
Flare-On 10 Challenge 1: X
By Nick Harbour (@nickharbour)

Overview
The X challenge is distributed as a package of many binaries. The challenge prompt instructed you to focus
on the �le X.exe, the primary game binary. All other binaries are present as framework requirements for this
MonoGame program. This game was tested on Windows, but it will likely run and operate successfully on
many forms of Linux and MacOS.

When you run the �le X.exe you are presented with the following game screen.

Figure 1: X Game screen

The game only has 5 interactive bu�ons. A pair of up and down bu�ons to change the numeric values for the
two digits of the code, and a lock bu�on. The idea of this challenge is to enter the correct unlock code and
press the lock bu�on to “unlock” the gadget. There is a serious security �aw here, in that two digits is very
easy to brute force. Flare-On Challenge #1’s are usually there to help us determine howmany people are
actually playing the game. In this respect, it is like a glori�ed captcha.

Page 1 of 3



Solution 1: Brute Force
If you keep adjusting the two digits up from 00 towards 99 and hit the lock bu�on each time, you will
eventually hit 42. When 42 is set as the code the X will turn Green instead of Red and a pop-up window
displaying the �nal Flag will appear, as shown below in Figure 2.

Figure 2: Victory Screen

Page 2 of 3



Solution 2: Strings
Due to MonoGame’s construction, most of the implementation of the game and its strings are contained in
the �le X.dll instead of X.exe itself. If you examine the strings of this �le you will see a valid email address in
the @flare-on.com domain: glorified_captcha@flare-on.com

You can automatically search for �are-on.com strings from the command line with the following command:
strings *.* | grep flare-on.com

Solution 3: Reverse Engineering The Program
If you simply must do things the hard way, you can reverse engineer the program by loading X.exe into
dotPeek. Browse X->X->monogame1->Game1 to view a full decompilation of the X game source code.
The most relevant function to examine is the callback function for the click action on the lock bu�on. This
function is intuitively named _lockButton_Click() and is shown below in Figure 3.

Figure 3: dotPeek Decompilation of _lockBu�on_Click()

The logic of this function is that it takes the two individual digit values and creates a single number from
them. The le�most digit is multiplied by 10 and added to the right digit. So if you entered ‘7’ and ‘5’ as the
digits, this would produce the integer value 75, for example. It then checks if this combined value is 42. If it is
42, then it displays a MessageBox which displays the �ag. If it is not 42, then it sets the background state to
Failure, which results in the X turning red.

Page 3 of 3


