
Flare-On 10 Challenge 12: HVM
By Dhanesh Kizhakkinan (@dhanesh_k)

Initial analysis
Given file is a Windows x64 executable. Loading into IDA provides clean disassembly and decompilation.
Skimming through the decompiled code, one can quickly find the usage of Windows Hypervisor Platform API
(https://learn.microsoft.com/en-us/virtualization/api/hypervisor-platform/hypervisor-platform) from
WinHVPlatform.dll. This gives us a hint that the challenge uses Hyper-V for unknown functionality.
Further reading the code and referring to API documentation, all the while renaming the variables and adding
missing types, we can see that the Hyper-V platform APIs are used to create a VM and run a piece of
shellcode (small OS). The shellcode itself is stored as a resource entry. We can use tools like CFF explorer to
dump the shellcode and try to disassemble/decompile. There are 2 inputs from command line arguments to
the binary and are passed to the VM by copying them to the mapped shellcode.

Figure 1: Dumping shellcode

Is it 16 bit/32 bit/64 bit?
Once we try to load the shellcode to IDA, the question whether this a 16/32/64 shellcode pops up. Modern
Intel based processors still start in 16-bit mode and require setting flags in control registers to move to 32 and
64-bit mode. So, for our initial disassembly, we start with 16-bits. Disassembling at the start provides us with

Page 1 of 9

https://learn.microsoft.com/en-us/virtualization/api/hypervisor-platform/hypervisor-platform

a small set of instructions, setting the stack pointer and loading GDT and setting the protected mode flag in
CR0.

Figure 2: 16-bit startup code

IDA is confused by the last jmp. The 0xEA points to a segment:offset(8:18) style far jmp. So, the jump sets CS
as 8 and EIP as 0x18. Now, the instructions at 0x18 are 32-bit and we can either open the file again as 32-bit or
create a new segment starting from 0x18 as a 32-bit segment.

Figure 3: 32-bit code

32-bit code does more operations to move to 64-bit and we see another jump (wrongly calculated again by
IDA). The real jump is once again segment:offset which sets CS as 8 and RIP as 0xCF2. We need to reload the
shellcode as 64-bit to further analyze the shellcode.

Figure 4: 64-bit code

The 64-bit code is fairly simple. It sets RAX to 0xDEADBEEFDEADBEEF and calls a function at 0xBB2.

Page 2 of 9

Figure 5: Encrypted code

Function at 0xBB2 starts with few valid instructions but soon the disassembly fails. One peculiar instruction
stands out – the IN instruction. IN/OUT instructions are used for IO port access and are special for
hypervisors as it causes VM exits. If we look back at the decompilation of HVM.EXE, we can see special
handlers for the IO port access.

Page 3 of 9

Figure 6: IO port VM exit handler

From the decompiled code, we see that the IO port access handler retrieves current RIP, R8 and R9 registers
and passes them as arguments along with shellcode to an RC4 implementation. Further reading the RC4
implementation, we can deduce that the shellcode is decrypted with the key in R8 and shellcode length in R9
register. Looking at the length we can guess that it is not for the whole shellcode but only a small part – likely
a function. We can also re-verify this dynamically by putting a breakpoint at the RC4 decryption routine and
analyzing the resulting shellcode changes.

Another thing we see is the if..else condition which checks for IO port AccessInfo. The IO instructions
can read from the port or write to the port. We see that the if..else condition handles the RC4 invocation
differently based on whether the instruction is for read operation or a write operation. Further looking at the
shellcode and debugging, we can see that after decrypting and running the decrypted shellcode, the OUT
instruction re-encrypts the function. This blocks us from dumping the completely decrypted shellcode at the
end of execution frommemory.

There are multiple ways to decrypt the whole shellcode – either write a script to disassemble, find the IN/OUT
instructions and decrypt or let the challenge run and dump decrypted shellcode at the IN instruction to a
separate file. The second one requires fewer lines of code and likely can be achieved by writing a debugger
script.

After dumping the decrypted shellcode, we have a much better looking program to analyze.

Page 4 of 9

Figure 7: Decrypted function

Looking at function 0xBB2, we see a call to function 0xB3F with 2 specific parameters. Further analyzing
0xB3F and child functions, we see that 0xFE00 and 0xFC00 are supposed to be pointers to strings. Looking
at the static shellcode, those locations are NULL. Looking at the shellcode while executing from HVM.EXE, we
can see the two memory locations contain the data from the command line arguments. We can name those
variables as name and serial.

Figure 8: Check function

Looking at the function, it calls two more functions. One of them checks the validity of the name and the
other checks the validity of the serial.

The CheckName function xors two hard coded strings and compares the result to the name variable and
returns the count of characters which are the same. This resulting count is compared to 0x24 (36 in decimal)
to be a valid name. We can xor the strings and get the expected name.

Page 5 of 9

Figure 9: xoring the strings

We get the name: FLARE2023FLARE2023FLARE2023FLARE2023

Now onto the CheckSerial function. This function calls two different functions. The first one is a Base64
decode implementation. This can be deduced by either analyzing/debugging the code or looking at the
lookup table which is used (0x40, 0x40…) in the code. The other cryptographic function is much more
involved and needs proper analysis.

Page 6 of 9

Figure 10: CheckSerial function

The decryption function creates a keystream using salsa20 algorithm with the first DWORD of name as the
key. The serial (base64 decoded) is split into QWORDs. Two QWORDs and keystream passed to another
function, DecryptBlock.

Figure 11: Decryption function

The next function is a series of xors in a Feistel-network-like loop (https://en.wikipedia.org/wiki/Feistel_cipher).

Page 7 of 9

Figure 12: Block decryption

Overall, the whole algorithm can be summarized as
1. Create a key stream using salsa20 with the first DWORD of the name as the key.
2. Split the base64 decoded serial into QWORDs and decrypt two QWORDs (16-byte block length) at a

time.
3. Decryption is an 8 round xor sequence (7 to 0 loop) with the keystream.

To reverse this algorithm, we need to reverse the loop (0 to 7) and swap data1 and data2. The rest of the
keystream generation remains the same.
Once all the validations are completed, the serial is used in an xor loop to calculate the final flag.

Final algorithm:
import base64
import struct

def u32(b):
return struct.unpack("<I", b)[0]

def u64(b):
return struct.unpack("<Q", b)[0]

def p32(x):
return struct.pack("<I", x)

def p64(x):
return struct.pack("<Q", x)

def xor(a,b):
return bytes([i^j for i,j in zip(a,b)])

def salsa20_step(state):
x = state[:]
def ROTL(a,b):

return ((a << b) | (a >> (32 - b))) & 0xFFFFFFFF
def QR(a,b,c,d):

x[b] ^= ROTL((x[a] + x[d]) & 0xFFFFFFFF, 7)
Page 8 of 9

x[c] ^= ROTL((x[b] + x[a]) & 0xFFFFFFFF, 9)
x[d] ^= ROTL((x[c] + x[b]) & 0xFFFFFFFF,13)
x[a] ^= ROTL((x[d] + x[c]) & 0xFFFFFFFF,18)

for i in range(10):
QR(0, 4, 8, 12)
QR(5, 9, 13, 1)
QR(10, 14, 2, 6)
QR(15, 3, 7, 11)
QR(0, 1, 2, 3)
QR(5, 6, 7, 4)
QR(10, 11, 8, 9)
QR(15, 12, 13, 14)

out = b''
for i in range(16):

out += p32((state[i] + x[i]) & 0xFFFFFFFF)
return out

name = b'FLARE2023FLARE2023FLARE2023FLARE2023\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'

salsa20_state = [u32(name[:4])]*16
keystream = salsa20_step(salsa20_state)
keystream = [u64(keystream[i:i+8]) for i in range(0, len(keystream), 8)]
data = [u64(name[i:i+8]) for i in range(0, len(name), 8)]

'''
inverse of
for j in range(7, -1, -1):

tmp = data[i]
data[i] ^= data[i+1]^keystream[j]
data[i+1] = tmp

'''
for i in range(0, len(data), 2):

for j in range(8):
tmp = data[i+1]
data[i+1] ^= data[i]^keystream[j]
data[i] = tmp

data = base64.b64encode(b''.join(p64(i) for i in data))
final_xor = b'\x19v7/=\x1d&?{\x069X\x12#%k*\x07<8\x18h\x16\x1c0\t4#\x08[!$6aj&j\x0fD]\x06'

print("Name:", name.decode("ascii"))
print("Serial:", data.decode("ascii"))
print("Flag:", xor(data, final_xor)[:len(final_xor)].decode('ascii') + '@flare-on.com')

Flag:

Name: FLARE2023FLARE2023FLARE2023FLARE2023

Serial: zBYpTBUWJvf9MUH4KtcYv7sdUVUPcjOCiU5G5i63bb+LLBZsAmEk9YlNMplv5SiN

Flag: c4n_i_sh1p_a_vm_as_an_exe_ask1ng_4_a_frnd@flare-on.com

Page 9 of 9

