MANDIANT

now parT of Google Cloud

FLARE-ON CHALLENGE 9 SOLUTION
BY TINA JOHNSON (@0XTININJA)

Challenge 3: Magic 8 Ball

CHALLENGE 3: MAGIC 8 BALL | FLARE-ON 9

Challenge Prompt

You got a question? Ask the 8 ball!

7-zip password: flare

Solution

The challenge archive contains one executable (Magic8Ball.exe) and multiple library files. The assets folder contains
a PNG file and multiple font files probably used by the Magic8Ball.exe program. While there are multiple files included
in the challenge archive, it is clear that Magic8Ball.exe is the file of interest.

Game Overview

7| Magic 8 Ball o & |
Press arrow kKeys 1o shake the ball

Start typing your gquestion {max. 75 characters):

Figure 1- Starting window of Magic8Ball.exe

On executing Magic8Ball.exe, a window opens as seenin Figure 1. The game instructs the user to “shake” the ball
using the arrow keys. There’s also a text telling the user to type in their question. Inferring from the name of the game

CHALLENGE 3: MAGIC 8 BALL | FLARE-ON 9

and the instructions on the window, it is understood that the game is trying to mimic a Magic 8 ball toy. Either
entering a question or shaking the ball or both provides the user with a prediction such as shownin Figure 2.

| Magic 8 Ball (o] @ |[=]
Press arrow kKeys 1o shake the ball

Better not
tell you
now

Start typing your guestien {max. 75 characters):

Figure 2 - Magic 8 Ball answers the user

Let's explore the binary to retrieve the flag. First step is to do basic static analysis. On looking at the output of strings
command, we see few interesting strings that might quide our analysis:

CHALLENGE 3: MAGIC 8 BALL | FLARE-ON 9

{196 matches found... - C:\Users\user\Desktop\magic8ball_09_13_2022\Magic&Ball.exe =] =]
Find | Find Al | savess | MinSize[s | savemn [Offsets & raw ¢ va |
|

File: Magic8Ball.exe -
MDS: 3a3a725751674aalda3649767ed63509 M
Size: 205952

L=scii Strings:

0000004D !This program cannot be run in DOS mode.

00003018 Unknown exception

00003044 bad array new length

0000305C string too long

0000308D decidedly

00003020 Without a

000030BB definitely

000030E1 2&s I see

000030F4 Most likely

00003118 Signs point

00003130 Reply hazy,

0000313D try again

00003148 2sk again

0000315C Better not

00003168 tell you

00003150 Concentrate

000031B0 Don't count

000031c4 My reply is

000031D8 My sources

000031F0 Cutlook not

00003210 doubtful

0000321Cc assets/OpenSans regular.ttf

00003238 assets/ball paint.png

00003250 assets/NotoSans Regular.ttf

0000326C Press arrow keys to shake the ball

00003250 Start typing your question (max. 75 characters): -

Figure 3 - Interesting Strings

We find some strings that are in fact the predictions provided to the user by the Magic 8 ball and we can confirm this
by jumping to the file offsets of any of these strings. On looking at cross references to these strings(starting at
0x404270), we land at sub_4012B0. Since this function seem to do nothing more than initialize strings, we move on to
find the cross references to the function and we land in sub_4027A0. We see multiple functions called within this
function. You could choose to explore these functions one by one to understand the functionalities of the executable
but a more efficient way would be looking at interesting imports of this PE file and jumping to functions that call
them especially since we know some of the executable’s functionalities (creates a window, accepts keyboard user
input, etc). Looking at the Imports subview in IDA(Figure 4) we see a couple of interesting imports such as
SDL_CreateWindow, SDL_PollEvent, SDL_StartTextInput. On searching for these function names, we see
documentation that confirms that these are SDL2 library functions that can create windows, poll for events, and
accept user text input events.

CHALLENGE 3: MAGIC 8 BALL | FLARE-ON 9

Address

&

0000000000404018
000000000040401C
0000000000404030
000000000040403C
000000000040402C
0000000000404020
0000000000404038
0000000000404044
00000000004040E4
00000000004040E8
0000000000404024
0000000000404028
0000000000404010
0000000000404040
0000000000404014
00000000004040C0
00000000004040BC
00000000004040D0
0000000000404090
00000000004040A4
00000000004040A8
00000000004040CC
00000000004040D4
00000000004040D8
0000000000404094
00000000004040A0
00000000004040C4
0000000000404098
00000000004040B4
00000000004040B0
00000000004040AC
000000000040408C
00000000004040B8
00000000004040DC
00000000004040C8
000000000040405C
0000000000404088
0000000000404034
0000000000404080

£) I I I I))) M M) L1 I L) L) L) L L I I I I I I R) ML L L L) LY L L

&

Name

GetCurrentProcessid
GetCurrentThreadld
GetModuleHandleW
GetProcessHeap
GetStartupInfow
GetSystemTimeAsFileTime
HeapAlloc

HeapFree

IMG_Init

IMG_Load
InitializeSListHead
IsDebuggerPresent
IsProcessorFeaturePresen
LocalFree
QueryPerformanceCounter
SDL_CreateRenderer
SDL_CreateTextureFromSurface
SDL_CreateWindow
SDL_Delay
SDL_DestroyRenderer
SDL_DestroyTexture
SDL_DestroyWindow
SDL_FreeSurface
SDL_GetError

7,

DL_Quit

DL_RenderClear
DL_RenderCopy
DL_RenderPresent
DL_SetMainReady
_SetRenderDrawColor
DL__>h wSimpleMessageBox
rtTextinput

N

O

n

o

L Y Y BV RV RV P BV B V)

Q

[r—
- u‘)
) m

e
onv_string
DL strlen

(Y
Q
,_
ﬁ

n
O
(o
ol
78

)
-

Library

KERNEL3
KERNEL32
SDL2_image
SDL2_image
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
SDL2

Q0000
e L e T
N NN

O
e

Q00000 0
e e e e e e
NN

P Y RV R B P RV BV R Py (.(,j’) L I B IV B BV B P RV B V)
o

-
-
> NN

Figure 4 - Imports

Looking at the cross references to SDL_CreateWindow, we land in sub_402090. This function seems to do a variety
of actions such as render texts on window, load the ball.png from assets folder, starts accepting for user text input
and most importantly, initialize a structure whose address is contained in the edi register(see Figure 5).

CHALLENGE 3: MAGIC 8 BALL | FLARE-ON 9

Fset unk_40426C
_4018F0

5
offset unk 40426C

. text:004021A1 dword

Figure 5 - Structure Initialization

Interestingly, the stack string stored to [edi + 0x5C] at 0x4021A1spells “gimme flag pls?”. This string seems to be of
importance and at this point, we could manually create a structure in the Structures subview that corresponds to the
structure that is initialized. Let's move on to cross references to SDL_PollEvent to see where the user input is being
received. We land in sub_401E50 and we see what looks like multiple switch cases. Depending on the results of the
poll event, various flags are set or unset (value set to 1 or 0). We can conclude that this function is responsible for
listening to various keyboard events and setting various flags according to keys pressed by the user. We name this
function get_keyb_events accordingly. It would be wise to look at the function called after this function to
understand how the user input is used by this binary. We see that sub_4024EQ is that function. It is also important to
note that the pointer to the structure that was initialized earlier is also seen passed to this function via the ecx
register. On analyzing this function, we see a lot of if-else branches that are checking a string for characters such'L’,
‘R’,'U’,'D"in a specific sequence as showing in Figure 6.

CHALLENGE 3: MAGIC 8 BALL | FLARE-ON 9

Figure 6 - if-else branches

Thinking back to the game, the user could shake the ball using arrow keys. Could L', 'R’, ‘'U’, ‘D’ stand for left, right, up
and down arrow keys? We note down the sequence and it is “LLURULDUL". We follow the if-else branches to reach a
strncmp function call. The strncmp function call compares the string at structure offset 0x5C to another string at
offset OxF8 of the structure. We know that the string at structure offset Ox5C is “gimme flag pls?”. What is the string
at structure offset 0xF8? We backtrack this structure variable and find that it referenced in get_keyb_events(). We
can assume that this is possibly a keyboard user input. You can easily confirm this by popping the binary in your
favorite debugger and giving user input to the Magic 8 ball game. The string at structure offset OxF8 is the question
text the user asks Magic 8 ball. We see that if the comparison succeeds, two other functions are executed. Before we
dive into those functions, this would be a good point to assess the information you have. We know that user’s
question is compared with a specific string. We also observed a specific sequence of letters that looked like a
sequence of key presses of arrow keys. In the game window, let us try entering “gimme flag pls?” as the question and
shaking the ball in the order “LLURULDUL". Voila! You have cracked this challenge and found the flag. The flag is:

CHALLENGE 3: MAGIC 8 BALL | FLARE-ON 9

U cRackeD_thl$ maGlcBalLL !! @flare-on.com

It is a good exercise to understand how exactly the flag was hidden in the binary. Let’s look at the functions that were
executed when the strncmp comparison succeeds. On analyzing sub_401A10, few hexadecimal values are observed
at the start of the function as seenin Figure 7.

Figure 7 - Hexadecimal values of interest

Looking further down in the function, we see two separate loops that iterates 256 (0x100) times. This is indicative of
RC4 algorithm (refer to RC4 key scheduling algorithm). We can confirm our intuition by running CAPA tool on this

CHALLENGE 3: MAGIC 8 BALL | FLARE-ON 9

binary. As showing in Figure 8, CAPA confirms that sub_401A10 is performing RC4 decryption of the hex values we
noted earlier.

data-manipulation/encryption/rc4
moritz.raabe@mandiant.com

function

Defense Evasion::Obfuscated Files or Information [T1027]
Cryptography: :Encrypt Data::RC4 [C8027.009], Cryptography

cryption Key::RC4 KSA [C0028.002]

subscope:
and: = initialize S
characteristic:
or:
number:
or:
match:
and:
mnemonic: @ ©x401B91
or:
number: @ ©x401B91
and:
mnemonic: x401BB9
or:
number: @ ©x401BB9
and:
mnemonic: x401B3D
or:
number: @ ©x401B3D
or: = modulo key length
mnemonic: @ ox401B14

@ ©x401B3D, ©x401B91, ©x401BB9

Figure 8 - CAPA output

What is the key used for decryption? Either through static or dynamic analysis, it can be observed that the key is the
ball movement sequence “LLURULDUL".

CHALLENGE 3: MAGIC 8 BALL | FLARE-ON 9

©2021Mandiant, Inc. All rights reserved. Mandiant is a registered trademark of Mandiant, Inc. All other brands, M A N D I A N TK

products, or service names are or may be trademarks or service marks of their respective owners.
now parT of Google Cloud

