

F L A R E - O N C H A L L E N G E 9 S O L U T I O N

B Y B L A I N E S T A N C I L L (@ M A L W A R E M E C H A N I C)

Challenge 2: PixelPoker

CHALLENGE 2: PIXELPOKER | FLARE-ON 9

MANDIANT PROPRIETARY AND CONFIDENTIAL 2

Challenge Prompt
I said you wouldn't win that last one. I lied. The last challenge was basically a captcha. Now the real work begins. Shall
we play another game?

7-zip password: flare

Solution
PixelPoker.exe is a 32-bit executable game designed to challenge the user to click a specific pixel (no biggie, there’s
only 741x641 possible pixels). Executing the program displays a window with an image reminiscent of television static
(Figure 1). Moving the cursor around the window updates the (X, Y) coordinates located in the window’s title bar.
Clicking within the window increments the click counter in the title bar and once 10 clicks have been reached, all
further clicks generate a popup message indicating the game is over (Figure 2).

Figure 1: Initial window for PixelPoker.exe

CHALLENGE 2: PIXELPOKER | FLARE-ON 9

MANDIANT PROPRIETARY AND CONFIDENTIAL 3

Figure 2: Failure message after 10 clicks

Opening PixelPoker.exe in a dissembler of choice and navigating to WinMain (0x4016F0) shows a short function with
the following overview:

• Load a resource image (0x40170C)

• Call a function to register a window class (sub_401120)

• Call a function to create an instance of the above window class (sub_401040)

• Enter window message dispatch loop

PixelPoker.exe loads a resource bitmap image named 129 and uses the image to define the window’s dimensions and
paint the window. Browsing the executable’s resources using a tool such as Resource Hacker reveals two tv-static
Bitmap resource images named 129 and 133. Resource 133 is left as an exercise to the user.

The window’s dimensions are set in the function sub_401040 based on the two global variables dword_413280 and
dword_413284 (Figure 3). At runtime these variables contain the values 741 and 641 respectively (i.e., the width and
height of the loaded image). Let’s rename them to g_img_width and g_img_height to make future code snippets
easier to understand.

.text:00401092 loc_401092:

.text:00401092 mov eax, dword_413280 ; g_img_width (741)

.text:00401097 mov [ebp+Rect.right], eax ; window width

.text:0040109A mov eax, dword_413284 ; g_img_height (641)

.text:0040109F push 1

.text:004010A1 mov [ebp+Rect.bottom], eax ; window height

.text:004010A4 lea eax, [ebp+Rect]

.text:004010A7 push 0CF0000h

.text:004010AC push eax

.text:004010AD mov [ebp+Rect.left], 0

.text:004010B4 mov [ebp+Rect.top], 0

.text:004010BB call ds:AdjustWindowRect

Figure 3: Setting window dimensions

CHALLENGE 2: PIXELPOKER | FLARE-ON 9

MANDIANT PROPRIETARY AND CONFIDENTIAL 4

When dealing with GUI windows the most important aspect to inspect is how the window class is defined and
registered, see the documentation below:

• https://docs.microsoft.com/en-us/windows/win32/learnwin32/creating-a-window

Specifically, we’re interested in the window procedure of the window class as this function is responsible for handling
the window messages sent to our GUI window (e.g., WM_COMMAND, WM_LBUTTONDOWN, WM_DESTROY, etc…).
Inspecting the function sub_401120 where the window class is defined, we see the window procedure value is
populated with a pointer to the function sub_4012C0 (Figure 4).

.text:0040113A mov [ebp+var_30.lpfnWndProc], offset sub_4012C0

Figure 4: Window procedure pointer

At first glance the function sub_4012C0 looks a bit intimidating, but after some careful inspection we see it’s a large
switch statement that handles different window messages sent to our window. The window message we’re
interested in is WM_LBUTTONDOWN that corresponds to a left-button mouse click when we click a pixel.

The window procedure function follows a standard function prototype outlined below (Figure 5).

LRESULT CALLBACK WndProc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam)

Figure 5: Window procedure prototype

Following the dataflow of the msg variable and looking at the multiple comparisons, the comparison for
WM_LBUTTONDOWN occurs at 0x40141C. Following the target of the conditional jump takes us to location
loc_401436 (Figure 6) where the mouse click is processed.

.text:004012DE mov eax, [ebp+Msg]

.text:004012E1 add esp, 0Ch

.text:004012E4 cmp eax, 111h
 [...SNIP...]
.text:0040140D mov ecx, eax
.text:0040140F sub ecx, 200h ; WM_MOUSEMOVE
.text:00401415 jz loc_40157B
.text:0040141B dec ecx ; WM_LBUTTONDOWN
.text:0040141C jz short loc_401436 ; Clicks take this jump

Figure 6: Left-click window message comparison

Starting at location loc_401436, the lParam variable is used to derive the X and Y coordinates of the clicked pixel. To
further understand this, consult the documentation below and Figure 7:

• https://docs.microsoft.com/en-us/windows/win32/inputdev/wm-lbuttondown

.text:00401436 loc_401436:

.text:00401436 mov eax, [ebp+lParam]

.text:00401439 movsx edi, ax ; edi = clicked X coordinate

CHALLENGE 2: PIXELPOKER | FLARE-ON 9

MANDIANT PROPRIETARY AND CONFIDENTIAL 5

.text:0040143C shr eax, 10h

.text:0040143F push ebx

.text:00401440 movsx ebx, ax ; ebx = clicked Y coordinate

Figure 7: Deriving X and Y coordinates from lParam

Following the above snippet is a series of comparisons. The first comparison at 0x40144B checks if we have reached
the click limit of 10 clicks and displays a message box when met. The next two comparisons at 0x401486 and
0x40149D compare calculated coordinates to the clicked (X, Y) coordinates derived from the lParam value – these
must represent the pixel’s coordinates we need to click! The calculations for this pixel are displayed in Figure 8.

.text:0040146F inc eax

.text:00401470 xor edx, edx

.text:00401472 mov g_click_counter, eax

.text:00401477 mov eax, dword_412004

.text:0040147C mov esi, g_img_width ; g_img_width = 741

.text:00401482 div esi ; edx = dword_412004 % g_img_width

.text:00401484 cmp edi, edx ; edi = clicked X coordinate

.text:00401486 jnz loc_401556

.text:0040148C mov eax, dword_412008

.text:00401491 xor edx, edx

.text:00401493 mov ecx, g_img_height ; g_img_height = 641

.text:00401499 div ecx ; edx = dword_412008 % g_img_height

.text:0040149B cmp ebx, edx ; ebx = clicked Y coordinate

.text:0040149D jnz loc_40154E

Figure 8: Comparing calculated and clicked coordinates

Based on Figure 8 the clicked (X, Y) coordinates are being compared to coordinates calculated using the modulo of
the image’s width and height, and the global variables dword_412004 and dword_412008. The values of the global
variables are shown below in Figure 9.

.data:00412004 dword_412004 dd 52414C46h ; 'RALF'

.data:00412008 dword_412008 dd 6E4F2D45h ; 'nO-E'

Figure 9: Hidden correct coordinates

Performing the modulo in Figure 8 yields the calculated (X, Y) coordinates of (95, 313) as shown below in Figure 10.
Let’s click this pixel!

>>> 0x52414C46 % 741
95
>>> 0x6E4F2D45 % 641
313

Figure 10: Computing the correct coordinates

Clicking pixel (95, 313) reveals the winning flag below as seen in Figure 11. Hope you enjoyed this challenge!

• w1nN3r_W!NneR_cHick3n_d1nNer@flare-on.com

CHALLENGE 2: PIXELPOKER | FLARE-ON 9

MANDIANT PROPRIETARY AND CONFIDENTIAL 6

Figure 11: Win screen with flag

CHALLENGE 2: PIXELPOKER | FLARE-ON 9

©2021 Mandiant, Inc. All rights reserved. Mandiant is a registered trademark of Mandiant, Inc. All other brands,
products, or service names are or may be trademarks or service marks of their respective owners.

