

F L A R E - O N C H A L L E N G E 9 S O L U T I O N

B Y T I N A J O H N S O N (@ 0 X T I N I N J A)

Challenge 3: Magic 8 Ball

CHALLENGE 3: MAGIC 8 BALL | FLARE-ON 9

MANDIANT PROPRIETARY AND CONFIDENTIAL 2

Challenge Prompt
You got a question? Ask the 8 ball!

7-zip password: flare

Solution
The challenge archive contains one executable (Magic8Ball.exe) and multiple library files. The assets folder contains
a PNG file and multiple font files probably used by the Magic8Ball.exe program. While there are multiple files included
in the challenge archive, it is clear that Magic8Ball.exe is the file of interest.

Game Overview

Figure 1 - Starting window of Magic8Ball.exe

On executing Magic8Ball.exe, a window opens as seen in Figure 1. The game instructs the user to “shake” the ball
using the arrow keys. There’s also a text telling the user to type in their question. Inferring from the name of the game

CHALLENGE 3: MAGIC 8 BALL | FLARE-ON 9

MANDIANT PROPRIETARY AND CONFIDENTIAL 3

and the instructions on the window, it is understood that the game is trying to mimic a Magic 8 ball toy. Either
entering a question or shaking the ball or both provides the user with a prediction such as shown in Figure 2.

Figure 2 - Magic 8 Ball answers the user

Let’s explore the binary to retrieve the flag. First step is to do basic static analysis. On looking at the output of strings
command, we see few interesting strings that might guide our analysis:

CHALLENGE 3: MAGIC 8 BALL | FLARE-ON 9

MANDIANT PROPRIETARY AND CONFIDENTIAL 4

Figure 3 - Interesting Strings

We find some strings that are in fact the predictions provided to the user by the Magic 8 ball and we can confirm this
by jumping to the file offsets of any of these strings. On looking at cross references to these strings (starting at
0x404270), we land at sub_4012B0. Since this function seem to do nothing more than initialize strings, we move on to
find the cross references to the function and we land in sub_4027A0. We see multiple functions called within this
function. You could choose to explore these functions one by one to understand the functionalities of the executable
but a more efficient way would be looking at interesting imports of this PE file and jumping to functions that call
them especially since we know some of the executable’s functionalities (creates a window, accepts keyboard user
input, etc). Looking at the Imports subview in IDA (Figure 4) we see a couple of interesting imports such as
SDL_CreateWindow, SDL_PollEvent, SDL_StartTextInput. On searching for these function names, we see
documentation that confirms that these are SDL2 library functions that can create windows, poll for events, and
accept user text input events.

CHALLENGE 3: MAGIC 8 BALL | FLARE-ON 9

MANDIANT PROPRIETARY AND CONFIDENTIAL 5

Figure 4 - Imports

Looking at the cross references to SDL_CreateWindow, we land in sub_402090. This function seems to do a variety
of actions such as render texts on window, load the ball.png from assets folder, starts accepting for user text input
and most importantly, initialize a structure whose address is contained in the edi register (see Figure 5).

CHALLENGE 3: MAGIC 8 BALL | FLARE-ON 9

MANDIANT PROPRIETARY AND CONFIDENTIAL 6

Figure 5 - Structure Initialization

Interestingly, the stack string stored to [edi + 0x5C] at 0x4021A1 spells “gimme flag pls?”. This string seems to be of
importance and at this point, we could manually create a structure in the Structures subview that corresponds to the
structure that is initialized. Let’s move on to cross references to SDL_PollEvent to see where the user input is being
received. We land in sub_401E50 and we see what looks like multiple switch cases. Depending on the results of the
poll event, various flags are set or unset (value set to 1 or 0). We can conclude that this function is responsible for
listening to various keyboard events and setting various flags according to keys pressed by the user. We name this
function get_keyb_events accordingly. It would be wise to look at the function called after this function to
understand how the user input is used by this binary. We see that sub_4024E0 is that function. It is also important to
note that the pointer to the structure that was initialized earlier is also seen passed to this function via the ecx
register. On analyzing this function, we see a lot of if-else branches that are checking a string for characters such ‘L’,
‘R’, ‘U’, ‘D’ in a specific sequence as showing in Figure 6.

CHALLENGE 3: MAGIC 8 BALL | FLARE-ON 9

MANDIANT PROPRIETARY AND CONFIDENTIAL 7

Figure 6 - if-else branches

Thinking back to the game, the user could shake the ball using arrow keys. Could ‘L’, ‘R’, ‘U’, ‘D’ stand for left, right, up
and down arrow keys? We note down the sequence and it is “LLURULDUL”. We follow the if-else branches to reach a
strncmp function call. The strncmp function call compares the string at structure offset 0x5C to another string at
offset 0xF8 of the structure. We know that the string at structure offset 0x5C is “gimme flag pls?”. What is the string
at structure offset 0xF8? We backtrack this structure variable and find that it referenced in get_keyb_events(). We
can assume that this is possibly a keyboard user input. You can easily confirm this by popping the binary in your
favorite debugger and giving user input to the Magic 8 ball game. The string at structure offset 0xF8 is the question
text the user asks Magic 8 ball. We see that if the comparison succeeds, two other functions are executed. Before we
dive into those functions, this would be a good point to assess the information you have. We know that user’s
question is compared with a specific string. We also observed a specific sequence of letters that looked like a
sequence of key presses of arrow keys. In the game window, let us try entering “gimme flag pls?” as the question and
shaking the ball in the order “LLURULDUL”. Voila! You have cracked this challenge and found the flag. The flag is:

CHALLENGE 3: MAGIC 8 BALL | FLARE-ON 9

MANDIANT PROPRIETARY AND CONFIDENTIAL 8

U_cRackeD_th1$_maG1cBaLL_!!_@flare-on.com

It is a good exercise to understand how exactly the flag was hidden in the binary. Let’s look at the functions that were
executed when the strncmp comparison succeeds. On analyzing sub_401A10, few hexadecimal values are observed
at the start of the function as seen in Figure 7.

Figure 7 - Hexadecimal values of interest

Looking further down in the function, we see two separate loops that iterates 256 (0x100) times. This is indicative of
RC4 algorithm (refer to RC4 key scheduling algorithm). We can confirm our intuition by running CAPA tool on this

CHALLENGE 3: MAGIC 8 BALL | FLARE-ON 9

MANDIANT PROPRIETARY AND CONFIDENTIAL 9

binary. As showing in Figure 8, CAPA confirms that sub_401A10 is performing RC4 decryption of the hex values we
noted earlier.

Figure 8 - CAPA output

What is the key used for decryption? Either through static or dynamic analysis, it can be observed that the key is the
ball movement sequence “LLURULDUL”.

CHALLENGE 3: MAGIC 8 BALL | FLARE-ON 9

©2021 Mandiant, Inc. All rights reserved. Mandiant is a registered trademark of Mandiant, Inc. All other brands,
products, or service names are or may be trademarks or service marks of their respective owners.

