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A Professional Machine Learning Engineer designs, builds, and productionizes ML 

models to solve business challenges using Google Cloud technologies and knowledge 

of proven ML models and techniques. The ML Engineer considers responsible AI 

throughout the ML development process, and collaborates closely with other job roles 

to ensure long-term success of models. The ML Engineer should be proficient in all 

aspects of model architecture, data pipeline interaction, and metrics interpretation. The 

ML Engineer needs familiarity with foundational concepts of application development, 

infrastructure management, data engineering, and data governance. Through an 

understanding of training, retraining, deploying, scheduling, monitoring, and improving 

models, the ML Engineer designs and creates scalable solutions for optimal 

performance.

Exam Outline 

Section 1: Framing ML problems

Choosing the best solution (ML vs. non-ML, custom vs. pre-packaged [e.g., 

AutoML, Vision API]) based on the business requirements 

Defining how the model output should be used to solve the business problem

1.1 Translating business challenges into ML use cases. Considerations include:



Deciding how incorrect results should be handled

Problem type (e.g., classification, regression, clustering)

Alignment of ML success metrics to the business problem

Assessing and communicating business impact

Choosing appropriate ML services for the use case (e.g., Cloud Build, 

Kubeflow)

Identifying data sources (available vs. ideal)

Outcome of model predictions

Key results

Assessing ML solution readiness

Component types (e.g., data collection, data management)

Input (features) and predicted output format

Determining when a model is deemed unsuccessful

Assessing data readiness and potential limitations

Exploration/analysis

Aligning with Google’s Responsible AI practices (e.g., different biases)

Feature engineering

Logging/management

1.2 Defining ML problems. Considerations include:

1.3 Defining business success criteria. Considerations include:

1.4 Identifying risks to feasibility of ML solutions. Considerations include: 

2.1 Designing reliable, scalable, and highly available ML solutions. Considerations               

include:

Section 2: Architecting ML solutions



Automation

Evaluation of compute and accelerator options (e.g., CPU, GPU, TPU, edge 

devices)

Building secure ML systems (e.g., protecting against unintentional 

exploitation of data/model, hacking)

Visualization

Organize and optimize training datasets

Orchestration

Monitoring

Serving 

Privacy implications of data usage and/or collection (e.g., handling sensitive 

data such as Personally Identifiable Information [PII] and Protected Health 

Information [PHI])

Statistical fundamentals at scale

Data validation

Evaluation of data quality and feasibility

Handling missing data

Establish data constraints (e.g., TFDV)

2.2 Choosing appropriate Google Cloud hardware components. Considerations 

include:

2.3 Designing architecture that complies with security concerns across 

sectors/industries. Considerations include:

3.1 Exploring data (EDA). Considerations include:

3.2 Building data pipelines. Considerations include:

Section 3: Designing data preparation and processing systems



Handling outliers

Ensuring consistent data pre-processing between training and serving

Encoding structured data types

Feature selection

Class imbalance

Feature crosses

Transformations (TensorFlow Transform)

Choice of framework and model

Semi-supervised learning

Data leakage

Modeling techniques given interpretability requirements

Model generalization and strategies to handle overfitting and underfitting

Transfer learning

Ingestion of various file types into training (e.g., CSV, JSON, IMG, parquet or 

databases, Hadoop/Spark)

Data augmentation

Training a model as a job in different environments

Hyperparameter tuning

Tracking metrics during training

Retraining/redeployment evaluation

3.3 Creating input features (feature engineering). Considerations include:

4.1 Building models. Considerations include:

4.2 Training models. Considerations include:

Section 4: Developing ML models



Unit tests for model training and serving

Distributed training

Model performance against baselines, simpler models, and across the time 

dimension

Scaling prediction service (e.g., AI Platform Prediction, containerized serving)

Model explainability on AI Platform

Identification of components, parameters, triggers, and compute needs (e.g., 

Cloud Build, Cloud Run)

Hybrid or multi-cloud strategies

System design with TFX components/Kubeflow DSL 

Orchestration framework (e.g., Kubeflow Pipelines/AI Platform Pipelines, 

Cloud Composer/Apache Airflow)

Serving (online, batch, caching)

Organizing and tracking experiments and pipeline runs

Google Cloud serving options

Testing for target performance

Configuring trigger and pipeline schedules

4.3 Testing models. Considerations include:

4.4 Scaling model training and serving. Considerations include:

5.1 Designing and implementing training pipelines. Considerations include:

5.2 Implementing serving pipelines. Considerations include:

5.3 Tracking and auditing metadata. Considerations include:

Section 5: Automating and orchestrating ML pipelines



Hooking into model and dataset versioning

Model/dataset lineage

Performance and business quality of ML model predictions

Establishing continuous evaluation metrics (e.g., evaluation of drift or bias)

Understanding Google Cloud permissions model

Identification of appropriate retraining policy

Common training and serving errors (TensorFlow)

ML model failure and resulting biases

Logging strategies

Optimization and simplification of input pipeline for training

Simplification techniques

6.1 Monitoring and troubleshooting ML solutions. Considerations include:

6.2 Tuning performance of ML solutions for training and serving in production. 

Considerations include:

Section 6: Monitoring, optimizing, and maintaining ML solutions


