Keys to Faster Sampling in Dataflow

Ben Chambers, former Cloud Software Engineer
Rafael Fernandez, Cloud Engineering Manager

Editor’s Note: Ben Chambers made the majority of the contributions to this post and white paper
prior to moving on to other opportunities. He was a long-time Googler, and remains a strong
contributor to the Apache Beam project.

In this whitepaper we show you how to improve the performance of a useful operation: Selecting
a sample of elements on Cloud Dataflow. The ability to select such a sample is useful on its
own, and the techniques used to improve its performance are generally applicable to other
algorithms you might want to use with Cloud Dataflow.

Selecting a sample of elements in a PCollection is useful for diagnosing problems with your
pipeline. You may look at the final results to verify they are correct, or inspect intermediate
results to make sure each part of your pipeline is behaving correctly. The Apache Beam SDK
includes Sample.fixedSizeGlobally(...) for taking such a sample.

You can make the built-in operation faster by spreading (in parallel) the sampling across
multiple keys. This approach to improving performance by increasing parallelism is a generally
useful strategy within Dataflow.

Next, we'll build a composite transform for producing a stratified sample that preserves the
distribution of a specific property in the data. For example, we can produce a sample of US
demographic data that ensures each state is (approximately) represented in the sample in the
same proportion it was represented in the original data. We also ensure that elements belonging
to “outlier keys” that would normally not be included in the sample have a chance to show up,
which is useful for debugging problems that only manifest on these outliers.

We'll also show by example how composite transforms allow us to package this functionality
and reuse it by building on the improved global sampling while creating the stratified sampling.

Sampling may be applied to many different kinds of data. For this post we use a high-volume
(10 billion) of relatively small (100-byte) elements, which is similar to processing log messages
or event logs. We'll be looking at producing a sample of 1,000 to 500,000 elements (1MB to
500MB). All of the pipelines are executed using autoscaling with a maximum of 128 workers.

https://cloud.google.com/dataflow/
https://beam.apache.org/
https://beam.apache.org/documentation/programming-guide/#composite-transforms
https://cloud.google.com/blog/big-data/2016/03/comparing-cloud-dataflow-autoscaling-to-spark-and-hadoop

Step 0: Built-in Baseline

Step 1: Fixed Bucketing

Step 2: Dynamic Bucketing

Step 3: Stratified Random Sampling

Conclusion

Appendix 1: SampleElement, BoundedHeap and some Coders
Appendix 2: Fixed Size Sampling CombineFn

Appendix 3: Dynamic Sampling CombineFn

12
20
21
26
27

Step O: Built-in Baseline

The Beam Java SDK includes an implementation of distributed reservoir sampling. In the basic
definition of reservoir sampling, you store k items that are your sample and as each datum is
considered, it is added to a sample or not according to a random chance that decreases as you
progress through the data set.

There are multiple ways to implement this technique in a distributed manner. In the SDK's
implementation — Sample.fixedSizeGlobally (k) — the reservoirs from each worker are the
accumulators of a CombineFn. As elements are added on each worker, they are assigned a
random weight. The accumulator is limited to the top k elements according to their weights.
They are computed separately on each worker, then gathered and merged. We're going to use
the same approach, but build it ourselves so that we can make changes and improvements.

The basic idea is to use a CombineFn configured as follows:
1. The accumulator (the reservoir) is a max-heap with a bounded size of k.
2. Adding an element computes a random sampling weight w.
3. Once the maximum size of k is reached, adding new elements first removes the previous
largest number.
4. Merging elements takes the k elements with the largest weights across all the
accumulators.

See Appendix 1 and 2 for some helper classes which we need SampleElement<T> for
representing an element paired with a random number and BoundedHeap<T> for a heap of
bounded size ordered by that random number. We then use these to implement a
StaticallySizedSampleFn whichis a CombineFn that uses the BoundedHeap<T> as an
accumulator to collect a sample of a fixed size.

Given the CombineFn, computing a sample of a fixed size is relatively straightforward. It uses
Combine.globally(...) toapply the StaticallySizedSampleFn, and then unpacks the
resulting Iterable of elements.

https://beam.apache.org/documentation/sdks/javadoc/latest/
https://en.wikipedia.org/wiki/Reservoir_sampling
https://beam.apache.org/documentation/programming-guide/#advanced-combinations-using-combinefn

private static class FixedSizeGlobally<T>
extends PTransform<PCollection<T>, PCollection<T>> {
private final int sampleSize;

public FixedSizeGlobally(int sampleSize) {
this.sampleSize = sampleSize;

}

@Override
public PCollection<T> expand(PCollection<T> input) {
return input
.apply(Combine.globally(new StaticallySizedSampleFn<>(sampleSize)))
.apply(Flatten.iterables());

Below is a table of pipeline run time and vCPU hours for our random dataset, including sample
sizes of between 1,000 and 500,000 elements.

Note that for any more than 50,000 elements, the job fails after running for some time. The first
stage of processing — generating all of the random numbers and writing the partial accumulator
— is successfully completed on all the workers. The second stage — combining all of the partial
accumulators to compute the final result — runs out of memory.

Sample Size Total Execution Time Total Worker Time
(hours) (vCPU hour)
1,000 elements 9m12s 6.786 vCPU hours
5,000 elements 10m51s 10.757 vCPU hours
10,000 elements 13m46s 16.761 vCPU hours
50,000 elements Failed after Th18m47s 126.725 vCPU hours
100,000 elements Failed after 2h10m49s 235.555 vCPU hours
500,000 elements Failed after 9h33m27s 1,170.584 vCPU hours

As you can see the process is quite time-consuming, and takes much longer as the sample size
increases. Performing the Combine.globally(...) step, which computes the sample, requires
single-threaded execution to produce a single result: the n sample elements. At large sample
sizes, the pipeline runs out of memory and fails.

Step 1: Fixed Bucketing

One way to sample more efficiently is to spread the sampling out across multiple buckets. This
preliminary step reduces the size of the accumulator and allows each bucket to compute the
result on a different worker. For instance, if we randomly divide our input between k keys, and
then take an m-element sample within each key, we get to simultaneously spread the second
stage of processing across multiple workers and also reduce the size of the accumulator.

One downside of bucketing like this is that we may produce fewer than n sample elements if the
total input set isn't significantly larger than the desired sample size. As an extreme case,
consider what happens if we are trying to compute a 200-element sample of a dataset with 200
elements. With the global Combine we would produce all 200 elements as the sample. If we are
using 2 buckets of 100 elements each, we may randomly assign 105 elements to one bucket
and 95 elements to the other. The first bucket will produce a 100 element sample of those 105
elements, and the second bucket will produce a 95 element sample. So we end up with only 195
elements in the sample.

Implementing fixed bucketing requires two changes to our previous transform—first we need to

introduce a DoFn that can be used to assign each element to a random bucket, and then we
need to change the Combine.globally(...) toaCombine.perKey(...).

PCollection=\=

FParDo(AssignToBuckets)

PCollection<kKV<Integer, V==

Combine.perkey(StaticallySizedSample)

PCollection=kKV<Integer, lterable<V>>>

Values

PCollection=lterable=\/==

Flatten

PCollection=\/=

private static class FixedSizeBuckets<T>

extends PTransform<PCollection<T>, PCollection<T>> {

private final int numBuckets;
private final int bucketSize;

public FixedSizeBuckets(int numBuckets, int bucketSize) {
this.numBuckets = numBuckets;
this.bucketSize = bucketSize;

}

@0verride
public PCollection<T> expand(PCollection<T> input) {
return input
.apply(ParDo.of(new AssignToFixedBucketsDoFn<>(numBuckets)))
.apply(Combine.perKey(new StaticallySizedSampleFn<>(bucketSize)))
.apply(Values.create())
.apply(Flatten.iterables());

public static class AssignToFixedBucketsDoFn<V>

}

extends DoFn<V, KV<Integer, V>> {

private final int numBuckets;
private transient int index

public AssignToFixedBucketsDoFn(int numBuckets) {
this.numBuckets = numBuckets;

}

@Setup
public void startBundle() {
index = ThreadLocalRandom.current().nextInt(numBuckets);

}

@ProcessElement

public void processElement(ProcessContext c¢) throws Exception {
index = (index + 1) % numBuckets;
c.output(KV.of(index, c.element()));

}

1000 elements

5000 elements

20
10000 elements
== 50000 elements
== 100000 elements
% == 500000 elements
§ 10
s 8
° >\ L-
1 10 - 100 1000 10000
Size of buckets
Sample Size Bucket Size Total Execution Time | Total Worker Time
(hours) (vCPU hours)

1000 1(9m24s 5.434

1000 10|8m43s 6.171

1000 100{9m30s 4.259

1000 1000|10m07s 5.765

5000 1(9m38s 6.827

5000 50|{10mO06s 4.633

5000 100({9m30s 4.346

5000 5000({10m22s 10.063

10000 119m46s 8.316

10000 50|9m40s 4.297

10000 100|9m33s 4.374

10000 500(9m34s 4,998

10000 1000({9m25s 7.094

50000 1110m21s 9.639

50000 10|9m44s 8.037
50000 50{1Tm19s 5.929
50000 100({10m11s 5.273
50000 500(9m47s 7.393
50000 1000|9m31s 7.794
50000 5000|11m47s 12.695
50000 10000|16m18s 20.504
50000 50000 | 1Th09m54s 116.613
100000 1]110m18s 9.902
100000 50|8m30s 6.969
100000 100(9m31s 5.536
100000 200|9m15s 6.84
100000 300|9m53s 5.673
100000 500(9mb54s 8.288
100000 1000{9m55s 8.274
100000 5000|11m44s 13.601
500000 1117m37s 25.626
500000 10{10m54s 9.865
500000 100{10mO0O6s 9.556
500000 200|9m56s 8.37
500000 300(10mO01s 8.302
500000 500({10m02s 8.741
500000 1000{10m51s 9.391
500000 5000(|12m47s 14.503
500000 10000 [18m47s 25.198

Note that the rows where the number of divisions is 1 correspond approximately to the baseline

case above.

Dataflow includes some optimizations that makes Combine operations more efficient.

Specifically, it will perform partial local combining on all the workers before sending the results
to a single worker to produce the final result.

This example demonstrates an interesting property. Spreading the work across more than one

https://cloud.google.com/dataflow/service/dataflow-service-desc#combine-optimization

key significantly improves performance, as it improves parallelism and makes the accumulators
a more manageable size. Spreading the work across too many keys reduces the benefits of
partial local combining, we can only combine partial results for the same key.

It seems like buckets of size 100 elements are generally pretty good for this data set. It ensures
there are enough buckets to parallelize the work without producing too many accumulators or
allowing the accumulators to be too large.

Another interesting property of this bucketing is that while using more buckets increases the
parallelism, it also increases the number of elements necessary to ensure that all buckets are
full. An under-filled bucket will lead to a sample that is smaller than desired. For our intended
use there will be significantly more input elements than desired sample elements, so there is no
cause for concern.

Step 2: Dynamic Bucketing

From the previous experiments, we've learned that there is a specific sample size within the
buckets that performs the best — in this case it is 100 elements. Building on this, we're going to
make a version of global sampling that takes the desired sample size and the maximum bucket
size. Unlike the previous case where we took the number of buckets and the bucket size, this
allows us to choose a bucket size and apply this bucketing to produce any sample size.

This requires we switch to a dynamically sized bucket — for example, if we want a 250 element
sample with maximum bucket sizes of 100 elements we need to use two buckets of size 100
and one bucket of size 50.

Implementing this is a bit tricky — we need to pass the bucket size into the CombineFn. It would

be most natural to make it a part of the key (for instance KV.of (bucketIndex, bucketSize)),

but the CombineFn API does not allow accessing the key from within the CombineFn. So instead,
we pass the bucket size as part of the value.

At first, this may be concerning because we are adding the bucket size to every value passed to
the CombineFn. However, thanks to the partial local combining mentioned previously, these
values will be incorporated into a partial accumulator before being transmitted between
workers.

PCollection=\=

ParDo{AssignToDynamicBuckets)

PCollection=K\V<Integer, K\<\, Integer=>>

Combine.perkey(DynamicallySizedSample)

PCollection=K\<Integer, lterable<\/==>=

Values

PCollection=lterabla<\=>=

Flatten

PCollection<\/>

We present the corresponding code below. This code re-uses the BoundedHeap and also
depends on a new DynamicallySizedSampleFn — shown in Appendix 3 — which is a
CombineFn that uses a dynamically configured size for the heap. It is very similar to the
StaticallySizedSampleFn we used earlier.

private static class RandomSample<T>
extends PTransform<PCollection<T>, PCollection<T>> {

private final int sampleSize;
private final int maxBucketSize;

public RandomSample(int sampleSize, int maxBucketSize) {
this.sampleSize = sampleSize;
this.maxBucketSize = maxBucketSize;

}

@0verride
public PCollection<T> expand(PCollection<T> input) {
return input
.apply(ParDo.of(new AssignToDynamicBucketsDoFn<>(
sampleSize, maxBucketSize)))
.apply("Sample each bucket",
Combine.perKey(new DynamicallySizedSampleFn<>()))
.apply(Values.create())
.apply(Flatten.iterables());

/** A holder for the assignment of an element to a bucket. */
public static class BucketAssignment {

private final int bucketIndex;
private final int bucketSize;

private BucketAssignment(int bucketIndex, int bucketSize) {
this.bucketIndex = bucketIndex;
this.bucketSize = bucketSize;

public int bucketIndex() {
return bucketIndex;

}

public int bucketSize() {
return bucketSize;

10

[**
* Given a random position in the range {@code [0..., sampleSize)} return
* an assignment of that position into buckets of size {@code maxBucketSize}.
*/
@VisibleForTesting
static BucketAssignment assignBucket(
int assignedPosition, int sampleSize, int maxBucketSize) {
int assignedBucket = assignedPosition / maxBucketSize;
// The size of this bucket is either maxBucketSize or
// sampleSize % maxBucketSize if it is the final (remainder) bucket.
int remainderSize = sampleSize % maxBucketSize;
boolean isRemainderBucket = assignedPosition > (sampleSize - remainderSize);
int bucketSize = isRemainderBucket ? remainderSize : maxBucketSize;
return new BucketAssignment(assignedBucket, bucketSize);

public static class AssignToDynamicBucketsDoFn<V>
extends DoFn<V, KV<Integer, KV<V, Integer>>> {

private final int sampleSize;
private final int maxBucketSize;
private transient int index;

public AssignToDynamicBucketsDoFn(int sampleSize, int maxBucketSize) {
this.sampleSize = sampleSize;
this.maxBucketSize = maxBucketSize;

}

@Setup
public void setup() {
index = ThreadLocalRandom.current().nextInt(sampleSize);

}

@ProcessElement
public void processElement(ProcessContext c¢) throws Exception {
index = (index + maxBucketSize) % sampleSize;
BucketAssignment bucket = assignBucket(index, sampleSize, maxBucketSize);
c.output(KV.of(bucket.bucketIndex(),
KV.of(c.element(), bucket.bucketSize())));

11

Step 3: Stratified Random Sampling

Now that we understand how to more efficiently produce a global sample by first dividing it
across some random keys, we are equipped to investigate how to produce a more informative
sample for debugging purposes.

Often, a data set has several “kinds” of elements. For debugging, it is useful to get a sample that
contains some of each kind. Ideally, this would be proportional to how frequently each kind of
element appears in the total data set — a stratified sample.

For our debugging purposes, we make one small change. No matter how infrequently a kind of
element is, we would like at least one element of the sample to be of that kind. This ensures that
potential outliers are represented, at the risk of producing a less representative sample.

PCollection<\'>

WithKeys

PCaollechon=kK\V=K, V==

AssignToStratifiedBuckets

PCollection=kK\<=KvV=K, Integer=, K\V<V, Integers>>

Combine.perkey|DynamicallySizedSample)

PCollection=K\V=KV=HK, Integer=, lterable<y=>=

Values

PCollection<lterable<\>>

Flattem

PCollection<\'=

Notice again that the actual sampling transform didn’t change significantly. The only
differences are that we first assign keys to the input elements using a function to extract the
kind of element for stratification. We also use a new composite transform to assign the
elements to stratified buckets. Also note that we continue to use the assigned key and an
integer for each bucket’s key.

12

PCollection=kKV =K, V==

Count. perkey() Count.globally()
PCollection=kK\V<K, Lang== FCollection<Long=
FarDo(AllocateSamplesTokeys) '—‘ View. AsSingleton
PCollsction=K> PCollamionLie\ucLong:-
ReduceBucketAssignments
PCollection=k>

Count. perElement()

PCollection=K, Long=

View.asMap ParDofAssign ToStratifiedBuckets)
PCollactionView=Map<K, Long=>=>

The AssignToStratifiedBuckets transform is a composite transform that makes use of the
existing sampling. A general outline of the approach:

1.

Determine how many total elements there are in the data set using Count.globally().
This is made available to a later ParDo as a side-input, by using View.asSingleton()
Determine how many of each kind of element they are using Count.perKkey().

For each kind of element, allocate it to one or more buckets based on its frequency. This
uses the count-per-key as a main input and the global count as a side input.

We may have assigned too many samples, so we apply our previous dynamic bucketing
as a composite to potentially reduce the number of samples.

Determine how many samples should be taken for each key using
Count.perElement().Use View.asMap() to make that available as a side-input.

Use a ParDo to assign buckets to each element. This takes the previously computed
map as a side-input, allowing it to determine how many samples should be taken for
each element.

private static class StratifiedRandomSample<K, V>

extends PTransform<PCollection<V>, PCollection<V>> {

private final int sampleSize;
private final int maxBucketSize;
private final SerializableFunction<V, K> keyFn;

13

public StratifiedRandomSample(
int sampleSize, int maxBucketSize, SerializableFunction<V, K> keyFn) {
this.sampleSize = sampleSize;
this.maxBucketSize = maxBucketSize;
this.keyFn = keyFn;
}

@0verride
public PCollection<V> expand(PCollection<V> input) {
final PCollection<KV<K, V>> keyedInput = input.apply(WithKeys.of(keyFn));

return keyedInput
.apply("Assign Stratified Buckets",
new AssignValuesToStratifiedBuckets<>(sampleSize, maxBucketSize))
.apply("DynamicSample Each Bucket",
Combine.perKey(new DynamicallySizedSampleFn<>()))
.apply(Values.create())
.apply(Flatten.iterables());

/**
Given a collection of {@code KV<K,V>} pairs, produce a collection where

each key is divided into an arbitrary bucket and each value includes a
bucket size.

<p>Specifically, given {@code KV.of("key", "value")}, returns
{@code KV.of(KV.of("key", randomBucket), KV.of("value", bucketSize))}.

* ¥ ¥ X ¥ ¥

*/

private static class AssignValuesToStratifiedBuckets<K, V>
extends PTransform<PCollection<KV<K, V>>,
PCollection<KV<KV<K, Integer>, KV<V, Integer>>>> {

private final int sampleSize;
private final int maxBucketSize;

private AssignValuesToStratifiedBuckets(
int sampleSize, int maxBucketSize) {
this.sampleSize = sampleSize;
this.maxBucketSize = maxBucketSize;

}

@0verride
public PCollection<KV<KV<K, Integer>, KV<V, Integer>>> expand(
PCollection<KV<K, V>> input) {
// Figure out how many total rows there are

final PCollectionView<Long> numberOfRows = input
.apply("Count total rows", Count.globally())
.apply(View.asSingleton());

final PCollectionView<Map<K, Long>> itemsPerKey = input

// Count how many rows each key has

.apply("Count rows per key", Count.perKey())

// Allocate samples to each key based on the ratio of data with

// that key. Even infrequent keys are assigned at least one element

// of the sample.

.apply("Allocate samples to each key",

ParDo.of(new AllocateSamplesDoFn<K>(sampleSize, numberOfRows))

.withSideInputs(numberOfRows))

// If there are very many distinct keys, the allocated samples

// may exceed the actual desired bucketSize for the sample.

// Since the number of allocated keys is likely close to the desired

// sample size, we shouldn't use our sampling algorithm to reduce the

// set because it would be likely to have underfilled buckets.

.apply(new ReduceBucketAssignments<>(sampleSize))

// Then we count how many samples each key has allocated to it

.apply("Count DynamicSample Allocation", Count.<K>perElement())

// And create a PCollectionView

.apply(View.<K, Long>asMap());

return input
// Assign each item to a bucket. The number of buckets for a
// given key is determined by the number of samples allocated
// to the key, and the maximum bucket bucketSize.
.apply(ParDo.of(
new AssignToStratifiedBucketsDoFn<K, V>(maxBucketSize, itemsPerKey))
.withSideInputs(itemsPerKey));

* DoFn that maps {@code KV<K, V>} elements to a
* bucket (within the key) and the size of the bucket.

* <p>Requires the sample-size per key as a side-input.
*/
public static class AssignToStratifiedBucketsDoFn<K, V>
extends DoFn<KV<K, V>, KV<KV<K, Integer>, KV<V, Integer>>> {

private final int maxBucketSize;
private final PCollectionView<Map<K, Long>> itemsPerKey;
private transient ThreadLocalRandom random;

15

public AssignToStratifiedBucketsDoFn(
int maxBucketSize, PCollectionView<Map<K, Long>> itemsPerKey) {
this.maxBucketSize = maxBucketSize;
this.itemsPerKey = itemsPerKey;

}

@StartBundle
public void startBundle() {
random = ThreadLocalRandom.current();

}

@ProcessElement
public void processElement(ProcessContext c¢) throws Exception {
Long sampleSizelong = c.sideInput(itemsPerKey).get(c.element().getKey());
if (sampleSizelong == null) {
return;

int sampleSize = (int) (long) sampleSizelong;
int assignedPosition = random.nextInt(sampleSize);
BucketAssignment bucket = assignBucket(
assignedPosition, sampleSize, maxBucketSize);
c.output(KV.of(
KV.of(c.element().getKey(), bucket.bucketIndex()),
KV.of(c.element().getValue(), bucket.bucketSize())));

private static class AllocateSamplesDoFn<K> extends DoFn<KV<K, Long>, K> {
private final int sampleSize;
private final PCollectionView<Long> numberOfRows;

public AllocateSamplesDoFn(
int sampleSize, PCollectionView<Long> numberOfRows) {
this.sampleSize = sampleSize;
this.numberOfRows = numberOfRows;

@ProcessElement
public void processElement(ProcessContext c) throws Exception {
long keyRows = c.element().getValue();
long totalRows = c.sideInput(numberOfRows);
long samples = getNumAllocatedSamples(keyRows, totalRows, sampleSize);

for (int 1 = @; i < samples; i++) {
c.output(c.element().getKey());
}

/x*

Compute the number of samples that should be allocated to a given key.
Rounds up so that even outlier keys receive one allocated sample.

*
*
*
*
* @param keyRows The number of rows in the data set with this key.
* @param totalRows The number of total rows in the data set.
* @param sampleSize The number of desired rows in the sample.
* @return The number of rows that should be allocated to this key in the sample.
*/
@VisibleForTesting static long getNumAllocatedSamples(
long keyRows, long totalRows, long sampleSize) {
// Always round up. This ensures that outliers (which represent less than
// one full sample) still have a chance to appear, and also ensures that
// we choose enough samples.
return (long) Math.ceil(keyRows * 1.0 * sampleSize / totalRows);

private static class ReduceBucketAssignments<K>
extends PTransform<PCollection<K>, PCollection<K>> {

private static final Logger LOG =
LoggerFactory.getlLogger(AllocateSamplesDoFn.class);

private final int sampleSize;
public ReduceBucketAssignments(int sampleSize) {
this.sampleSize = sampleSize;

}

@Override
public PCollection<K> expand(PCollection<K> input) {
return input
.apply(WithKeys.<Void, K>of((Void) null)
.withKeyType(new TypeDescriptor<Void>() {}))
.apply(GroupByKey.create())
.apply(ParDo.of(new DoFn<KV<Void, Iterable<K>>, K>() {
@ProcessElement
public void processElement(ProcessContext c¢) {
Iterator<K> keyIterator = c.element().getValue().iterator();
try {
for (int i = @; i < sampleSize; i++) {
c.output(keyIterator.next());

}
} catch (NoSuchElementException e) {

17

}
)

}

LOG.warn("Not enough samples allocated.");

As before, we experimented with buckets of varying sizes. We also experiment with varying the

number of keys. We again find that using 100 element buckets produces good results by
balancing the size of the accumulator with the amount of parallelism.

Sample Bucket Size | Number of Keys | Total Elapsed Time Total Worker Time
Size (hours) (vCPU hours)
10000 1 5126m17s 41.893
10000 1 10|26m20s 43.44
10000 1 25(26m35s 43.293
10000 100 5122m20s 34.341
10000 100 10|23m22s 36.489
10000 100 25(23m52s 37.222
10000 1000 5127m27s 44.741
10000 1000 10|23mb4s 37.286
10000 1000 25(23m51s 35.874
10000 5000 5128m29s 44.516
10000 5000 10|22m47s 36.21
10000 5000 25(23mb54s 36.171
50000 1 5125m54s 42.278
50000 1 10|26m41s 43.43
50000 1 25141m06s 72.672
50000 100 5123mb55s 36.969
50000 100 10|24m10s 37.245
50000 100 25(24m04s 37.133
50000 1000 5]24m20s 38.56
50000 1000 10{24m40s 38.092
50000 1000 25(24m01s 37.25
50000 5000 5|26m17s 42.033

18

50000 5000 10|30m10s 49.296

50000 5000 25|25m18s 39.931
100000 1 5(26m43s 43.454
100000 1 10|27m02s 45.837
100000 1 25|31m00s 53.77
100000 100 5(36m46s 63.839
100000 100 10|124m12s 37.576
100000 100 25]|24m00s 37.806
100000 1000 5(23m37s 36.913
100000 1000 10|124m19s 38.441
100000 1000 25|23m43s 37.546
100000 5000 5(26m10s 42.353
100000 5000 10|26m05s 42.776
100000 5000 25]|26m03s 42.453
500000 1 5(35m23s 61.376
500000 1 10|137m12s 66.064
500000 1 25|39m12s 70.259
500000 100 5(25m16s 40.221
500000 100 10|127m13s 44.206
500000 100 25]|25m38s 41.766
500000 1000 5(25m29s 40.238
500000 1000 10|25m49s 40.551
500000 1000 25]|25m35s 41.535
500000 5000 5(27m48s 44.953
500000 5000 10|38m04s 63.882
500000 5000 25]|28m28s 46.43

19

Conclusion

We demonstrated how to introduce additional parallelism to random sampling as a way of
improving pipeline performance. The same approaches may be useful in writing your own
pipelines. We also demonstrated how to build more sophisticated sampling from simpler parts
by reusing transforms. The preceding approaches may both be useful when writing your own
pipelines.

We also provided a re-usable approach for stratified random sampling which should be helpful
for taking a peek at the contents of a PCollection for debugging purposes.

20

Appendix 1: SampleElement, BoundedHeap and
some Coders

/** An element paired with a random value used for comparison. */

private static class SampleElement<T> implements Comparable<SampleElement<T>> {
private final int value;
private final T element;

public SampleElement(int value, T element) {
this.value = value;
this.element = element;

@Override
public int compareTo(SampleElement<T> o) {
return Integer.compare(o.value, this.value);
}
}

/** The coder for {@code SampleElement<T>} uses the coder for {@code T}. */
private static class SampleElementCoder<T>
extends CustomCoder<SampleElement<T>> {

private final Coder<Integer> intCoder = BigEndianIntegerCoder.of();
private final Coder<T> elementCoder;

public SampleElementCoder(Coder<T> elementCoder) {
this.elementCoder = elementCoder;

}

@0verride
public void encode(SampleElement<T> value, OutputStream outStream)
throws IOException {
intCoder.encode(value.value, outStream);
elementCoder.encode(value.element, outStream);

}

@Override

public SampleElement<T> decode(InputStream inStream) throws IOException {
int value = intCoder.decode(inStream);
T element = elementCoder.decode(inStream);
return new SampleElement<>(value, element);

}

21

/** A heap that stores a bounded number of {@link SampleElement elements}. */
static class BoundedSample<T> {

/**
* A list in which smallest key at the front for quick merging.
*
* <p>Only one of asList and asQueue may be non-null.
*/
private List<SampleElement<T>> aslList;

/**
* A queue with largest random key at the head, for quick addition.
*
* <p>Only one of aslList and asQueue may be non-null.
*/
private PriorityQueue<SampleElement<T>> asQueue;

/** The maximum sampleSize of the heap. */
private int maximumSize;

private BoundedSample(int maximumSize,
PriorityQueue<SampleElement<T>> asQueue,
List<SampleElement<T>> aslList) {
this.maximumSize = maximumSize;
this.asQueue = asQueue;
this.aslList = asList;

public static <T> BoundedSample<T> fromSortedList(
int maximumSize, List<SampleElement<T>> asList) {
return new BoundedSample<>(maximumSize, null, asList);

}

public List<SampleElement<T>> sortedList() {
if (maximumSize == 0) {
return Collections.emptylList();

}

if (asList == null) {
List<SampleElement<T>> reverselList = new ArraylList<>(maximumSize);
while (!asQueue.isEmpty()) {
reverselList.add(asQueue.poll());
}
aslList = Lists.reverse(reverselist);
asQueue = null;

}

return aslList;

}

public static <T> BoundedSample<T> fromSamples(
Iterable<BoundedSample<T>> samples) {
BoundedSample<T> result = null;
for (BoundedSample<T> sample : samples) {
if (sample.getMaximumSize() != 9) {
if (result == null) {
result = sample;
} else {
for (SampleElement<T> element : sample.sortedList()) {
if (!'result.maybeAddInput(element)) {
break;

return result;

}

public static <T> BoundedSample<T>create() {
return new BoundedSample(@, null, null);

}

public static <T> BoundedSample<T>create(int maximumSize) {
return new BoundedSample(
maximumSize, new PriorityQueue<>(maximumSize), null);

}
private boolean maybeAddInput(SampleElement<T> element) {
if (maximumSize == 0) {
return false;
}

if (asQueue == null) {
asQueue = new PriorityQueue<>(asList);
asList = null;

if (asQueue.size() < maximumSize) {
asQueue.add(element);
return true;

} else if (element.value < asQueue.peek().value) {
asQueue.poll();

23

asQueue.add(element);
return true;

return false;

public boolean maybeAddInput(int randomInt, T value) {
if (maximumSize == 0) {
return false;

if (asQueue == null) {
asQueue = new PriorityQueue<>(asList);
asList = null;

if (asQueue.size() < maximumSize) {
asQueue.add(new SampleElement<T>(randomInt, value));
return true;

} else if (randomInt < asQueue.peek().value) {
asQueue.poll();
asQueue.add(new SampleElement<T>(randomInt, value));
return true;

return false;

public int getMaximumSize() {
return maximumSize;

}

public void setMaximumSize(int maximumSize) {
Preconditions.checkState(this.maximumSize == 0);
Preconditions.checkState(this.asQueue == null && this.asList == null);

this.maximumSize = maximumSize;
this.asQueue = new PriorityQueue<SampleElement<T>>(maximumSize);

Iterable<T> unsortedOutput() {
if (asQueue == null && aslList == null) {
return Collections.emptyList();

} else {
Iterable<SampleElement<T>> iterable = asQueue == null ? aslList : asQueue;
return Iterables.transform(iterable, new Function<SampleElement<T>, T>() {
@Nullable

24

@Override
public T apply(@Nullable SampleElement<T> input) {
return input.element;

}
1
}
}
}
/**
* A {@link Coder} for {@link BoundedSample}.
*/

private static class BoundedSampleCoder<T>
extends CustomCoder<BoundedSample<T>> {

private final Coder<Integer> sizeCoder = VarIntCoder.of();
private final Coder<List<SampleElement<T>>> listCoder;

public BoundedSampleCoder(Coder<T> elementCoder) {
listCoder = ListCoder.of(new SampleElementCoder(elementCoder));

@Override
public void encode(BoundedSample<T> value, OutputStream outStream)
throws IOException {
sizeCoder.encode(value.maximumSize, outStream);

if (value.maximumSize != 9) {
listCoder.encode(value.sortedList(), outStream);
}
}
@0verride

public BoundedSample<T> decode(InputStream inStream) throws IOException {
int size = sizeCoder.decode(inStream);
if (size == 0) {
return BoundedSample.create();
} else {

return BoundedSample.fromSortedList(size, listCoder.decode(inStream));

25

Appendix 2: Fixed Size Sampling CombineFn

* {@code CombineFn} that computes a fixed-size sample of a
* collection of values.

* @param <T> the type of the elements
*/
public static class StaticallySizedSampleFn<T>
extends CombineFn<T, BoundedSample<T>, Iterable<T>> {

private final Random rand = new Random();
private final int size;

private StaticallySizedSampleFn(int size) {
this.size = size;

@Override
public BoundedSample<T> createAccumulator() {
return BoundedSample.create(size);

}

@0verride

public BoundedSample<T> addInput(BoundedSample<T> accumulator, T input) {
accumulator.maybeAddInput(rand.nextInt(), input);
return accumulator;

}

@Override
public BoundedSample<T> mergeAccumulators(
Iterable<BoundedSample<T>> accumulators) {
return BoundedSample.fromSamples(accumulators);

}

@0verride
public Iterable<T> extractOutput(BoundedSample<T> accum) {
return accum.unsortedOutput();

}

@Override
public Coder<BoundedSample<T>> getAccumulatorCoder(
CoderRegistry registry, Coder<T> inputCoder) {
return new BoundedSampleCoder<>(inputCoder);

26

@Override
public Coder<Iterable<T>> getDefaultOutputCoder(
CoderRegistry registry, Coder<T> inputCoder) {
return IterableCoder.of(inputCoder);
}
}

Appendix 3: Dynamic Sampling CombineFn

/**
* {@code CombineFn} that computes a fixed-bucketSize sample of a
* collection of values.
*
* @param <T> the type of the elements
*/
public static class DynamicallySizedSampleFn<T>
extends CombineFn<KV<T, Integer>, BoundedSample<T>, Iterable<T>> {

private final Random rand = new Random();

private DynamicallySizedSampleFn() {
}

@0verride
public BoundedSample<T> createAccumulator() {
return BoundedSample.create();

}

@Override
public BoundedSample<T> addInput(
BoundedSample<T> accumulator, KV<T, Integer> input) {
if (accumulator.getMaximumSize() == 0) {
accumulator.setMaximumSize(input.getValue());
¥
accumulator.maybeAddInput(rand.nextInt(), input.getKey());
return accumulator;

@Override
public BoundedSample<T> mergeAccumulators(

}

Iterable<BoundedSample<T>> accumulators) {
return BoundedSample.fromSamples(accumulators);

}

@Override
public Iterable<T> extractOutput(BoundedSample<T> accum) {
return accum.unsortedOutput();

}

@Override
public Coder<BoundedSample<T>> getAccumulatorCoder(
CoderRegistry registry, Coder<KV<T, Integer>> inputCoder) {
KvCoder<T, Integer> kvCoder = (KvCoder) inputCoder;
return new BoundedSampleCoder<>(kvCoder.getKeyCoder());

}

@Override
public Coder<Iterable<T>> getDefaultOutputCoder(
CoderRegistry registry, Coder<KV<T, Integer>> inputCoder) {
KvCoder<T, Integer> kvCoder = (KvCoder) inputCoder;
return IterableCoder.of(kvCoder.getKeyCoder());

}

28

