
The Ultimate
GAQL Workshop

Google Ads API Migration Workshops - 2021

Quick Introduction

In this session, our main goal will be ge�ing a be�er understanding of
building and validating queries using the Google Ads Query Language
(GAQL).

The session will be broken down into 6 pa�s, as follows:

● Pa� 0 - Previous Class review
● Pa� 1 - Ge�ing sta�ed
● Pa� 2 - Retrieving Available Fields with the GoogleAdsFieldService

● Pa� 3 - Dynamic Field Availability
● Pa� 4 - Creating Filtering Conditions
● Pa� 5 - Additional Validation
● Pa� 6 - Pu�ing it all Together

This is meant to be an interactive session in which you can follow along
with the demonstration by pe�orming each of the steps below. Please
post any questions you have to the Q&A forum, and our team will be
standing by to help you out.

Proprietary & Con�dential

Pa� 0 - Previous Class Review

Why GAQL?

This is the new query language replacing the AdWords Query Language
(AQWL). We’ve taken what we’ve learned from many years in suppo�ing
AWQL and put changes in place to be�er the developer experience. In
the Google Ads API, all data retrieval (repo�s and Gets for Ads objects or
data points like metrics) will be centralized through GAQL requests.

Structure

The syntax for GAQL is SQL-Like, but it is Not SQL. You can select data
from a number of resources (like tables), with the ability to implicitly join
against related resources, group by segmentable �elds, �lter by
a�ributes/metrics, and other functionality that we’ll cover below.

Making calls

The GoogleAdsService is used to retrieve data from the API when
provided with a GAQL query. This service can use Search (paged
responses) and SearchStream (streaming responses) methods,
depending on your use case.

The GoogleAdsFieldService is used to retrieve metadata on a resource,
or that resource’s a�ributes/segments/metrics/etc. We’ll use this later on
to understand how to put together and validate pa�s of a GAQL query.

More Information
See the Repo�ing section of our developer pages, and be sure to watch
our Session on Flexible Repo�ing.

https://developers.google.com/google-ads/api/reference/rpc/latest/GoogleAdsService
https://developers.google.com/google-ads/api/reference/rpc/latest/GoogleAdsFieldService
https://developers.google.com/google-ads/api/docs/reporting/overview

Proprietary & Con�dential

Pa� 1 - Ge�ing sta�ed

Pa� 1.0: Understanding the project

This presentation will center around 2 main goals of ge�ing:
1. A be�er, deeper understanding of the Google Ads Query Language
2. Experience with the GAQL tools available to you

Whether building a full repo�ing inte�ace, like the Interactive Query
Builder, or trying to develop the right repo�s for your pla�orm’s needs,
this session will get you be�er acquainted with how the query language
works and set you on the path to becoming a repo�ing power user.

Pa� 1.1: Preparing the tools you’ll need

This presentation will make calls to the API with cURL, walk through the UI
of the Interactive Query Builder, and use the Query Validator to
troubleshoot invalid queries.

You’ll need:
● A terminal with cURL
● An active Google Ads API developer token
● A Google Cloud Pla�orm project with the Google Ads API enabled

(You’ll need the ClientID, ClientSecret)
● A valid OAuth Refresh token

If you don’t have these handy, please review the Quicksta� section of our
developer pages. Once you have all of this information, let’s set some
environment variables for the rest of this workshop:

https://developers.google.com/google-ads/api/fields/latest/overview_query_builder
https://developers.google.com/google-ads/api/fields/latest/overview_query_builder
https://curl.se/
https://developers.google.com/google-ads/api/fields/latest/overview_query_builder
https://developers.google.com/google-ads/api/fields/v8/query_validator
https://developers.google.com/google-ads/api/docs/first-call/oauth-cloud-project
https://developers.google.com/google-ads/api/docs/first-call/overview
https://developers.google.com/google-ads/api/docs/first-call/overview

Proprietary & Con�dential

1.1.0: Set Environment Variables

API_VERSION="8" \

DEVELOPER_TOKEN="<insert>" \

CLIENT_ID="<insert>" \

CLIENT_SECRET="<insert>" \

REFRESH_TOKEN="<insert>" \

OAUTH2_ACCESS_TOKEN="" # Populated in next step

The function below creates an Access Token and assigns it to the
environment variable OAUTH2_ACCESS_TOKEN. A�er pasting this into your
terminal, you can run gen_access_token to generate a new Access Token:

1.1.1: Function to Generate an Access Token and Assign to a Variable

gen_access_token() {

OAUTH2_ACCESS_TOKEN=$(curl \

--data "grant_type=refresh_token" \

--data "client_id=${CLIENT_ID}" \

--data "client_secret=${CLIENT_SECRET}" \

--data "refresh_token=${REFRESH_TOKEN}" \

https://www.googleapis.com/oauth2/v3/token | grep '"access_token": "' | sed

's/^.*: "//' | sed 's/",//')

echo "Generated new access token: $OAUTH2_ACCESS_TOKEN"

}

Finally, the function below issues a search request against the
GoogleAdsFieldService provided a query parameter:

1.1.2: Function to Issue a GoogleAdsFieldService Search Request

gafs() {

if [$# -eq 0]; then

echo "No arguments supplied"

return

fi

QUERY=${1}

echo "Performing GoogleAdsFields search request with query: ${QUERY}"

curl -f --request POST

"https://googleads.googleapis.com/v${API_VERSION}/googleAdsFields:search" \

--header "Content-Type: application/json" \

--header "developer-token: ${DEVELOPER_TOKEN}" \

https://developers.google.com/google-ads/api/reference/rpc/latest/GoogleAdsFieldService?hl=en

Proprietary & Con�dential

--header "Authorization: Bearer ${OAUTH2_ACCESS_TOKEN}" \

--data "{ query:'${QUERY}',

page_size:9999 }"

}

Now, you can issue a SearchGoogleAdsFieldsRequest simply by running
gafs followed by a query. For example:

1.1.3: Example Command to Issue a GoogleAdsFieldService Search Request

gafs "SELECT segments, metrics WHERE name = \"campaign\""

Pa� 2 - Retrieving Available Fields with the
GoogleAdsFieldService

Pa� 2.0: Choosing your “From Resource”

The root of every GAQL query is the FROM clause, which will always be a
single resource. This is known as the “From Resource”, the resource in the
FROM clause. It de�nes all �elds allowed in the SELECT, WHERE, and
ORDER BY clauses. Let’s begin by generating a list of the available
resources that a user can select data from (or the possible values for the
FROM clause) by issuing a query against the GoogleAdsFieldService:

2.0.0: Example Command to Issue a GoogleAdsFieldService Search Request

gafs "SELECT name, metrics WHERE category = \"RESOURCE\""

You’ll notice this query looks similar to those we would use to retrieve data
from the GoogleAdsService in a SearchStream or Search request;
however there is no FROM clause. Instead, we’re selecting across all
Resources and Fields.

https://developers.google.com/google-ads/api/reference/rpc/latest/SearchGoogleAdsFieldsRequest
https://developers.google.com/google-ads/api/fields/latest/overview#list-of-all-resources
https://developers.google.com/google-ads/api/reference/rpc/latest/GoogleAdsFieldService

Proprietary & Con�dential

Pa� 2.1: Retrieving available a�ributes

The following �elds are available given a resource in the FROM clause:
● Any a�ribute of that resource (example: campaign.name is an

a�ribute of campaign)
● Any �eld listed in the resource’s “metrics” or “segments” arrays
● Any a�ribute allowed from related attributeResources

Let’s assume that we have chosen campaign as our resource in the FROM
clause. We can �nd all a�ributes of the campaign resource with the
following query because we know all of these a�ributes are pre�xed with
campaign[dot].

2.1.0: List all Campaign A�ributes

gafs "SELECT name WHERE name LIKE \"campaign.%\""

Because the metrics, segments, and attributeResources are present
on all �elds in a GoogleAdsField, we can retrieve those �elds with the
following query:

2.1.1: List all Metrics, Segments, and A�ribute Resources on the Campaign Resources

gafs "SELECT metrics, segments, attribute_resources WHERE name = \"campaign\""

You may notice that the attributeResources array contains a list of
resources rather than a�ribute �elds. As discussed in the earlier Flexible
Repo�ing session, all a�ribute �elds on an a�ribute resource can be used
in a GAQL query. In order to retrieve those �elds, you would issue the
same query as we did to retrieve the campaign resource’s a�ribute �elds,
but replace campaign with the a�ribute resource. For example:

https://developers.google.com/google-ads/api/reference/rpc/latest/GoogleAdsField

Proprietary & Con�dential

2.1.2: List all A�ributes of an A�ribute Resources (Campaign Budget)

gafs "SELECT name WHERE name LIKE \"campaign_budget.%\""

Pa� 2.2: Fields and clauses

We now have a full list of the �elds that can be used in our GAQL query.
The next step is to determine which �elds can be placed in the SELECT,
WHERE, and ORDER BY clauses. As a rule, an a�ribute can be placed in
each of the aforementioned clauses if the following �elds on the a�ribute
have a value of true:

Clause Field must be true

SELECT selectable

WHERE filterable

ORDER BY sortable

You can retrieve this metadata from the GoogleAdsFieldService. As an
example, let’s dig deeper into the metadata of one of the campaign

resource’s a�ributes, campaign.manual_cpm with the following query:

2.2.0: Get Field Metadata for campaign.manual CPM

gafs "SELECT selectable, filterable, sortable WHERE name = \"campaign.manual_cpm\""

As you can see from the results below, campaign.manual_cpm can be
placed in the SELECT and ORDER BY clauses because selectable and
sortable are true. However, it cannot be used in the WHERE clause
because filterable is false.

Proprietary & Con�dential

2.2.1: Field Metadata for campaign.manual CPM Response

{

"resourceName": "googleAdsFields/campaign.manual_cpm",

"selectable": true,

"filterable": false,

"sortable": false

}

Alternatively, you can �nd all �elds of a given type by chaining �ltering
conditions together. For example, the following query produces a list of all
campaign a�ributes that can be used in the WHERE clause:

2.2.2: List all Campaign A�ributes that can be Used in the WHERE Clause

gafs "SELECT name WHERE name LIKE \"campaign.%\" AND filterable = true"

As before, the same query would work for any a�ribute resources.

2.2.3: List all A�ribute Resource A�ributes that can be Used in the WHERE Clause

gafs "SELECT name WHERE name LIKE \"campaign_budget.%\" AND filterable = true"

We can follow a similar pa�ern for metrics and segments. However, this
would require two queries: one to retrieve all of the segments or metrics,
and one to check if the �elds meet the criteria to be used in a clause. For
example, let’s assume we want to �nd all metrics that can be used in the
ORDER BY clause when campaign is in the FROM clause. Our �rst query
will retrieve all of the metrics on the campaign resource, clean up some
forma�ing, and save the result to a variable called METRICS.

Proprietary & Con�dential

2.2.4: Get Campaign Metrics and Store as Environment Variable

METRICS=$(gafs "SELECT metrics WHERE name = \"campaign\"" | grep "metrics\." | sed

's/"/\\"/g')

Then, we can chain together �ltering conditions using the IN notation to
�nd all metrics that are sortable.

2.2.5: List all Metrics that can be Used in the ORDER BY Clause

gafs "SELECT name WHERE name IN ($METRICS) AND sortable = true"

Conversely, by changing sortable to false, you can see that there is only
one metric on the campaign resource,
metrics.interaction_event_types, that cannot be placed in the
ORDER BY clause:

2.2.6: List all Metrics that cannot be Used in the ORDER BY Clause

gafs "SELECT name WHERE name IN ($METRICS) AND sortable = false"

Proprietary & Con�dential

Pa� 3 - Dynamic Field Availability

We now have a list of all of the a�ribute �elds, a�ribute resource �elds,
metrics, and segments that can be inse�ed into each of the SELECT,
WHERE, and ORDER BY clauses given a resource in the FROM clause.
However, the �elds that you can use in a GAQL query are dynamic in that
their availability for use in a query/clause is also based on the state of the
query itself.

Step 3.0: Field Compatibility

Segments are �elds that, when added to the SELECT clause, automatically
bucket your selected metrics like a “GROUP BY” statement might in SQL.
Since segments pe�orm this special function, not every segment will work
with every metric, resource, or other segment. For this reason, we need
to pe�orm a validation step to ensure that any �eld we would like to add
to our GAQL query is compatible with every �eld that has already been
added to our query. We can use the selectable_with �eld to make this
determination. As an example, let’s get the metadata for
segments.device with the following query:

3.0.0: List Fields Selectable with segments.device

gafs "SELECT selectable_with WHERE name = \"segments.device\""

The selectableWith �eld in our results set lists all �elds that are
compatible with the given �eld, and therefore can be present in a GAQL
query at the same time.

To demonstrate this visually, let’s turn to the Google Ads Query Builder.
1. Navigate to the query builder for the campaign resource. (Note: all

resources have a query builder UI)

https://developers.google.com/google-ads/api/fields/latest/campaign_query_builder

Proprietary & Con�dential

2. Add metrics.clicks to the SELECT clause. You can �nd
metrics.clicks by either using the search bar or expanding the
Metrics container.

3. Now, expand the Segments container (you may need to clear any
search input �rst).

As you can see, several segments are grayed out and are no longer

selectable. If you hover over the badge on any of those segments,
you’ll see a message indicating that the segment is not compatible with
metrics.clicks.

Let’s take a look at the metadata for one of those �elds,

segments.conversion_attribution_event_type. If you click the icon
next to the segment name, and scroll down to the Incompatible Fields
section, you’ll see metrics.clicks listed.

Now, select add segments.ad_destination_type to the SELECT clause
of your query. Notice how
segments.conversion_value_rule_primary_dimension now shows

two errors. If you hover over the error badge, now showing the icon,
you’ll see that this segment is incompatible with both of the �elds we’ve
selected, so you would need to remove each of those �elds from the
query in order to use
segments.conversion_value_rule_primary_dimension in your query.

Pa� 3.1: Fields required in SELECT

There is one more rule that dictates whether or not a �eld can be added to
a clause in a GAQL query. Ce�ain �elds must be present in the SELECT
clause before they can be added to either the WHERE or ORDER BY
clauses.

Proprietary & Con�dential

The WHERE Clause

All segments (other than “core date segments”) and segmenting resource
a�ributes must be added to the SELECT clause before being added to the
WHERE clause. The following “core date segments” can be added to the
WHERE clause without being present in the SELECT clause:

● segments.date

● segments.week

● segments.month

● segments.quarter

● segments.year

Let’s demonstrate again with the query builder for the campaign resource:
● Clear your selections.
● Switch to the WHERE tab.
● Select any segment.
● Notice the pop-up prompts you to �rst add that segment to the

SELECT clause.
● Click Yes.
● Now, deselect that segment from the SELECT clause and notice how

it is automatically removed from the WHERE clause as well.

The ORDER BY Clause

The ORDER BY clause has similar rules, but they apply to a broader scope
of �elds. The following �elds must be present in the SELECT clause before
they can be added to the ORDER BY clause:

● Segments (other than core date segments)
● Segmenting resources
● Metrics

https://developers.google.com/google-ads/api/docs/reporting/segmentation#rules_for_segments_in_the_where_clause
https://developers.google.com/google-ads/api/docs/reporting/segmentation#segment_resources
https://developers.google.com/google-ads/api/fields/latest/campaign_query_builder

Proprietary & Con�dential

In addition, at least one �eld on an a�ribute resource �eld must be present
in the SELECT clause in order for any �eld on that a�ribute resource to be
inse�ed into the ORDER BY clause. Let’s look at an example in the
campaign query builder:

● Clear your selections.
● Switch to the ORDER BY tab.
● Select campaign_budget.amount_micros. You’ll see the same

pop-up as before. Click Yes.
● Add another �eld on the campaign_budget resource to the ORDER

BY clause (for example, campaign_budget.delivery_method).
● Notice how there is no pop-up, the new �eld is immediately added

to the ORDER BY clause.
● Remove campaign_budget.amount_micros from the SELECT

clause. Assuming that was the only �eld on campaign_budget in
your SELECT clause, you’ll notice how all of the campaign_budget

�elds have automatically been removed from the ORDER BY clause

https://developers.google.com/google-ads/api/fields/latest/campaign_query_builder

Proprietary & Con�dential

Pa� 4 - Additional Validation

We now know how to �nd all �elds that are available to be placed in a
GAQL query, determine whether or not they can be added to a given
clause, and construct �ltering conditions in the WHERE clause. Each query
you submit also undergoes a few additional steps of validation. For
example, the SELECT and FROM clauses are required, the LIMIT clause
must be a positive integer, if used, and each clause must be syntactically
correct. In addition, we brie�y covered resource-speci�c validation in the
Flexible Repo�ing session. We are going to focus on one speci�c type of
validation relating to the use of core date segments.

Pa� 4.0: Core Date Segments

If a core date segment is present in any clause of a GAQL query, the
WHERE clause must contain �ltering conditions on core date segments
that combine to form a valid, �nite date range.

Valid Date Range

A date range is valid if there is at least one date that meets all of the core
date-related �ltering conditions. For example:

● Clear any selections and add segments.date to the SELECT clause.
There is now an error message indicating that we are missing a valid,
�nite date range.

● Add the following �ltering condition to the WHERE clause:
segments.date = “2021-01-01”, and notice how there is no longer
an error message.

● Add the following �ltering condition to the WHERE clause:
segments.date DURING LAST_7_DAYS. Now, the error message has
reappeared because “2021-01-01” falls outside of the LAST_7_DAYS,

https://developers.google.com/google-ads/api/fields/latest/campaign_query_builder

Proprietary & Con�dential

and therefore, there are no dates that meet all of the �ltering
conditions.

Finite Date Range

A date range is �nite if it has a beginning and an end. In other words, the
date range must not be open-ended. For example:

● Clear any selections and add segments.date to the SELECT clause.
There is now an error message indicating that we are missing a valid,
�nite date range.

● Add the following �ltering condition to the WHERE clause:
segments.date > “2021-01-01”. This time, the error hasn’t gone
away because this is an open-ended date range.

● Add the following �ltering condition to the WHERE clause:
segments.date < “2021-02-01. Now, the error message has
disappeared because the �ltering conditions combine to form a
�nite date range.

https://developers.google.com/google-ads/api/fields/latest/campaign_query_builder

Proprietary & Con�dential

Pa� 5 - Creating Filtering Conditions

The WHERE clause is completely optional. Each �ltering condition in the
WHERE clause is composed of three pa�s:

● “Filter Field” - The �eld to be �ltered on
● “Filter Operator” - The operator used for comparison
● “Filter Value” - The value we’re using to constrain the Filter Field

The operators allowed in a given �ltering condition are dependent on the
Filter Field’s data_type, and the format of the �lter value is dependent on
the combination of the data_type and selected operator. Let’s look at
some examples in the campaign query builder:

● Clear any selections and switch to the WHERE tab.
● Select segments.date.
● Click on the Choose an operator dropdown to see the available

operators for segments.date, which has a data_type of DATE.
● Select the “=” operator, and you’ll notice a hint that says the input

must be forma�ed as “YYYY-MM-DD”.
● Switch the operator to “BETWEEN”. Now, there are two date input

�elds, both of which must be forma�ed as “YYYY-MM-DD”. When
the BETWEEN operator is used on a DATE. Enter two dates to see
how the �nal �ltering condition must be forma�ed.

● Remove the �ltering condition from your query, and click
segments.date again. This time, choose the DURING operator.

● The input for Filter Values is now a dropdown. When the DURING
operator is used, there is a predetermined set of available options
for the Filter Values.

https://developers.google.com/google-ads/api/fields/latest/campaign_query_builder

Proprietary & Con�dential

As another example, the segments.day_of_week �eld is an “Enum” type.
This would tell us that we need to look at the accompanying “enumValues”
array on the Filter Field to restrict the values allowed for �ltering:

● Clear your selections in the query builder and switch to the WHERE
tab.

● Select segments.day_of_week and click Yes when prompted.
● Click the operator dropdown, and you’ll notice a completely di�erent

set of options than we saw with segments.date, which are
applicable to ENUM data_types.

● Select the “!=” operator, and click the Filter Value dropdown. You’ll
now see enum values for segments.day_of_week, or the days of the
week. Choose a value and add the �ltering condition to the query.

● Click Add �ltering condition on segments.day_of_week to add
another �ltering condition.

● This time, choose the IN operator.
● You’ll still see the same enum values in the Filter Value dropdown,

but now you have the option to select multiple values.
● Select one or more values and add the �ltering condition to the

query.
● When IN is used as the operator, you can see that the �lter value

must be a comma separated list of those enum values wrapped in
parentheses.

Proprietary & Con�dential

Pa� 6 - Pu�ing it all Together

Now that we’ve learned all about constructing and validating GAQL
queries, let’s use the Query Validator to see if we can take what we’ve
learned to �x some invalid queries:

1. SELECT campaign.id, campaign.name, segments.slot,

segments.hour, metrics.clicks FROM campaign

○ Reason:
segments.slot is not selectable with segments.hour.

○ Valid:
SELECT campaign.id, campaign.name, segments.hour,

metrics.clicks FROM campaign

2. SELECT ad_group.id, metrics.clicks,

segments.conversion_action FROM ad_group ORDER BY

campaign.advertising_channel_type

○ Reason:
segments.conversion_action is incompatible with
metrics.clicks, and campaign.adve�ising_channel_type is used
in the ORDER BY but not in the SELECT

○ Valid:
SELECT ad_group.id, metrics.clicks,

campaign.advertising_channel_type FROM ad_group

ORDER BY campaign.advertising_channel_type

3. SELECT ad_group.id, metrics.clicks FROM ad_group WHERE

metrics.clicks != (1, 2, 3)

○ Reason:
Incorrect operator and �lter value combination in the WHERE
clause

○ Valid:
SELECT ad_group.id, metrics.clicks FROM ad_group

WHERE metrics.clicks NOT IN (1, 2, 3)

https://developers.google.com/google-ads/api/fields/latest/query_validator

Proprietary & Con�dential

Conclusion

Hopefully you found this informative, and you’re leaving with a be�er
understanding of GAQL than you sta�ed with. Please keep in mind that
when you’re writing repo�s against the API, much of the complexity
outlined in this presentation can be boiled down to a more digestible
format by using the Interactive Query Builder directly.

https://developers.google.com/google-ads/api/fields/v8/campaign_query_builder

