few tables, without loading the 
full state in memory. Transaction information passed through AOP (or with triggers, or in the CDC stream) will 
not always include the aggregate primary key. Inferring this from the primary key of a child table requires logic 
that understands foreign keys and can traverse them until it reaches the root table. This logic cannot be 
domain-agnostic. It is completely coupled to the business domain and to the internal database model of the 
microservice.

The ideal solution splits the logic coupled to the domain (i.e., the internal representation) from the remaining 
logic, leaving business-agnostic logic as a separate self-service pipeline (see Figure 7). The data team is in 
charge of a generic snapshot aggregator service that listens to CDC events and publishes data products to the 
streaming platform.
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DATA PRODUCT: SNAPSHOTS (AGGREGATES)

Data producers use the following process to create a new snapshot:

1. The producer creates the data contract.
2. The new snapshot contract is reviewed, changed if needed, and registered in the pipeline. Registration 

involves two extra steps:
a. The producer provides the name of the database schema.
b. The data team enables CDC in the database of the service.

3. The producer implements two public endpoints in the microservice that owns the snapshot:
a. One endpoint returns the value of the ID of the snapshot when given the name of a table in the 

schema of the service and a primary key for that table. The service needs to know how to 
navigate relationships in its own schema so that it can calculate which row in the root table is 
the ancestor of the row passed as a parameter. Figure 7 shows a case where the transaction 
only updates a table that is a grandchild of the root table of the aggregate.

b. The other endpoint returns the snapshot when given its ID (primary key).
4. Once the first snapshot is published, the data producer is accountable for data quality (as agreed with 

consumers).

Figure 7 - Example: Generating a snapshot for a fictitious booking aggregate
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DATA PRODUCT: SNAPSHOTS (AGGREGATES)

The ingestion pipeline consumes snapshots from the streaming platform and writes them to BigQuery verbatim. 
The pipeline also maintains two BigQuery tables for each snapshot data product. One contains the latest 
snapshot and the other contains the history of all snapshots. This solution has several limitations:

● Snapshots are only supported for microservices with persistent and transactional storage.
● Snapshots are eventually consistent (in the sense that there is a latency between the aggregate 

changing and its snapshot being available). There is no option to make snapshot generation 
transactional.

● There is no guarantee that all intermediate states will be published due to the latency between an 
aggregate changing and its snapshot being taken. If several transactions occur very quickly one after 
the other and change the state of a given aggregate instance, the intermediate states will have 
disappeared by the time the pipeline retrieves the state. This means the resulting snapshot will 
accumulate multiple transactions.

Despite using CDC, the ingestion pipeline is decoupled from internal microservice data representation. Teams 
are free to change their DB schemas if they update the two methods imposed by the contract. In exchange, 
they are free from all the logic regarding updates and from the publication itself in the streaming platform. 
Teams can also configure a table filter to avoid their endpoints being queried for tables that do not alter the 
snapshot. In this case coupling is restricted to table names; teams only need to review the pipeline configuration 
when adding or renaming tables.

DATA PRODUCT: DERIVATIVES

Derivative data products are generated inside the analytical part of the data mesh (i.e., BigQuery) and use other 
data products as sources. As the number of data products grows and their usage increases, some data 
transformations start repeating on the consumer side. Letting consumers reuse these transformations increases 
efficiency. If this reuse is generic enough to be applied broadly, it can be implemented as a new derivative data 
product type that encapsulates the transformation logic. 

Derivatives have several key characteristics:

● Instead of being aligned with a microservice, they are aligned with a processing logic that reads and 
transforms data from one or more data products. The table schema is predefined and agreed up front.

● The owner is usually an analytical team willing to take on the burden of maintaining the data product to 
benefit other teams.

● Derivatives are implemented using materialized BigQuery views. BigQuery automatically keeps the view 
in sync with its source tables without any user input.
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DATA PRODUCT: SNAPHOSTS (AGGREGATES)

Figure 8 - Derivative data product construction detail  

DATA PRODUCT: QUALITY RECORDS

The final data product is used to store the quality metrics of the other data products. The system architecture 
includes a self-service component where producers and consumers can register contracts on data quality. The 
system automatically evaluates the contracts, stores the results in BigQuery, and exports them to the 
monitoring system of the company to allow alert configuration.

Consumers carrying out historical data analysis need to be able to query historical data quality. This can be 
accessed like any other data product using SQL. Having data quality in the same repository as data itself also 
allows users to write SQL queries that filter data and quality metrics together.

The data mesh currently supports two types of data metrics:

● The system can detect loss of data using foreign keys (although BigQuery does not currently support 
enforcing foreign key integrity). By regularly querying which foreign keys in table X do not have the 
corresponding primary key in table Y, the platform can detect the percentage of rows “lost” in table Y. 
This helps identify whether data loss is caused by the pipeline itself or by a bug in the microservice that 
owns table X. When the cause is the pipeline, the loss will increase across all tables.

● Teams can register their own custom SQL queries into a YAML file. The system will regularly execute the 
SQL query and export it to the monitoring system. Analytical and product teams can use this to monitor 
data quality and stay alert to problems. Development teams can use the data mesh to detect 
operational or functional issues in the ecommerce platform as well as data pipeline problems (Figure 9).
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DATA PRODUCT: QUALITY RECORDS

Figure 9 - Measuring data quality, recording it as another type of data product, and integrating it into the APM system

Data products usage

Consumers often use multiple data products for a 
single use case. This follows the principle of modeling 
producer data and moving the stitching effort to 
consumers. For example, an analytical team interested 
in eDO Prime subscription performance might use a 
snapshot of the Prime membership aggregate along 
with domain events relating to successful and failed 
signups and renewals. This information can be used to 
calculate renewal success ratios. 

It is more straightforward to use events (rather than 
snapshots) to calculate these ratios, especially in 
conjunction with payment attempt events published 
by the collection domain. The analytical team might 
also use one or more quality records to monitor data 
quality and get alerts when it drops below certain 
thresholds agreed with the producers.

Domain events are the most frequent data product 
on the platform, with over 200 deployments. 
Snapshots are much less frequent. Derivatives are 
rare because aggregation logic that is useful for 
analytics is also useful on the online platform. 
Aggregation is typically implemented in two ways, 
neither of which use derivatives. For the simplest 
cases, it is implemented as a dedicated 
microservice that consumes the source snapshots 
and domain events and joins them locally (e.g., to 
compute ranks such as the most popular routes 
booked) In more complex cases, such as when 
data volumes require parallel serverless stream 
processing, it is implemented using Apache Beam.
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Figure 10 - The four main types of data mesh products architecture

Technical stack rationales

There are several reasons behind eDO’s product 
choices for their data mesh technical stack:

● BigQuery sits at the center of the 
architecture because all data products are 
stored as BigQuery tables. eDo chose 
BigQuery for storing data at rest for several 
reasons:

○ It can query terabytes of data in a few 
seconds without requiring prior 
knowledge of the type of joins 
between tables (removing the need to 
pre-index).

○ It supports standard SQL, which is 
widely used for analysis by both 
developers and data users.

○ It is serverless, which means no 
maintenance cost and no need to plan 
capacity in advance. This is valuable 
at the start of the project because it 
lowers up-front costs and remains 
useful once the system is stable.

○ It allows costs to be attributed to 
producers and consumers 
separately. This solves for 
budgeting challenges because the 
cost was previously owned by the 
producers despite largely being 
driven by consumer queries.

○ It has native support for Avro 
payloads.

○ It was already being used for one 
of the eDO data silos with good 
results.

● Data Catalog provides a simple but 
powerful web-based UI. As it is part of the 
Dataplex suite, it is simple to integrate 
with the ingestion platform and BigQuery. 
It is integrated with the Google console, 
which makes it easy for data users to 
access data documentation, lineage, and 
ownership.



26

● Datastream was selected as the CDC system 
because it is serverless and supports all the 
transactional databases currently used at 
eDO.

● Google Dataflow was chosen as the 
execution runner for Apache Beam because it 
provides fast, serverless parallel stream 
processing.

● Google Looker Studio was chosen because it 
is serverless and can be used in self-service 
mode by any team wanting to create its own 
dashboards using data in the mesh. It has not 
replaced the BI systems in eDO because it 
lacks many features present in the standard 
reporting heavyweights, but its simplicity has 
enabled some product and analytical teams to 
create their own dashboards autonomously. 

● Apache Avro was selected as a schema 
language and binary serialization protocol for 
several reasons:

○ Kafka can validate messages that 
fulfill the schema and reject those 
that do not.

○ The schema language supports 
custom logic types.

○ The schema language helps with 
version compatibility changes, 
particularly with enums via default 
values. 

○ Documentation is written as part of 
the schema, which makes it much 
easier for producers to keep it 
up-to-date.

○ Avro is supported by Kafka, Kafka 
Registry, and BigQuery. 

● Apache Kafka was already used extensively 
in eDO before the data mesh project, so it was 
a natural choice. The versioning enforcement 
features of Kafka Registry cemented this 
decision.

● All the microservices in the data platform run 
in Google Kubernetes Engine, as it was 
already running the entire ecommerce 
platform. 

● Terraform and Helm were chosen to 
implement infrastructure-as-code, taking 
advantage of Terraform’s integration with 
Google Cloud. Again, they were already used 
for the entire ecommerce platform

○

Summary

So far, this whitepaper has outlined how eDO 
implemented a business-agnostic data platform, 
how it operates in self-service mode, and how it 
isolates development teams from data 
infrastructure concerns. We have also looked at 
how eDO isolates its data platform team from 
business knowledge to avoid overloading them 
with the ever-increasing functional complexity of 
the system. 

We have examined how eDO achieves its data 
mesh goals by using declarative data contracts 
expressing both data schema and data policies, 
and by using CDC technologies as a trigger for 
data sharing without coupling the data pipeline to 
the internal data representation of the 
microservice producing the data.

We have also covered the four types of data 
contracts in eDO (Figure 10) and examined how 
domain events and snapshots can be used for 
different consumer use cases.

In the final chapter, we will discuss the main 
lessons learned during the deployment of the data 
mesh and consider the platform’s future.



Lessons learned and the future of the 
eDreams ODIGEO data mesh

Introduction

In this chapter we will cover the lessons learned in the 
four years since the data mesh project began. We will 
also look at improvements and new features planned 
for the future.

Key takeaways can be categorized into three main 
areas: cultural and transformation management, 
software engineering processes, and software design 
and architecture. We will discuss the decisions taken 
and look at the positive and negative outcomes, as 
well as exploring alternative options.

LESSONS LEARNED

Culture and transformation management

We learned important lessons about dealing with 
people, culture, and the large-scale transformation 
that a data mesh entails. This is important even in 
companies like eDO with a strong data-driven culture. 
A data mesh is a paradigm, and the most difficult part 
of the journey is changing the culture of the 
organization to ensure successful adoption of this 
new paradigm.

Decision: Hand-pick consumer stakeholders that 
are willing and able to be early adopters.

The good: This speeds up the process and allows for 
earlier implementation testing with real problems. The 
ideal early adopter is a team whose main pain points 
are addressed by the data mesh and who are willing 
to absorb the extra cost of early adoption. They also 
need a data mindset strong enough to provide 
constructive feedback. In eDO’s case, the data 
science team was the perfect match because they 
needed a cohesive global data source to meet the 
challenges of implementing AI across multiple 
business domains. 

Their frustration with data silos was higher than other 
analyst teams, and their affinity with engineering 
culture ensured actionable and constructive 
feedback.

BI was part of the project from its inception, showing 
that early involvement did not need to be limited to 
teams adopting the data mesh. As the owners of the 
initial centralized data warehouse, they had a unique 
view on many implementation challenges, such as 
data quality measurements and data corner cases tied 
to their domain-specific knowledge. This experience 
helped make the initial design fit for purpose.

The bad: Not involving all data consumers from the 
start may have come at a cost. The teams most 
satisfied with the changes were those involved from 
the beginning. Some teams that adopted a data mesh 
later were satisfied with the results, but others were 
more skeptical. Later involvement seemed to correlate 
to skepticism.

Potential improvement: While it is not feasible to 
involve all consumers from the beginning without 
risking the whole project, it is clear that there were 
some mistakes, frustrations, and misunderstandings 
with consumers who became involved later in the 
process. These could have been avoided with more 
frequent communication. Explanations given at the 
beginning of a multi-year transformation need to be 
refreshed periodically. More communication in this 
area would have helped increase satisfaction. 

Decision: Make onboarding optional.

The good: Pushing decommissioning into the future 
and making data silo replacement optional helped 
unblock project progress. Taking migration concerns 
out of the conversation made teams more open to the 
benefits of the new system. Teams that joined when 
they were comfortable with the maturity of the 
platform were more satisfied than teams that had to 
use it because other teams had adopted it.
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The bad: Organic adoption creates problems with 
transitive dependencies. Until all data is present in the 
data mesh, teams can face a situation where part of 
the data they need is in a silo and another part is in 
the mesh. This can happen when developing new 
functionalities that share data using the mesh. In 
complex use cases where analysis is done over 
multiple domains across transitive dependencies, this 
gap may not be immediately obvious to producers. 
eDO is addressing this by handling the most complex 
use cases with specific migration projects that 
complement organic growth.

Potential improvement: Timing of specific migration 
projects is crucial for avoiding problems caused by 
some data being present in the data mesh but not in 
silos. It is best to assume a worst-case scenario of 
organic growth never succeeding except for in small 
use cases.

Decision: Foster feedback loops with data 
producers.

The good: The best way to ensure data quality is to 
have data owners consume their own data. eDO 
created feedback loops that accelerated the rate of 
domain teams deciding to create new data contracts.
They created these feedback loops by providing 
self-service dashboards, fast SQL access to data, 
common libraries to lower the cost of producing data, 
and self-service alerting and operational indicators, 

The bad: Some producer teams prioritize data 
contracts for their own benefit. This can give a false 
measure of progress if most data contracts are 
feedback loops. This activity can be detected by 
measuring the number of consumers in each function 
or division, as producers are typically in the 
engineering division.

Decision: Data quality is variable and agreed 
between producers and consumers, instead of 
decided by a central team.

The good: Giving consumers and producers control 
over the degree of acceptable data errors makes the 
system scalable. Centralizing control requires a single 
team to understand what all datasets mean and how 
they are used, which does not scale as datasets and 
consumers grow.

The bad: Consumers are sometimes reluctant to 
implement cultural changes because of the extra 
workload involved in talking with producers (“I just 
want the data to be there and be right”). The same is 
true of producers, particularly because in their case 
the required data quality is the maximum between all 
their consumers. Even though the new explicit cost is 
lower than the implicit previous costs, the latter are 
more intangible.

Potential improvement: Template SLAs could help 
producers and consumers align. The templates could 
be based on business impact or on degrees of overall 
data quality. They could also use decision trees 
suggesting indicators and thresholds based on 
business impact. However, there is a risk that 
templates will not be useful without real, complex 
cases to base them on.

LESSONS LEARNED

Software engineering processes

There are many companies with experience of  
implementing a data mesh, but not yet enough to 
provide a well-established set of patterns and 
practices to follow. Currently, data mesh 
implementation is a complex journey that requires 
careful planning and an adaptable mindset with the 
ability to react quickly to unforeseen obstacles. 
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Decision: Plan for iterative creation of data 
products, driven by real consumption. 

The good: Despite the recent popularity of the data 
mesh paradigm, data mesh transformation is still far 
from being a predictable software project. In the case 
of eDO, it helped that the project started small and 
with realistic expectations about its maturity. Early 
adopters were willing to accept that the platform 
would have issues in the beginning and could not 
guarantee perfect backward compatibility, and knew 
they might be asked to redo some work. It also helped 
that the first data products were domain events that 
had short retention periods and a small number of 
columns. Finally, not having to design a complete 
unified data model for the whole company made 
getting feedback much faster and required a much 
lower initial investment.

The bad: Small domain events solved more cases than 
anticipated, but sometimes this came at the cost of 
unwanted complexity for consumers. Source-aligned 
domain events carried the project a long way before 
snapshots and derived data products were added, 
despite conveying less data than snapshots and 
requiring more work for consumers. In some cases 
consumer teams achieved this by building very 
complex queries - the exact scenario that snapshots 
avoid. Because the first consumers were data 
scientists and data engineers, this behavior might not 
generalize to other companies with less 
SQL-experienced analytical teams.

Controversial alternative: More bias towards data 
product type diversity (rather than towards actual 
consumer satisfaction) would have been useful. For 
example, snapshots were added after quality records 
because actual consumers of domain events wanted 
to measure data quality. Had snapshots taken 
precedence, more teams would have been involved 
earlier on.

Decision: Make data backlogs part of team 
product backlogs. 

The good: It is simpler to use a single backlog to 
prioritize all the work of a team because decisions 
take all concerns into consideration (customer 
features, tech debt, security, performance, data, fixes, 
etc.). This elevates data to a first-class product. The 
best way to get data prioritized in a backlog is to 
lower the cost of production with automation and 
increase its value by re-using it as much as possible.

The bad: Letting data concerns compete in the 
backlog on equal terms can leave some neglected. 
This is less likely to happen with normal maintenance 
because automation lowers the cost. It is more likely 
to happen with the initial investment needed to create 
data products. Critical data products can be tackled 
with ad-hoc projects, but not all data products have 
enough organizational visibility to achieve this.

Controversial alternative: Consumers typically push 
for a reserved allotment in the prioritization process to 
avoid issues being neglected. However, setting up and 
managing capacity reservation is not straightforward.

LESSONS LEARNED

Design and architecture

The relative novelty of the data mesh paradigm means 
there is a lack of commodity software available to 
build the platform. Being cloud native goes a long way, 
but it is not enough by itself. Strong engineering 
capabilities are also needed because developing a 
business-agnostic data platform that can build a 
cohesive data repository iteratively is technically 
much more difficult than building multiple data silos 
aligned with each business domain.
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Decision: Include modeling of data contracts in 
federated governance, as it is the hardest and 
riskiest part.

The good: Achieving the promise of a company-wide, 
trustworthy data repository requires interoperability. 
Having multiple and diverse domain experts review the 
models in the contracts does not guarantee this, but 
helps promote it. Data modeling is one of the 
higher-risk elements of the project because of the 
complexity of managing data over time. Retention 
makes changes to data contracts much more difficult 
than service contracts (APIs). Unlike APIs, old data 
versions need to remain supported for years, and 
company-wide SQL consumption means that the most 
pragmatic way to decommission old schema versions 
is usually to wait until they expire.

The bad: Federated governance overhead caused 
frustration with some development teams. This is 
highly correlated with teams that are not aware of the 
problems created on the consumer side by data 
contracts that are not explicit, not documented, or not 
interoperable. This is aggravated in teams that 
(inadvertently) share data via DB replication, because 
the mesh involves more (explicit) work. Although the 
overall workload balance is positive for producers 
because changes in their databases will no longer 
cause them problems in the form of a data crisis, 
some feel as if their workload has increased. 

Potential improvement: As with consumers, it is not 
enough to communicate only at the beginning of the 
project. Ongoing communication needs to clearly 
outline why the overhead of federated governance is 
better than the alternatives.

Decision: Approach data mesh adoption as a 
challenging engineering project for both domain 
and platform teams.

The good: The technical solution has not had any 
significant issues, and there has been no need for a 
re-write or re-architecture of the system. While 
cultural change is the hardest part of the data mesh 
shift, this does not mean that the technical part is 
easy.

The bad: This approach requires a significant 
investment to get to a state where adoption is feasible 
in the first place, as well as during the data mesh 
project itself. For eDO, who deal with hundreds of 
millions of searches per day, a data mesh could not 
have been deployed effectively if the platform had not 
already been 100% on the cloud and teams had not 
already had substantial cloud experience. People with 
strong technical skills are vital, particularly at the data 
platform level.

Potential alternative: eDO is an ecommerce company 
where software engineering is a core asset and data is 
part of the culture. Companies where software 
engineering is not a core asset or that do not have an 
engrained data culture will need a technology partner 
with strong engineering skills.

Decision: Embed documentation into data 
contracts and tailor it to readers who are 
knowledgeable about the domain of the contract.

The good: Embedded documentation is less likely to 
become outdated because developers will see the 
documentation when they are changing the contract. 
Leaving the context of the domain out of 
documentation makes it easier to write and easier to 
read for consumers who are already familiar with it.

The bad: If documentation is attached to each 
contract, it cannot provide an overview of the domain. 
Domain concepts cannot be documented unless the 
same explanation is repeated in multiple contracts. 
This would make maintaining documentation 
impossible because any change in the concept would 
mean changing multiple contracts. For the same 
reasons, business processes cannot be documented 
in this way. At eDO, these problems existed before the 
data mesh but were highlighted when it was rolled out.
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Potential improvement: Implement several layers of 
documentation. At the contract level, the current 
approach works and is optimal in terms of 
maintenance. However, more abstract layers are 
needed to enable full self-service consumption.

Future work

eDO does not consider the data mesh initiative 
finalized, even after four years of work. First, there are 
still teams using data silos. Second, teams’ 
requirements for data quality and availability are 
increasing as they benefit from better data in the 
mesh. eDo has several plans for addressing these 
issues.

● Improved data quality SLAs. The existing 
system uses foreign keys to measure data 
completeness. Teams can write SQL queries to 
detect anomalies in data products. eDO plans 
to enrich the quality system to include ways to 
measure inconsistencies between analytical 
and operational data (i.e., data accuracy) 
caused by either bugs in the pipeline or bugs 
created in producer team code (e.g., when 
calculating the primary key of a snapshot 
given the primary key of a child table). This will 
enable better SLAs between data consumers 
and producers.

● Self-motivated decommissions. Instead of 
forcing analytical teams to decommission their 
data silos, eDO is experimenting with a more 
outcome-oriented way of achieving data 
convergence by piloting a new Data Maturity 
Assessment framework. This gives analytical 
teams an evaluation of their current data use 
cases in relation to data availability, 
completeness, accuracy, lineage, 
accountability, trustworthiness, stability, 
timeliness, and compliance. These metrics are 
measured from the consumer point of view. 
The evaluation also suggests a plan to 
overcome any gaps. Typically, this will involve 
a migration to the data mesh. The aim is to 
provide consumers with information on the 
value they gain by moving towards a better 
data environment.

● Third-party aligned data contracts. Most of 
eDO’s data originates within the organization, 
but some comes from third-party providers. 
Governance of this data cannot operate within 
the same parameters, so eDO plans to create 
different pipelines or types of data contracts 
for these scenarios.

● Faster data timeliness. Domain events and 
snapshots are available in real time in the 
streaming platform, but it takes up to 15 
minutes to get them in BigQuery. eDO plans to 
reduce maximum latency to one minute, to 
help reduce the overall mean-time-to-repair 
metric of the company (remember mesh data 
is also available for operation teams).

● Multi-layered documentation. One layer of 
documentation is not enough. Extra levels are 
required to document data contracts along 
with business domain concepts and 
processes. This capability is independent of 
data mesh implementation, but is necessary 
to enable self-service consumption of a large 
multi-domain data repository.
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Summary and conclusions

To end this technical use case, here is a summary of what we have shared:

● We presented a data journey in three stages. This journey started with a data warehouse where 
functional complexity and organizational scale were manageable by a central team, before moving to 
decentralized, spontaneous, and disconnected data silo growth. The journey ended with a data mesh 
where data is distributed and aligned with domain data teams. We believe this journey is typical of any 
organization where the software architecture has migrated to microservices based in autonomous teams 
organized around business domains.

● We demonstrated a successful and fully-functional implementation that has improved data 
availability, quality, and governance in a complex real-world use case. It is too early in the existence of the 
data mesh paradigm to provide definitive patterns, but we believe discussing our implementation will help 
advance data mesh principles.

● We shared our key takeaways from the beginning of the project. Even though more information and 
help is available than when we began, adopting a data mesh is still a challenging process. It requires 
strong transformational skills, organizational awareness, and capable engineering, operational, and 
project management practices.

Adopting the data mesh paradigm is complex and high risk. Companies who use uses microservices in a similar 
way to eDO are likely encounter the problems described here at some point in their journey. We hope that the 
ideas and solutions we have shared here can help others solve challenges around their data.

3232



Inside the 
eDreams ODIGEO 
data mesh
A platform engineering 
view

November 2023

Interested in 
getting started? 

Contact us 
to learn more.

https://cloud.google.com/contact

