MANDIANT

now parT of Google Cloud

FLARE-ON CHALLENGE 9 SOLUTION
BY MORITZ RAABE (@M_R_T2Z)

Challenge 5: T8

CHALLENGES5: T8

Challenge Prompt

FLARE FACT #823: Studies show that C++ Reversers have fewer friends on average than normal people do. That's
why you're here, reversing this, instead of with them, because they don't exist.

We've found an unknown executable on one of our hosts.
The file has been there for a while, but our networking logs only show suspicious traffic on one day.
Can you tell us what happened?

7-zip password: flare

Solution

This challenge tests your ability to reverse engineer a small program written in C++. The challenge consists of an
executable and a packet capture file. Overall, this sample requires you to reverse engineer C++ objects and functions,
overcome some anti-analysis techniques, and understand networking, encryption and encoding.

This writeup focuses on the key components and does not describe every functionality in detail. The main analysis
tools we use are IDA Pro, capa, FLOSS, and CyberChef - all run within ELARE VM.

Basic Analysis

Looking at the program’s strings we notice mangled function names like .?AV?Sctype@_W@std@@ that indicate C++
code. Besides this no useful strings seem to stand out. Running FLOSS, we get two potentially interesting strings.
One of them being flare-on.com.

To get afirst idea of the file, we run capa. capa skips about 1,000 runtime and library functions (53% of all identified
functions)in this binary. The capa results are shown in Figure 1.

B m o e e e e
| CAPABILITY
| __
get geographical location
initialize WinHTTP library
prepare HTTP request
receive HTTP response

m e +
| NAMESPACE |
D LT T TP PP PP,
	collection
	communication/http
	communication/http/client
	communication/http/client
encode data using Base64 (2 matches)	data-manipulation/encoding/base64
reference Base64 string	data-manipulation/encoding/base64
encode data using XOR	data-manipulation/encoding/xor
encrypt data using RC4 KSA	data-manipulation/encryption/rc4
	data-manipulation/encryption/rc4
	data-manipulation/hashing/md5
	executable/pe/section/rsrc
	host-interaction/log/debug/write-event
	host-interaction/process/inject
m e +

encrypt data using RC4 PRGA
hash data with MD5
contain a resource (.rsrc) section
print debug messages (2 matches)
allocate RWX memory
B m o e o e e

Figure 1: capa results for the challenge binary

capaidentifies various interesting program capabilities - including communication, encoding, and encryption.
Before we investigate these in the disassembled file, we start the program and observe its run-time activities. For
my execution | did not get any useful results from dynamic analysis tools such as FakeNet-NG or Process Monitor.

In the packet capture file, we notice two HTTP POST requests and responses. The HTTP data appears to be Base64
encoded, however decoding it does not result in any useful data.

CHALLENGE 5: T8 | FLARE-ON 9

Advanced Analysis

We pop open IDA Pro to investigate how the data is encoded. To find the interesting code sequences we use one of
the verbose capa output modes(-v or -vv) or the capa explorer IDAPython plugin.

capaidentifies two functions related to Base64 encoding. The one at 0x4014C0 contains the standard Baseb64
characters ABC... and is the Base64 encoding function. This function is called once in the program, namely in the
function starting at address 0x403C20. This function is only referenced once from the .rdata section. A few lines
above we see IDA Pro’s helpful annotation that indicates the start of a virtual function table. To understand where
and how the function is used, we'll have to do a little more work.

Dealing with virtual function calls

We first trace back to where the virtual function table (vftable)is used and end up in the constructor of the
CClientSock class (the second function referencing the vftable is the destructor [it contains various calls to free]).

The program calls the constructor once. Just before this, it allocates 0x4C (76) bytes of memory using the new
operator. Based on the known size and the referenced offsets in the constructor we create and apply a struct
definition like shown in Figure 2.

D+Val

x, [esi+CClientSock.field 14]

esi+CClientSock.field E], ea:
esi+CClientSock.field 12],

1,
si+CClientSock.field 3C], eaz
~d ptr [esi+ 1,

Figure 2: Excerpt of CClientSock fields in the constructor

At the vftable offset 0x44B918 we see twelve function pointers and create the according struct as shown in Figure 3.
To ease later navigation, we add the respective function offsets as repeatable comments (IDA shortcut ;
[semicolon]).

CHALLENGE 5: T8 | FLARE-ON 9

field 20
field 24
field 28
field 2C
CClientSock

4035F0
4093770
4037A0
4093C20
403CE®
40936D0

4093860
4093D70
404200
4043F0
4093910
4095530

Figure 3: CClientSock vftable struct

Figure 4 shows the CClientSock constructor call and subsequent code. Applying the structures like shown here, we

can now follow the virtual function calls.

CClientSock ctor

ds:word_44B8A8
ptr [ebp
~d ptr

ord ptr

ptvar_1s6], a
ds:byte_44B8AA
p+var_16], al
P r ‘W])

1],
[edi+CClientSock.vftable]

Figure 4: CClientSock constructor call and subsequent code

CHALLENGE 5: T8 | FLARE-ON 9

The called function located at 0x403770 sets a wide character string in the object. The string is XOR decoded with
the byte Ox45 just before the virtual function call. The decoded string is POST. A little further above, FLOSS identified
the flare-on.com string. Tracking its usage, we see that this host string gets passed to a function called briefly
before the CClientSock constructor. Annoyingly, we often must recover string functions in C++ binaries and this
sample is no exception.

Recognizing string functions

Frequently, we can recognize string functions based on the referenced offsets and called subfunctions. The relevant
offsets for wide character strings can be deduced from the structure definition shown below. Offset 0 stores the
string data(for strings up to 7 characters long) or a pointer to the string on the heap. Offset 4 stores the string
size/length and offset 8 stores the reserved capacity of a string.

struct std::wstring

{
wchar_t chars_or_pheap[8];
int size;
int reserved;

};

With the offsets in mind, we recover the assign and constructor functions as shown in Figure 5.

m]

; string_length
; string_in
[ebp+wstring_flare_on]

,,‘) —
std wstring assi

n
nt

g
1
.

[-T>*+ ar "])

operator new(uint)

)

; Src
__wstring__ ctor

Figure 5: std::wstring::assign and std::wstring::wstring calls before CCLientSock constructor call

CHALLENGE 5: T8 | FLARE-ON 9

The wide string (UTF-16LE encoded) flare-on.com is passed into the CClientSock constructor and assigned to offset
Ox14.

Identifying core functionality

The main routine references various global offsets. Tracing back to the offset references leads us to a function that
calls GetLocalTime as well as srand and rand. This function is called as part of the program initialization - it executes
before the main function. It looks like this creates a global object.

Using static analysis or with the help of a debugger we see that in the main function the string FO9 and a randomly
created number are concatenated. The resulting string is passed to another virtual function call that calculates the
MD5 hash (easy to see via the capa hit) and assigns it to a CClientSock field at offset 0x2C.

Further following the virtual function calls we identify usage of the WinHTTP APl in the function at 0x403D70. We skip
over the details here, but the program constructs a User-Agent string containing the random number, connects to
the configured host (at offset Ox14, flare-on.com), RC4 encrypts and Base64 encodes the input data and sends it in an
HTTP POST request. The program then receives HTTP data back and stores it into the CClientSock object at offset
Ox44.

In the function at 0x4043F0 the program Base64 and RC4 decrypts the received data. The RC4 decryption uses the
previously configured MD5 hash (offset 0x2C) as a password. In the provided PCAP file the first HTTP request
contains the number 11950 in the User-Agent string. The concatenated string FO911950 (UTF-16LE encoded) results in
the MD5 hash a5c6993299429aa7b900211d4a279848.

We extract the data from the first HTTP response in the PCAP and decode it using CyberChef as shown in Figure 6.

Recipe ama Input AL‘V E"i + Oz § =

54645164425261316e784755303664624232374537535137544a322b6364377a73744¢585251

From Hex 34c626d68326e5476446d317035496654214375304a7853686b3674485142525777506¢6F397:
I 413164495366736C6b4c674744733431574b313269625749666C714c45345971334F5049456e
None 4e6a775648726a4¢3255344¢75336d732b485163346e664d57585067634148623466686F6b6!

39332f414a643547547543357a2b3459736d675268315a393879696e4c424b422b666d475579

1675436676f6e2f4b486d4a6476414151386e416e6c384b2f3058472b387a5951625a5277675¢
RC4 36744876767066796e3941584379756374352f634169384b5767414¢76564851576166727038
1422f4a74542b74357a6d6e657a516C70337a504¢34736a32434a666355544b35636F70625a4
794865785644346a4a4e2b4c657a4a45747244585031444a4e673d3d

S ee5532094292a7b90021144279848 UTFI6LE =
Bacetd P

To Hexdump
16 E] Upper case hex D Include final length

Output

00000000 e5 ©7 09 00 03 00 of 00 od 80 25 60 03 00 62 02
00000018 2c 00 dc 87 G2 00 06 00 od €0 ed 00 25 @0 89 ee
00000020 2a 03 2c 00 el 97 Oc 00 04 60 07 00 Od 80 25 €0
00000030 24 00 e5 00 2c 90 e0 ©7 OS5 00 O5 00 06 00 ed 0
00000040 25 00 ©Ob 00 26 00 2c 00 e2 07 Pa 00 01 00 88 @0
00000050 ©d 00 25 00 1f 00 45 03 2c 80 e6 07 03 00 82 00
00000060 01 00 ©d 60 25 00 32 00 da 00 2c 00 de 87 87 @0
00000070 ©2 00 16 80 @d 00 25 00 36 80 dl 82 2c 00 de @7
00000080 ©5 00 03 00 Ge 00 ©d 0@ 25 00 O1 00 e8 80 2c @0
00000090 da ©7 ©4 00 01 00 ©5 00 ©d 80 25 60 3a 00 8b @0
0000RRad 2c 00 dd ©7 Ga 00 ©4 20 ©3 00 od 00 25 00 16 00
000000b0 16 03 2c 00 de ©7 @1 00 02 00 Pe 00 Od 00 25 @0
0000BBCe 10 00 C9 80 2c 00 dc 07 ©c 00 o1 00 Pa @0 od eo
000000d0 25 00 30 00 Oc 02 2c 00 e6 07 02 00 01 00 1c @0
000000e® ©d 00 25 90 22 00 4b @1 2c 9@ e6 ©7 09 00 05 00
AARAAAFA A0 AR Ad AA 25 AA 21 AA Ad A1 % t.m|

Figure 6: Decoding the data of the first HTTP response

After decoding the received data, the program uses the wcstok_s function to identify tokens separated by comma(,)
character - note the UTF16-LE encoding (\x2c\x00). Here, this results in fourteen 16-byte tokens as shown in Figure 7.

CHALLENGE 5: T8 | FLARE-ON 9

) - length: 672 —
Recipe om 3 Input e G + O3 § =
© g 546451644252613166784755303664624232374537535137544a322b6364377a73744¢5852516

i & 4c626d68326e5476446d3170354066542F4375304a7853686b3674485142525777506C6307a4

- 3164495366736c6b4c674744733431574b313260625749666¢714c45345071334F 5040456044

elimiter

None 63775648726a43255344¢75336d732b485163346e664d5758506763448623466686f6b6b393
24142643547547543357a2b3459736d675268315a303079696e4c424b422b666d47557961675
36676f62f4b48604a6476414F5138604166¢384b23058472b387a505162535277675936744

RC4 © 11 76767066796e394584379756374352F634F60384b5767414C7656485157616672703871422F4
74542b74357a6d6e657a516C70337a504¢ 34736a32434a666355544b35636F706252437948657

Passphrase - 5644346a4a4e2bA4C657a4a45747244585031444a4e673d3d

a5c6993299429aa7b900211d4a279848

Input format Output format

Base64 Latinl

Find / Replace ©mn

e EXTENDED (\N, \T, \X...) ¥

\x2c\x0d ONAT. \X...)

time: 2ms
Replace Output length: 1091 [F|:| M| 2
lines: 14

00000000 o5 07 00 00 03 00 6f 00 Od 00 25 60 03 08 62 02
00000010 dc 07 Ga @0 86 00 @d 00 od 8@ 25 68 09 68 2a 03
00000020 el @7 Oc 00 04 90 @7 00 od 00 25 00 24 00 e5 00
00000030 e 07 05 00 05 00 06 00 od 00 25 60 Ob 68 26 00
[Dot matches all 00000040 e2 07 Ga @0 01 00 08 @0 ed 8@ 25 @8 1f 00 45 03
00000050 o6 07 03 00 62 90 @1 00 od 09 25 00 32 0 da 00
00000060 de 07 07 00 062 00 16 00 od 00 25 68 36 60 di 02

Global match] Case insensitive Multiline matching

Q
To Hexdump O 11 go0eee70 de 67 05 00 @3 00 @ @0 0d 0@ 25 00 ©1 00 e 00
80000030 da ©7 @4 @0 @1 @8 @5 @@ od 60 25 80 3a 60 6b 60

Width)
e [J Upper case hex [Jinclude final length ~ @@@e0e90 dd @7 ea 00 64 @@ 03 00 ed 60 25 00 16 €0 16 03

000000a@ de 07 @1 00 ©2 00 Qe @@ Od 00 25 00 10 00 c9 00
000000b@ dc 97 @c 00 01 00 @a @@ od 00 25 00 30 @0 ec 2
000000cO e6 07 92 00 01 00 1c @@ od 00 25 00 22 00 4b 01
000000d@ e6 07 @2 00 ©5 00 @9 0@ od 00 25 00 21 @0 6d o1

Figure 7: Decoded data split on UTF16-LE encoded comma character

Each 16-byte token is passed to the function at 0x404570 in a loop. The function uses a few unusual instructions (at

least in a malware analysis context)and several hard-coded constants to calculate a value'. To avoid understanding

the calculations in detail, we can use the debugger to calculate the results. Alternatively, we can reimplemented the
function. Reimplementing is easier to do from the decompilation output shown in Figure 8.

1 Bonus points if you can identify what value this algorithm computes.

CHALLENGE 5: T8 | FLARE-ON 9

xmm@_4
[esp+2Ch] [ebp+14h]

HIWORD(al);
(unsigned __int16)al - 1;
HIWORD(a1) > 2u)

/3 = (unsigned __intl6)al;
v2 + 12;
v2 > 2)

= HIWORD(al);
= (float)((float)((double)(int)(v3 / 100 / 4
+ HIWORD(a2)
+ (int)((double)(v3 + 4716) *
- (int)((double)(int)(v4 + 1)
- v3 / 100
+ 2)

29.53;
)

= floor(v7);
(int)roundf((float)(v7 - v5) * 29.53);

>

Figure 8: Decompiled function that calculates a value

Each calculated value is passed to the function at 0x4041EQ which converts it to a character. We can again leverage
the debugger or reimplement this function from the disassembly or decompilation.

The decoded raw bytes, intermediate values, and resulting characters are shown in Figure 9.

Raw bytes -> value -> character
e5 07 09 00 03 00 of 00 ©0d 00 25 00 03 00 62 02 -> 9 -> i

dc ©7 9a 00 06 00 0d 00 ©d 00 25 00 09 00 2a 03 -> 28 ->
el ©07 Oc 00 04 00 07 00 Od 00 25 00 24 00 e5 00 -> 19 ->
€0 07 05 00 ©5 00 06 00 ©d 00 25 00 ©b 00 26 00 -> 29 ->
e2 07 Oa 00 01 00 08 00 @d 00 25 00 1f 00 45 03 -> 29 ->
e6 07 03 00 02 00 01 00 ©d 00 25 00 32 00 da 00 -> 28 ->
de ©7 07 00 02 00 16 00 @d 00 25 00 36 00 dl 02 -> 25 ->
de ©7 ©5 00 03 00 Qe 00 Od 00 25 00 01 00 e8 00 -> 15 ->
da ©7 04 00 01 00 05 00 Od 00 25 00 3a 00 b 00 -> 21 ->
dd ©7 ©a 00 04 00 03 00 Od 00 25 00 16 00 16 03 -> 28 ->
de ©7 01 00 02 00 Qe 00 ©d 00 25 00 10 00 c9 00 -> 13 ->
dc ©7 Oc 00 01 00 Qa 00 ©d 00 25 00 30 00 oc 02 -> 27 ->
e6 07 02 00 01 00 1c 00 @d 00 25 00 22 00 4b 01 -> 27 ->
e6 07 09 00 ©5 00 09 00 od 00 25 00 21 00 6d 01 -> 14 ->

wwuwunl

c ox|

S0 0 =I

Figure 9: Decoded bytes, intermediate value, and resulting characters

Together the characters form the string i_s33_you_mQ00n. The main function concatenates this string with the @
character and the configured host flare-on.com. This results in the challenge flag:

i s33 you m@en@flare-on.com

CHALLENGES5: T8

For extra bonus points check out the following program functionality and decode the remaining network traffic. If

you have any questions on this challenge or would like to learn more, please contact the challenge author directly, for
example on Twitter.

CHALLENGE 5: T8 | FLARE-ON 9

©2021Mandiant, Inc. All rights reserved. Mandiant is a registered trademark of Mandiant, Inc. All other brands, M A N D I A N TG

products, or service names are or may be trademarks or service marks of their respective owners.
now parT of Google Cloud

