

F L A R E - O N C H A L L E N G E 9 S O L U T I O N

B Y M I C H A E L B A I L E Y (@ M Y K I L L)

Challenge 4: darn_mice

CHALLENGE 4: DARN_MICE | FLARE-ON 9

MANDIANT PROPRIETARY AND CONFIDENTIAL 2

Challenge Prompt
"If it crashes its user error."

 -Flare Team

7-zip password: flare

Solution
The file darn_mice.exe is a console executable that terminates silently unless one command-line argument is
provided. If an argument is provided, the program terminates abnormally, as shown in Figure 1.

Figure 1: darn_mice.exe command-line behavior

Basic Static Analysis

There are several interesting string, as shown in Listing 1.

On your plate, you see four olives.
No, nevermind.
You leave the room, and a mouse EATS one!
Nibble...
When you return, you only: %s
salty
SHA512
BCryptOpenAlgorithmProvider failed, %08x
BCryptDeriveKeyPBKDF2 failed, %08x

Listing 1: Interesting strings

CHALLENGE 4: DARN_MICE | FLARE-ON 9

MANDIANT PROPRIETARY AND CONFIDENTIAL 3

The imported functions are mostly typical of C runtime code, but three functions stand out:

DLL Function

bcrypt.dll BCryptOpenAlgorithmProvider

bcrypt.dll BCryptDeriveKeyPBKDF2

KERNEL32.dll VirtualAlloc

Table 1: Imports of interest

Advanced Static Analysis

Function main checks if the argument count in argc is 2, and if so, it passes the lone command-line argument to
sub_401000. At the beginning of sub_401000, the program moves 35 values into a byte array starting at var_28,
followed by a null. The beginning of this sequence is shown in Figure 2.

Figure 2: Array of byte values in sub_401000

CHALLENGE 4: DARN_MICE | FLARE-ON 9

MANDIANT PROPRIETARY AND CONFIDENTIAL 4

The push instruction at 0x4010B5 loads the string "On your plate, you see four olives.\n", which was seen in the output
in Figure 1. Based on this, sub_401240 can be renamed as printf, and ignored.

If the string length of the command-line argument is zero or is greater than 35, then the program prints:

No, nevermind.

Otherwise, the program prints:

You leave the room, and a mouse EATS one!

The program then enters a loop, iterating up to 35 times, iterating through the bytes of the command-line argument
and the byte array in tandem. In the loop body, the program takes 3 steps:

1. Allocates a read/write/execute buffer (0x40113b);

2. Writes a single byte to the first element of the buffer, computed from the sum of the current byte from the
command-line argument and the corresponding element in the byte array (0x40115a); and

3. Calls the buffer (0x401164).

This is shown in Figure 3.

Figure 3: Loop body

This accounts for the crash that occurs when the program is executed with arbitrary command-line arguments (for
details, see

CHALLENGE 4: DARN_MICE | FLARE-ON 9

MANDIANT PROPRIETARY AND CONFIDENTIAL 5

Appendix A: Crash Analysis).

If control flow does resume after the call into the buffer, then the program prints a message to the console:

Nibble...

After the loop exits, the malware uses the bcrypt library to perform PBKDF2 key derivation and uses RC4 to then
decrypt unidentified bytes that are subsequently printed to the console. Presumably, this is the flag.

The problem appears to be a matter of delivering control flow back to the end of the loop body to continue iterating
through the loop.

Because the command-line argument only affords control of the first byte of each buffer, it is easiest to consider
common single-byte instructions that would return control to the location after the call. The instruction that fits best
is the single-byte near return (RETN) instruction with opcode 0xC3, since its purpose is to pop the saved return
address off the stack and return control flow to the instruction after the call.

To test whether the RETN instruction can be used across the board requires computing all the corresponding
character values that would sum with each byte array value to equal 0xC3; if these candidate input values are all
printable character values, then they can be provided on the command line and might constitute a password that can
be used to access the flag.

To collect the byte values in the sequence starting at 0x401025 in IDA Pro, it is reasonably convenient to display
opcode bytes (Options à General… , Number of opcode bytes). The disassembly lines can be selected and filtered
through awk (code: {print $5}) or otherwise parsed. Figure 4 shows an example of how to compute and print the
argument characters that satisfy the criterion of producing RETN instructions for each iteration of the loop body.

Figure 4: Computing character values from the difference of 0xC3 and each byte array value

This produces the result:

see three, C3 C3 C3 C3 C3 C3 C3! XD

To test this on the command line with darn_mice.exe, it is necessary to surround the argument in quotes to preserve
the text as a single argument (due to the space characters). If this is provided as the sole argument to the program,
the "Nibble..." messages are printed on the console and the “riddle” is solved (when you return, you only C3). Figure 5
shows that the flag is:

i_w0uld_l1k3_to_RETurn_this_joke@flare-on.com

CHALLENGE 4: DARN_MICE | FLARE-ON 9

MANDIANT PROPRIETARY AND CONFIDENTIAL 6

Figure 5: Solution

CHALLENGE 4: DARN_MICE | FLARE-ON 9

MANDIANT PROPRIETARY AND CONFIDENTIAL 7

Appendix A: Crash Analysis

in the example from Figure 1, where the argument "asdf" was provided, the sum of 0x50 (from the byte array) and 0x61
(the byte value of the ASCII letter 'a' from the command-line argument). This results in the buffer containing an invalid
instruction sequence that precipitates an access violation, as shown in Listing 2.

0:000> u 0x9b0000
009b0000 b100 mov cl,0
009b0002 0000 add byte ptr [eax],al
009b0004 0000 add byte ptr [eax],al
009b0006 0000 add byte ptr [eax],al

Listing 2: Disassembly of example buffer with argument "asdf"

In this example, the first instruction is valid and violates no rules, but the second and following instructions
dereference the eax register, which contains a small value within the printable ASCII range due to its being populated
from the command-line argument. The ensuing access to the null page causes an access violation exception.

CHALLENGE 4: DARN_MICE | FLARE-ON 9

©2021 Mandiant, Inc. All rights reserved. Mandiant is a registered trademark of Mandiant, Inc. All other brands,
products, or service names are or may be trademarks or service marks of their respective owners.

