

F L A R E - O N C H A L L E N G E 9 S O L U T I O N

B Y M O R I T Z R A A B E (@ M _ R _ T Z)

Challenge 5: T8

CHALLENGE 5: T8 | FLARE-ON 9

MANDIANT PROPRIETARY AND CONFIDENTIAL 2

Challenge Prompt
FLARE FACT #823: Studies show that C++ Reversers have fewer friends on average than normal people do. That's
why you're here, reversing this, instead of with them, because they don't exist.

We’ve found an unknown executable on one of our hosts.

The file has been there for a while, but our networking logs only show suspicious traffic on one day.

Can you tell us what happened?

7-zip password: flare

Solution
This challenge tests your ability to reverse engineer a small program written in C++. The challenge consists of an
executable and a packet capture file. Overall, this sample requires you to reverse engineer C++ objects and functions,
overcome some anti-analysis techniques, and understand networking, encryption and encoding.

This writeup focuses on the key components and does not describe every functionality in detail. The main analysis
tools we use are IDA Pro, capa, FLOSS, and CyberChef – all run within FLARE VM.

Basic Analysis
Looking at the program’s strings we notice mangled function names like .?AV?$ctype@_W@std@@ that indicate C++
code. Besides this no useful strings seem to stand out. Running FLOSS, we get two potentially interesting strings.
One of them being flare-on.com.

To get a first idea of the file, we run capa. capa skips about 1,000 runtime and library functions (53% of all identified
functions) in this binary. The capa results are shown in Figure 1.

+--+--+
| CAPABILITY | NAMESPACE |
|--+--|
get geographical location	collection
initialize WinHTTP library	communication/http
prepare HTTP request	communication/http/client
receive HTTP response	communication/http/client
encode data using Base64 (2 matches)	data-manipulation/encoding/base64
reference Base64 string	data-manipulation/encoding/base64
encode data using XOR	data-manipulation/encoding/xor
encrypt data using RC4 KSA	data-manipulation/encryption/rc4
encrypt data using RC4 PRGA	data-manipulation/encryption/rc4
hash data with MD5	data-manipulation/hashing/md5
contain a resource (.rsrc) section	executable/pe/section/rsrc
print debug messages (2 matches)	host-interaction/log/debug/write-event
allocate RWX memory	host-interaction/process/inject
+--+--+

Figure 1: capa results for the challenge binary

capa identifies various interesting program capabilities – including communication, encoding, and encryption.
Before we investigate these in the disassembled file, we start the program and observe its run-time activities. For
my execution I did not get any useful results from dynamic analysis tools such as FakeNet-NG or Process Monitor.

In the packet capture file, we notice two HTTP POST requests and responses. The HTTP data appears to be Base64
encoded, however decoding it does not result in any useful data.

CHALLENGE 5: T8 | FLARE-ON 9

MANDIANT PROPRIETARY AND CONFIDENTIAL 3

Advanced Analysis
We pop open IDA Pro to investigate how the data is encoded. To find the interesting code sequences we use one of
the verbose capa output modes (-v or -vv) or the capa explorer IDAPython plugin.

capa identifies two functions related to Base64 encoding. The one at 0x4014C0 contains the standard Base64
characters ABC… and is the Base64 encoding function. This function is called once in the program, namely in the
function starting at address 0x403C20. This function is only referenced once from the .rdata section. A few lines
above we see IDA Pro’s helpful annotation that indicates the start of a virtual function table. To understand where
and how the function is used, we’ll have to do a little more work.

Dealing with virtual function calls

We first trace back to where the virtual function table (vftable) is used and end up in the constructor of the
CClientSock class (the second function referencing the vftable is the destructor [it contains various calls to free]).

The program calls the constructor once. Just before this, it allocates 0x4C (76) bytes of memory using the new
operator. Based on the known size and the referenced offsets in the constructor we create and apply a struct
definition like shown in Figure 2.

Figure 2: Excerpt of CClientSock fields in the constructor

At the vftable offset 0x44B918 we see twelve function pointers and create the according struct as shown in Figure 3.
To ease later navigation, we add the respective function offsets as repeatable comments (IDA shortcut ;
[semicolon]).

CHALLENGE 5: T8 | FLARE-ON 9

MANDIANT PROPRIETARY AND CONFIDENTIAL 4

Figure 3: CClientSock vftable struct

Figure 4 shows the CClientSock constructor call and subsequent code. Applying the structures like shown here, we
can now follow the virtual function calls.

Figure 4: CClientSock constructor call and subsequent code

CHALLENGE 5: T8 | FLARE-ON 9

MANDIANT PROPRIETARY AND CONFIDENTIAL 5

The called function located at 0x403770 sets a wide character string in the object. The string is XOR decoded with
the byte 0x45 just before the virtual function call. The decoded string is POST. A little further above, FLOSS identified
the flare-on.com string. Tracking its usage, we see that this host string gets passed to a function called briefly
before the CClientSock constructor. Annoyingly, we often must recover string functions in C++ binaries and this
sample is no exception.

Recognizing string functions

Frequently, we can recognize string functions based on the referenced offsets and called subfunctions. The relevant
offsets for wide character strings can be deduced from the structure definition shown below. Offset 0 stores the
string data (for strings up to 7 characters long) or a pointer to the string on the heap. Offset 4 stores the string
size/length and offset 8 stores the reserved capacity of a string.

struct std::wstring
{
 wchar_t chars_or_pheap[8];
 int size;
 int reserved;
};

With the offsets in mind, we recover the assign and constructor functions as shown in Figure 5.

Figure 5: std::wstring::assign and std::wstring::wstring calls before CCLientSock constructor call

CHALLENGE 5: T8 | FLARE-ON 9

MANDIANT PROPRIETARY AND CONFIDENTIAL 6

The wide string (UTF-16LE encoded) flare-on.com is passed into the CClientSock constructor and assigned to offset
0x14.

Identifying core functionality

The main routine references various global offsets. Tracing back to the offset references leads us to a function that
calls GetLocalTime as well as srand and rand. This function is called as part of the program initialization – it executes
before the main function. It looks like this creates a global object.

Using static analysis or with the help of a debugger we see that in the main function the string FO9 and a randomly
created number are concatenated. The resulting string is passed to another virtual function call that calculates the
MD5 hash (easy to see via the capa hit) and assigns it to a CClientSock field at offset 0x2C.

Further following the virtual function calls we identify usage of the WinHTTP API in the function at 0x403D70. We skip
over the details here, but the program constructs a User-Agent string containing the random number, connects to
the configured host (at offset 0x14, flare-on.com), RC4 encrypts and Base64 encodes the input data and sends it in an
HTTP POST request. The program then receives HTTP data back and stores it into the CClientSock object at offset
0x44.

In the function at 0x4043F0 the program Base64 and RC4 decrypts the received data. The RC4 decryption uses the
previously configured MD5 hash (offset 0x2C) as a password. In the provided PCAP file the first HTTP request
contains the number 11950 in the User-Agent string. The concatenated string FO911950 (UTF-16LE encoded) results in
the MD5 hash a5c6993299429aa7b900211d4a279848.

We extract the data from the first HTTP response in the PCAP and decode it using CyberChef as shown in Figure 6.

Figure 6: Decoding the data of the first HTTP response

After decoding the received data, the program uses the wcstok_s function to identify tokens separated by comma (,)
character – note the UTF16-LE encoding (\x2c\x00). Here, this results in fourteen 16-byte tokens as shown in Figure 7.

CHALLENGE 5: T8 | FLARE-ON 9

MANDIANT PROPRIETARY AND CONFIDENTIAL 7

Figure 7: Decoded data split on UTF16-LE encoded comma character

Each 16-byte token is passed to the function at 0x404570 in a loop. The function uses a few unusual instructions (at
least in a malware analysis context) and several hard-coded constants to calculate a value1. To avoid understanding
the calculations in detail, we can use the debugger to calculate the results. Alternatively, we can reimplemented the
function. Reimplementing is easier to do from the decompilation output shown in Figure 8.

1 Bonus points if you can identify what value this algorithm computes.

CHALLENGE 5: T8 | FLARE-ON 9

MANDIANT PROPRIETARY AND CONFIDENTIAL 8

Figure 8: Decompiled function that calculates a value

Each calculated value is passed to the function at 0x4041E0 which converts it to a character. We can again leverage
the debugger or reimplement this function from the disassembly or decompilation.

The decoded raw bytes, intermediate values, and resulting characters are shown in Figure 9.

Raw bytes -> value -> character
e5 07 09 00 03 00 0f 00 0d 00 25 00 03 00 62 02 -> 9 -> i
dc 07 0a 00 06 00 0d 00 0d 00 25 00 09 00 2a 03 -> 28 -> _
e1 07 0c 00 04 00 07 00 0d 00 25 00 24 00 e5 00 -> 19 -> s
e0 07 05 00 05 00 06 00 0d 00 25 00 0b 00 26 00 -> 29 -> 3
e2 07 0a 00 01 00 08 00 0d 00 25 00 1f 00 45 03 -> 29 -> 3
e6 07 03 00 02 00 01 00 0d 00 25 00 32 00 da 00 -> 28 -> _
de 07 07 00 02 00 16 00 0d 00 25 00 36 00 d1 02 -> 25 -> y
de 07 05 00 03 00 0e 00 0d 00 25 00 01 00 e8 00 -> 15 -> o
da 07 04 00 01 00 05 00 0d 00 25 00 3a 00 0b 00 -> 21 -> u
dd 07 0a 00 04 00 03 00 0d 00 25 00 16 00 16 03 -> 28 -> _
de 07 01 00 02 00 0e 00 0d 00 25 00 10 00 c9 00 -> 13 -> m
dc 07 0c 00 01 00 0a 00 0d 00 25 00 30 00 0c 02 -> 27 -> 0
e6 07 02 00 01 00 1c 00 0d 00 25 00 22 00 4b 01 -> 27 -> 0
e6 07 09 00 05 00 09 00 0d 00 25 00 21 00 6d 01 -> 14 -> n

Figure 9: Decoded bytes, intermediate value, and resulting characters

Together the characters form the string i_s33_you_m00n. The main function concatenates this string with the @
character and the configured host flare-on.com. This results in the challenge flag:

i_s33_you_m00n@flare-on.com

CHALLENGE 5: T8 | FLARE-ON 9

MANDIANT PROPRIETARY AND CONFIDENTIAL 9

For extra bonus points check out the following program functionality and decode the remaining network traffic. If
you have any questions on this challenge or would like to learn more, please contact the challenge author directly, for
example on Twitter.

CHALLENGE 5: T8 | FLARE-ON 9

©2021 Mandiant, Inc. All rights reserved. Mandiant is a registered trademark of Mandiant, Inc. All other brands,
products, or service names are or may be trademarks or service marks of their respective owners.

