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We introduce VaultGemma 1B, a 1 billion parameter model within the Gemma family, fully trained with
differential privacy. Pretrained on the identical data mixture used for the Gemma 2 series, VaultGemma
1B represents a significant step forward in privacy-preserving large language models. We openly release
this model to the community.

1. Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities across a wide
range of tasks, yet a significant challenge in their
development and deployment is the inherent pri-
vacy risk. Trained on vast, web-scale corpora,
LLMs have been shown to be susceptible to ver-
batim memorization and extraction of training
data (Biderman et al., 2023; Carlini et al., 2021,
2023; Ippolito et al., 2023; Lukas et al., 2023;
Prashanth et al., 2025). This can lead to the inad-
vertent disclosure of sensitive or personally iden-
tifiable information (PII) that was present in the
pretraining dataset.

To address these challenges, Differential Pri-
vacy (DP) (Dwork et al., 2006) has emerged as
the gold standard, providing a rigorous, mathe-
matical framework to limit the influence of any
single example in the training data on the result-
ing model. A model trained with DP provably
bounds the reconstruction or leakage of informa-
tion tied to individual data points.

An LLM encounters the vast majority of its train-
ing data during the initial pretraining phase (Ab-
din et al., 2024; Gemma Team et al., 2024a,b).
This stage relies on massive, heterogeneous
datasets that, despite filtering efforts, can con-
tain sensitive information. Thus, it is important
to consider pretraining an LLM fully with DP. This
approach provides an end-to-end privacy guar-
antee from the ground up, ensuring the foun-
dational model is built in a way that prevents
the memorization of specific, sensitive details. It
allows the model to learn general patterns and
knowledge about the world without being overly

influenced by any single document or user’s data,
fundamentally mitigating the risk of privacy leaks
from the original training corpus.

A common alternative to full private pretrain-
ing is to apply DP exclusively during the fine-
tuning phase. However, this approach leaves the
foundational model and its vast pretraining data
unprotected, leading to several significant pit-
falls. First, the model may have already mem-
orized sensitive PII from the pretraining corpus
before DP fine-tuning begins, and this process
does not retroactively erase the memorized in-
formation. This leaves the model vulnerable to
extraction attacks that can reveal verbatim train-
ing data—a risk that is significantly amplified for
open-weight models, where adversaries have full
access to model weights to probe for and recon-
struct sensitive information. Consequently, this
practice can create a false sense of security, as
labeling the model “private” applies only to the
fine-tuning data, while the core pretraining data
remains at risk (Tramèr et al., 2024).

VaultGemma represents a significant step for-
ward in the journey toward building AI that is
both powerful and private by design. By develop-
ing and applying a new, robust understanding of
the scaling laws for DP (McKenna et al., 2025), we
have successfully trained and released the largest
open-weight, privately trained language model
to date. Our primary motivation for releasing
VaultGemma is to accelerate research and devel-
opment in private AI. By providing the commu-
nity with a powerful, high-utility private model
and a clear methodology, we aim to lower the
barrier to entry for building privacy-preserving
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technologies. Furthermore, this model can serve
as a valuable foundation for applications where
privacy of the training data when using the model
is paramount.

While a utility gap still exists between private
and non-private models, our work demonstrates
that this gap can be systematically narrowed. We
hope that VaultGemma and our accompanying re-
search will empower the community to build the
next generation of safe, responsible, and private
AI for everyone.

2. Model Architecture

Similar to previous Gemma models (Gemma
Team et al., 2024a,b), VaultGemma 1B, is a
decoder-only transformer model, with most ar-
chitecture elements similar to other Gemma ver-
sions.

Table 1 | Overview of the main parameters and
design choices for the 1B model. See section 2
for more details.

Parameters 1B
𝑑_model 1152
Layers 26

Pre-norm yes
Post-norm no

Non-linearity GeGLU
Feedforward dim 13,824

Head type MQA
Num heads 4

Num KV heads 1
Head size 256

Global att. span 1024
Vocab size 256,128

Tied embedding yes

2.1. Sequence Length

We choose to decrease the sequence length to
1024 for pretraining. We find that using a smaller
sequence length significantly reduces compute
requirements, which in turn allows us to train
using larger batch sizes—a necessity for good
performance in private training.

2.2. Global Attention

Given our use of a small sequence length, we
choose to use global attention on all layers rather
than alternating with sliding window attention.

2.3. Pre-norm with RMSNorm

To stabilize training, we use RMSNorm (Zhang
and Sennrich, 2019) to normalize the input of
each transformer sub-layer, the attention layer,
and the feedforward layer.

3. Dataset

We train using the same pretraining dataset as
Gemma 2 27B. This dataset contains 13T tokens
of primarily-English data. These tokens come
from a variety of data sources, including web
documents, code, and science articles and only
contain text data. (Gemma Team et al., 2024b)

3.1. Filtering

We use the same data filtering techniques as
(Gemma Team et al., 2024b). Specifically, we
filter the pretraining dataset to reduce the risk of
unwanted or unsafe utterances, filter out certain
personal information or other sensitive data, de-
contaminate evaluation sets from our pretraining
data mixture, and reduce the risk of recitation by
minimizing the proliferation of sensitive outputs.

3.2. Tokenizer

We use the same non-private tokenizer as Gemma
1, Gemma 2, and Gemini: a SentencePiece tok-
enizer (Kudo and Richardson, 2018) with split
digits, preserved whitespace, and byte-level en-
codings. The resulting vocabulary has 256K en-
tries.

4. Evaluations

We show the performance of our final pretrained
model across a variety of benchmarks and com-
pare it against its non-private counterpart across
a range of standard academic benchmarks in Ta-
ble 2. To put this performance in perspective
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and quantify the current impact of DP on per-
formance, we also include a comparison to an
older similar-sized GPT-2 model, which performs
similarly on these benchmarks. This comparison
illustrates that today’s private training methods
produce models with utility comparable to that of
non-private models from roughly five years ago,
highlighting the important gap our work will help
the community systematically close.

5. DP Implementation

5.1. Private Training

We implemented DP-SGD (Abadi et al., 2016) on
top of the Gemma pretraining pipeline using clip-
ping and noise addition components provided by
JAX Privacy (Balle et al., 2025). Our implemen-
tation uses vectorized per-example clipping for
maximum parallelism, and gradient accumula-
tion to simulate large batch sizes. Gradient accu-
mulation steps are independent and each adds
properly calibrated Gaussian noise to the partial
gradients so that when these partial noisy gradi-
ents are averaged we obtain the target gradient
required for DP-SGD model updates.

5.2. Batch Construction

Repeated Documents. Our training mixture is
composed of a diverse set of documents sampled
from numerous source datasets. We sample docu-
ments from these source documents into the mix-
ture with probability proportional to its weight.
As these datasets are of different quality, we as-
sign different weights to sample documents from
them into our mixture. At worst, we can sam-
ple a single document from these sources up to
seven times in our mixture. However, for most of
the source datasets, we sample documents fewer
than three times into our final mixture.

Packing. To increase training efficiency, we
pack documents into fixed size sequences of 1024
tokens. Due to the diversity of the type of docu-
ments we train on, our packing can pack multiple
documents into a single example or break up a
single document into multiple sequences.

Privacy Guarantee. VaultGemma was trained
with a (𝜖 ≤ 2.0, 𝛿 ≤ 1.1𝑒−10)-sequence-level DP
guarantee, where sequence consists of 1024 to-
kens after sampling and packing. It is important
to note that if two repeated sequences occurred
due to the sampling of repeated documents, they
are treated as separate privacy units for the pur-
pose of this guarantee.

Truncated Poisson Subsampling. We employ
Truncated Poisson Subsampling (Chua et al.,
2024) for sampling our mini-batches. This
method provides a computationally efficient ap-
proximation of Poisson subsampling, where each
example in the dataset is included in a batch with
a fixed probability. Poisson subsampling results
in batches of variable size which can result in
slower training throughput. Truncated Poisson
Subsampling allows us to use a fixed batch size
by padding the batch when it is too small and
truncating it when it is too large.

A key distinction in our methodology lies in the
implementation of the data pipeline. The original
work suggests a implementing truncated Poisson
sub-sampling using MapReduce. This approach is
designed to minimize the overhead during train-
ing by front-loading the sampling computation.
However, we found that a pre-generation step was
not necessary for our use case and introduced
complexities in data handling and storage.

Instead, we implement Truncated Poisson Sam-
pling directly within our data loading pipeline
using pygrain (Ritter et al., 2023). Our im-
plementation performs on-the-fly sampling and
batching of the data as it is fed to the model. We
found that this approach does not introduce a
significant computational overhead, and we ob-
serve data throughput speeds comparable to a
standard data pipeline at the same physical batch
size. We also find that overhead of padding is
small at large batch sizes that we use for training
with the padding accounting for less than 2% of
the total batch size.

5.3. Privacy Accounting

Our privacy accounting methodology is based on
the ABLQ𝑃 method under the “zeroing-out” ad-
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Table 2 | A comparison of DP and standard model performance and training configurations.

Model ARC-C ARC-E HellaSwag PIQA SIQA BoolQ TriviaQA
0 shot 0 shot 0 shot 0 shot 0 shot 0 shot 5 shot

VaultGemma 1B 26.45 51.78 39.09 68.00 46.16 62.04 11.24
Gemma3 1B (PT) 38.31 71.34 61.04 77.37 49.28 68.75 39.75
GPT-2-1.5B 39.78 51.10 47.91 70.51 - 61.80 6.00

jacency notion (Kairouz et al., 2021) as detailed
in (Chua et al., 2024). The accounting is imple-
mented using the PLD accountant (Doroshenko
et al., 2022) from the Google DP accounting li-
brary (Google DP Team, 2022).

6. Scaling Law

6.1. Methodology

Our methodology for deriving scaling laws for
DP language models builds upon the framework
established in (McKenna et al., 2025), while in-
troducing three key modifications to enhance the
modeling of the optimal learning rate, the esti-
mation of loss values, and the final scaling law
formulation. This approach allows for a more
granular and robust understanding of the inter-
play between model size, training iterations, and
the noise-to-batch ratio under DP constraints.

Explicit Modeling of the Optimal Learning
Rate. A primary departure from previous work
is the explicit modeling of the optimal learning
rate. Instead of treating the learning rate as a
hyperparameter to be optimized through a grid
search for each configuration, we model its op-
timal value as a function of the training setup.
For each experimental configuration, defined by
a specific model size and noise-to-batch ratio, we
conduct seven training runs, each with a different
learning rate.

The resulting final loss values from these seven
runs are then used to fit a quadratic function. The
vertex of this parabola provides an estimate of
the optimal learning rate for that configuration.
This approach is based on the observation that the
relationship between the learning rate and the

final loss is often convex. The final scaling laws
are subsequently derived using the loss values
obtained from training each configuration at its
modeled optimal learning rate. This two-step pro-
cess allows for a more precise determination of
the best achievable performance for each config-
uration, reducing the risk of suboptimal learning
rate selection influencing the final scaling law.

Parametric Extrapolation of Loss Values. To
efficiently estimate the loss across a continuous
range of training iterations without relying on
intermediate loss values, we adopt a parametric
fitting approach. For each model configuration,
we execute five separate training runs, each with
a different, predetermined number of training
iterations. The final loss from each of these five
runs is then recorded.

We use a simple parametric form inspired
by (Hoffmann et al., 2022), namely 𝐿 = 𝐸 +
𝐴
𝑇𝛼 where 𝐿 is the loss, 𝑇 is the number of
training iterations and 𝐸, 𝐴, and 𝛼 are the
fitted parameters. We fit this function us-
ing scipy.optimize.curve_fit to these five
data points. This function allows for both interpo-
lation and extrapolation of the loss to any number
of iterations within a reasonable range. We find
that this reduces overestimating the loss when
training iterations are smaller than the experi-
mental configuration.

Semi-Parametric Fit. Our final scaling law is
constructed through a two-stage fitting process,
which separately models the loss as a function of
model size and training iterations as a parametric
function described above.

We utilize the parametric extrapolation to gen-
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erate a dense grid of loss values across a wide
range of model sizes, training iterations, and
noise-batch ratios. These generated data points
are then used to fit separate non-parametric
model following the methodology in (McKenna
et al., 2025) to predict the loss value for any value
of model size, training iterations, and noise-batch
ratios.

7. Training Configuration

7.1. Compute Infrastructure

We train on a 2×16×16 configuration of TPUv6e
totaling 2048 chips, with 2048-way data repli-
cation and 1-way model sharding. Using a vec-
torized implementation of per-example-clipping,
we are able to process four examples per core in
parallel and aggregate gradients computed across
64 independent iterations to produce each model
update. As in other Gemma variants, we use the
GSPMD partitioner for training step computation
and the MegaScale XLA compiler.

7.2. Batch Size and Number of Iterations

Based on our scaling law and compute budget, we
find a variety of configurations produce compa-
rable loss similar to (McKenna et al., 2025). Our
final training configuration is in Table 3. After
training, we find that our scaling law prediction
for loss was within 1% of the true value achieved.

Table 3 | Overview of the training hyperparame-
ters.

Parameters 1B
Iterations 100,000
Expected Batch Size 517,989
Noise Multiplier 0.6143481
𝜖 2.0
𝛿 1.1𝑒−10

8. Empirical Privacy andMemorization

One major benefit of DP is that it provably bounds
the impact of an example on the trainedmodel. In
this section, we empirically assess these benefits
on training-example memorization rates (Carlini

et al., 2023; Gemini Team, 2024; Gemma Team,
2024; Nasr et al., 2023). This “memorization
rate”1 is defined as the ratio of generations from
the model that match its training data compared
to all model generations using the following setup.
Thus, this rate assesses a model’s likelihood of
producing near-copies of text used in training (Bi-
derman et al., 2023; Carlini et al., 2021; Ippolito
et al., 2023).

We follow the methodology described in
(Gemma 3 Team, 2025). We subsample roughly
1M training data samples distributed uniformly
across different corpora and test for discoverable
extraction (Nasr et al., 2023) of this content using
a prefix of length 50 and a suffix of length 50. If
all tokens in the continuation match the source
suffix, we denote the text as “exactly memorized”.
If the continuations matches up to an edit dis-
tance of 10%, we denote this as “approximately
memorized”.

Figure 1 compares the memorization rates
across Gemma models ordered in reverse chrono-
logical order starting from the left. All non-DP
versions of Gemma had detectable levels of mem-
orization, that are decreasing in time due to
changes in the training architecture and recipe.
We were not able to detect any memorization
from DP Gemma, despite using the older training
architecture and recipe from Gemma 2.

9. Conclusion

In this work, we introduced VaultGemma, the
largest open-weight language model trained from
its inception with a formal DP guarantee. The de-
velopment of this model was guided by our formu-
lation of novel scaling laws for DP training, which
provide a principled and quantitative framework
for navigating the inherent trade-offs between
model utility, privacy, and computational cost.
We are releasing the model weights and our train-
ing methodology to facilitate reproducibility and

1We do not state or imply [here] that a model “contains”
its training data in the sense that there is a copy of that data
in the model. Rather, a model memorizes attributes of its
training data such that in certain cases it is statistically able
to generate such training data when following rules and
using information about features of its training data that it
does contain.
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Figure 1 | Total memorization rates for both exact
and approximate memorization. No memoriza-
tion was detected for DP Gemma.

encourage further research in privacy-preserving
machine learning.

While our results are promising, a utility
gap persists between privately and non-privately
trained models. The scaling laws we present of-
fer a clear roadmap for future research aimed
at improving the performance of private models.
Future work could focus on developing more ef-
ficient algorithms, exploring novel data curation
strategies, and applying these principles to even
larger models. VaultGemma serves as a powerful
baseline and a key step towardmaking large-scale,
provably private AI a practical reality.
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