
Flare-On 10 Challenge 13: y0da
By Mark Lechtik (@_marklech_)

Overview
y0da.exe revolves around an obfuscation technique applied on x64 shellcode. In fact, it’s based on a
real-world malware dubbed JUMPLUMP where this obfuscation was used. JUMPLUMP comes in the form of a
trojanized DLL that gets infected by another malicious component named CORELUMP. The latter takes a
pre-defined piece of shellcode, breaks it down into smaller pieces and incorporates them into one of several
benign DLLs in the %SYSTEM% directory.
The premise of this obfuscation is that the smaller chunks of shellcode are chained together by unconditional
jumps and end up being scattered across the .text section. Since they are also intertwined with other
instructions from the original DLL, the disassembly of the shellcode gets broken, and its flow becomes hard
to track.

Tools
There may be more than one way to solve this challenge, and therefore a variety of tools could be leveraged
depending on the solution method. Nonetheless, here are the ones that I used:

● IDA Disassembler & Hexrays Decompiler for x64: our main task would be to clean up the
disassembly of y0da.exe, thereby producing readable decompiled code.

● IDAPython: to clean up the disassembly we’ll need to use some IDA based automation.
● Time Travel Debugging (TTD) &WinDbg: while not mandatory for solving the challenge, I find that

the TTD provided capabilities are often useful in dealing with complex binaries. It occurs to me that it
isn’t being used widely by malware REs, which is why I think it warrants a basic introduction that you
can find here. A more thorough walkthrough of it by Christophe Alladoum can be found here. Also, I
would recommend Yarden Shafir’s two part blog post on WinDbg’s debugger data model that is full of
interesting use cases and demos of how to harness some of its power (can be found here and here)
TTD is facilitated by several components shipped with Windows 10 installations, one of which is
tttracer.exe, typically found in the %SYSTEM% directory. This component allows capturing a trace of
execution that can then be replayed in WinDbg. To do so, you can simply run tttracer.exe specifying
the target executable to trace as an argument.
The resulting .run file is the trace that can then be opened in WinDbg, allowing us to step through
code forwards and backwards, query the debugger data model for useful run-time information and
introduce JavaScript based automation to glean more insights from the recorded session.

● FLOSS v2.0: as you’ll see, the challenge is sprinkled with stack-based strings and several encoded
ones. I find FLOSS helpful in quickly resolving those and allowing me to navigate through them while
seeing the addresses of the functions in which they were found.

● CAPA: being able to understand which common algorithms are found in code can help getting a
better sense of an analyzed sample’s inner workings. CAPA makes it especially useful in this binary, in

Page 1 of 41

https://www.microsoft.com/en-us/security/blog/2022/07/27/untangling-knotweed-european-private-sector-offensive-actor-using-0-day-exploits/
https://blogs.windows.com/windowsdeveloper/2017/09/27/time-travel-debugging-now-available-windbg-preview/
https://www.elastic.co/security-labs/deep-dive-into-the-ttd-ecosystem
https://medium.com/@yardenshafir2/windbg-the-fun-way-part-1-2e4978791f9b
https://medium.com/@yardenshafir2/windbg-the-fun-way-part-2-7a904cba5435
https://github.com/mandiant/flare-floss
https://github.com/mandiant/capa

the face of obfuscation that makes it challenging to sift through code and manually find artifacts of
known algorithms.

● Windows 10 based FLARE VM: older versions of Windows (e.g., Windows 7 x64) can also be used, but
in the interest of using TTD, I used Windows 10. Any other common analysis tools are provided with
the installation of FLARE VM.

Challenge Walkthrough
Basic Static Analysis
First let’s examine static strings that we see in the binary using FLOSS and the command line:

floss.exe -n 5 --only static -v y0da.exe.
A partial output would look as follows:

Figure 1: Static strings found in y0da.exe's binary

There isn’t much helpful information here, except for the fact that most of these strings match a benign
Windows DLL named ApplicationFrame.dll (SHA256:
8FA35F1694595AA5B92E67A1105AF4CC04703DFBE06E12088E68828C46F99569) that is typically found in the %SYSTEM%
directory. In fact, the string \System32\ApplicationFrame.dll can be found within it as well.
A more useful run would entail analyzing stack strings (with a minimal length of 5 characters) using the
command “floss.exe -n 5 --only stack -v y0da.exe”. Here’s a partial output of it:

Page 2 of 41

https://github.com/mandiant/flare-vm
https://www.virustotal.com/gui/file/8fa35f1694595aa5b92e67a1105af4cc04703dfbe06e12088e68828c46f99569

Figure 2: Stack strings found in y0da.exe by FLOSS

We see that most of the interesting strings appear as stack strings, including ASCII art and ones that indicate
the user must provide a password to get a secret. In addition, we can look for any encoded strings using the
command line “floss.exe -n 5 --only decoded -v y0da.exe”where we’ll find the following curious
string that’s worth keeping in mind:

Figure 3: String decoded by FLOSS

We will run CAPA to try and identify any algorithms used by y0da.exe. The output indicates that MD5 and
Mersenne Twister are leveraged:

Page 3 of 41

Figure 4: CAPA detecting the usage of MD5 and Mersenne Twister by y0da.exe

If we inspect the headers of the executable, we’ll see that the import directory is blank, which is indicative of
the fact that usage of any Windows API functions requires their underlying modules to be loaded by the code
itself and their addresses to be resolved dynamically during run-time:

Figure 5: Blank import table in y0da.exe

In addition, a glance at the resource directory with a tool like Resource Hacker shows an unusual resource
named Y0D4 of type M4ST3Rwhich contains a high-entropy binary blob that we may also want to keep in
mind going forward:

Page 4 of 41

Figure 6: Binary blob found as a resource named Y0D4

Basic Dynamic Analysis
When we run the executable, we’ll see a FLARE banner followed by a string that indicates that the process is
listening, likely for incoming connections.

Page 5 of 41

Figure 7: Console output when running y0da.exe

We can easily corroborate this by checking if there are any connections associated with the y0da.exe
process in TCPView and see that the process is indeed listening on TCP port 1337.

Figure 8: Output of of TCPView when running y0da.exe

If we connect to this port via netcat on the localhost we get a Yoda banner, followed by what appears to be a
standard cmd.exe shell.

Page 6 of 41

Figure 9: Shell output when connecting to the server run by y0da.exe on port 1337

Looking at the process tree that is generated as a result of executing y0da.exe in Process Hacker, we
observe that it spawns a cmd.exe process, which we can assume is the shell that we are controlling via
netcat.

Page 7 of 41

Figure 10: Process tree created as a result of running y0da.exe

If we switch to the Threads tab we’ll see 3 active threads, one of which is the main thread, the code of which
starts at 180032701, the executable’s entry point.

Figure 11: Threads run in the context of y0da.exe's process

Looking into the stack of the thread that corresponds to the function 18004e0e7 we see that it invokes a
recv API call, which we can assess is related to receiving input for the shell via the established TCP
connection.

Page 8 of 41

Figure 12: Stack trace of the thread at address 0x18004e0e7

The other thread that corresponds to the function 18004928c calls PeekNamedPipewhich would be
consistent with reading the shell’s output via a pipe before sending it back on the TCP channel.

Figure 13: Stack trace of the thread at address 0x18004928c

All the above behavior would be consistent with an implementation of a Windows bind shell, as outlined in the
figure below. That said, we still need to figure out how to interact with it so that we get the flag.

Page 9 of 41

Figure 14: Bind Shell Architecture

Code Obfuscation: Problem Statement
Looking into the disassembly of y0da.exe in IDA we can spot an obfuscation pattern wherein the code
consists of small basic blocks that consist of two instructions at most. A typical basic block consists of an
instruction, followed by an unconditional jump that leads to the next basic block of the shellcode. The
exceptions to this rule are basic blocks that consist of a single unconditional jump or retn instruction.
To demonstrate how this obfuscation works, consider the following simple piece of code:

start:
sub rsp, 28h
call sub_140012610
add rsp, 28h
retn

;...
;<code>
;...
sub_140012610:

push rsi
mov rsi, rsp
and rsp, 0FFFFFFFFFFFFFFF0h
sub rsp, 20h
call sub_140001010
mov rsp, rsi
pop rsi
retn

After obfuscation, it will look like this:

Page 10 of 41

loc_180004DED:
mov rsp, rsi
jmp loc_18001DDA2

;...
;<junk\other code>
;...
sub_18000853F:

push rsi
jmp loc_18005A0B8

;...
;<junk\other code>
;...
loc_180017663:

retn
;...
;<junk\other code>
;...
loc_18001DDA2:

pop rsi
jmp loc_180017663

;...
;<junk\other code>
;...
loc_1800251F2:

and rsp, 0FFFFFFFFFFFFFFF0h
jmp loc_180034E4F

;...
;<junk\other code>
;...
loc_1800136A2:

call sub_18000853F
jmp loc_1800340C9

;...
;<junk\other code>
;...
loc_180016D82:

retn
;...
;<junk\other code>
;...
start:

sub rsp, 28h
jmp loc_1800136A2

;...
;<junk\other code>
;...
loc_1800340C9:

add rsp, 28h
jmp loc_180016D82

;...
;<junk\other code>
;...
loc_180034E4F

sub rsp, 20h
jmp loc_18005DFEF

;...
;<junk\other code>
;...
loc_18005A0B8:

mov rsi, rsp
jmp loc_1800251F2

;...
;<junk\other code>
;...
loc_18005DFEF:

call sub_18003CEDE

Page 11 of 41

jmp loc_180004DED

This form of obfuscation thwarts the ability to perform proper static analysis. The biggest hurdle is that IDA
can’t immediately tell the flow of the shellcode’s basic blocks apart from other functions that remain in the
executable from the original ApplicationFrame.dll. Consequently, we don’t know the starting addresses
of the real functions that comprise the shellcode, instead we see functions with faulty disassembly of what is
essentially leftovers of dead code from the original DLL, mixed with shellcode basic blocks. In the absence of
information on shellcode related function addresses and their bounds, we need to step through the basic
blocks manually, which proves to be infeasible due to the size of the shellcode.

Inspecting API Calls in the TTD Trace
One of the things that we can do right after recording the trace of y0da.exe is to triage it for API calls that
were invoked throughout its execution. This is made possible due to WinDbg’s Debugger Data Model – a
hierarchy of objects that provide debugger extensions with the ability to consume and produce information
that can be accessed by the debugger or other extensions of it. One notable set of objects is the TTD Calls
Objects that hold information about function calls that occurred over the course of the trace.

Before we look at the calls themselves, it’s worth checking the modules that were loaded during run-time. We
can do so by stepping to the end of the trace with the command !tt 100 and inspecting the list of modules
with the lm command. We’ll also make note of the address range in which y0da.exe is mapped.

Page 12 of 41

Figure 15: Modules loaded during the execution of y0da.exe and the address range of the main module

Now we can run the following query that would give us calls to functions that start with the Create keyword in
kernel32.dll and any function invoked from ws2_32.dll by y0da.exe’s code:

dx -g @$cursession.TTD.Calls("KERNEL32!Create*", "ws2_32!*").Where(c =>
c.ReturnAddress > 0x180000000 && c.ReturnAddress < 0x1800c9000)

The result looks as follows:

Figure 16: Partial list of API functions invoked during the execution of y0da.exe

We can immediately observe that the program creates a process which we’ve already established is
cmd.exe. In addition, there are two threads and two pipes created during run-time, and that recv and send

Page 13 of 41

operations are made from separate threads. All of this suggests that one thread handles the input passed
from the socket to the shell and another handles output passed from the shell to the socket, all done via
pipes.
As an example, we can step into the first recv call in the above list by navigating to its corresponding index in
the trace, which is 2D90:1B21. What we can do then is step back to the previous frame from which this API
function was called using the g-u command, and step another two instructions backwards. What we’ll see is
that the constant 0x5FC8D02 is passed to r15d. This constant is in fact the name hash of recv according to
Metasploit’s name hashing algorithm, which alludes to sub_180014d24 being a function that dynamically
resolves API function addresses given their name hash.

Figure 17: Finding recv's name hash passed via r15d by stepping backwards from recv's call in the TTD trace

Navigating a few more instructions backwards, we can see that there’s another value that is likely passed via
r14:

Figure 18: Finding another argument passed via r14 when invoking recv

Also, we can note that the four arguments of recv itself seem to be passed according to the fastcall
convention, i.e., via rcx, rdx, r8 and r9:

Page 14 of 41

Figure 19: Parameters of the recv API call passed via the fastcall convention

Cleaning-up the Control Flow using IDAPython
To further understand the logic of y0da.exewe need to have a look at its code, and that requires doing
some fixes to make it readable. Our strategy will be to clean up any dead code that isn’t part of the
challenge’s flow, identify function bounds and designate basic blocks to their corresponding functions.
Consequently, Hexrays decompiler should be able to present us with clean pseudo-code that matches the
actual logic of y0da.exe.
Cleaning dead code can be done in several ways. Our way to go would be by iterating over the relevant
instructions starting from the entry point of the executable and tainting only those that are part of the actual
code flow by writing their addresses to a list. Any other instruction that wasn’t tainted in that process can be
later patched out with a nop instruction.

The steps to implement this idea resemble a recursive descent disassembly algorithm:
1. Start from a given address that we will denote entry_point.
2. Traverse through instructions one after the other and add each instruction’s address to the

tainted_addresses list, until one of the following instructions is reached:
a. Conditional jump: register the jump’s target address to the conditional_jumps list and add

the address of the jump itself to the tainted_addresses list. Go to step 2 with the next
instruction that will be executed if the jump’s condition is not met.

b. Call: register the call’s target address into the function_calls list and add the address of
the call itself to the tainted_addresses list. Go to step 2 with the next instruction that will
be executed right after returning from the called function.

c. Return: Add the address of the return instruction to the tainted_addresses list, break and
move to step 3.

3. If the conditional_jumps list is not empty, pop an address from it and go to step 2.
4. If the function_calls list is not empty, pop an address from it and go to step 2.

Here are a few points that are worth considering with regards to this algorithm:
● For step 1, we clearly need to pass the executable’s main entry point at address 180032701. However,

we should also remember that there are two threads executed by the program at addresses
18004928C and 18004E0E7, as we established during the initial analysis phases. Therefore, it’s
required that we pass each one of them as an entry_point to step 1 as well.

Page 15 of 41

● One scenario that we should consider with regards to the above algorithm is infinite loops, in which
case the algorithm we’ll keep iterating through the same instructions indefinitely. To deal with that, we
will use a simple heuristic of counting the number of instances that we are seeing an instruction that
has already been tainted. If the counter reaches a high number of our choice, we can infer that we are
likely in an infinite loop. This is not a general and robust method of dealing with such cases but will
suffice for the purpose of cleaning up the code in question.

● Aside from cleaning up dead code, we need to help IDA determine which function each basic block
belongs to. For that purpose, we will rely on the notion of chunked functions and function tails.
Basically, chunk functions are ones that are composed of multiple non-contiguous address ranges,
just like y0da.exe’s code exhibits. To be able to associate a code chunk (or basic block in our case)
to a function, we can use append_func_tail in IDAPython.

Following is an IDAPython implementation that deobfuscates y0da.exe’s code according to the above
method:

Page 16 of 41

https://hex-rays.com/blog/igors-tip-of-the-week-86-function-chunks/
https://www.hex-rays.com/products/ida/support/idapython_docs/ida_funcs.html#ida_funcs.append_func_tail

import ida_ua, idautils, idc, idaapi, ida_bytes, ida_funcs

Entry points in the code
main_entry_point_ea = 0x180032701
first_thread_ea = 0x18004E0E7
second_thread_ea = 0x18004928C

Global data structures
function_calls = []
conditional_jumps = []
conditional_jumps_mnem =
["jo","jno","js","jns","je","jz","jne","jnz","jb","jnae","jc","jnb","jae","jnc"
,"jbe","jna","ja","jnbe","jl","jnge","jge","jnl","jle","jng","jg","jnle","jp","
jpe","jnp","jpo","jcxz","jecxz"]
tainted_addresses = []

Adds addresses to tainted_addresses list starting from the address ea until a
retn instruction is hit or an infinite loop is detected.
ea: address to start scanning the code from.
func_ea: the function that is being currently inspected. All iterated basic
blocks will be appended as function tails to it.
def taint(ea, func_ea):

initial_ea = ea
curr_insn = ida_ua.insn_t()
prev_insn_mnem = ""
seen_count = 0 # counter to detect infinite loops
basic_block_start_ea = ea
basic_block_end_ea = ea

while True:

ins_len = idc.create_insn(ea)
ida_ua.decode_insn(curr_insn, ea)

if curr_insn.get_canon_mnem() == "retn" or seen_count > 1000:
ida_funcs.append_func_tail(func_ea, ea, ea + ins_len)
break

if ea not in tainted_addresses:
tainted_addresses.append(ea)

else:
seen_count += 1 # We have seen this instruction already but it’s

being executed again, possibly in a loop

if curr_insn.get_canon_mnem() in conditional_jumps_mnem and
curr_insn.Op1.addr not in conditional_jumps and curr_insn.Op1.addr !=
initial_ea and curr_insn.Op1.addr not in tainted_addresses:

conditional_jumps.append(curr_insn.Op1.addr)

if curr_insn.get_canon_mnem() == "call" and curr_insn.Op1.addr not in
function_calls and curr_insn.Op1.addr != initial_ea and curr_insn.Op1.addr not
in tainted_addresses:

Page 17 of 41

function_calls.append(curr_insn.Op1.addr)

if curr_insn.get_canon_mnem() == "jmp":
if prev_insn_mnem == "jmp":

basic_block_start_ea = ea
basic_block_end_ea = ea + 5
ea = curr_insn.Op1.addr
result = ida_funcs.append_func_tail(func_ea, basic_block_start_ea,

basic_block_end_ea)
print("BB Start EA: 0x%x, BB End EA: 0x%x, Function EA: 0x%x,

Append Tail Result: %s" % (basic_block_start_ea, basic_block_end_ea, func_ea,
result))

else:
basic_block_start_ea = ea
if ins_len > 0:

ea += ins_len
else:

ea = idc.next_head(ea)
prev_insn_mnem = curr_insn.get_canon_mnem()

tainted_addresses.append(ea)

Go over all the addresses, including conditional jump targets in a function
that starts at address start_ea.
def taint_func(start_ea):

taint(start_ea,start_ea)
while len(conditional_jumps) > 0:

ea = conditional_jumps.pop()
taint(ea, start_ea)

Go over all functions that are located when starting to scan from the address
entry_point_ea.
def taint_from_entry_point(entry_point_ea):

add_func(entry_point_ea)
taint_func(entry_point_ea)
while len(function_calls) > 0:

ea = function_calls.pop()
add_func(ea)
taint_func(ea)

Find start and end ea of a section with a given name.
def get_section_limits(section_name):

for s in idautils.Segments():
if idc.get_segm_name(s) == section_name:

section_start = idc.get_segm_start(s)
section_end = idc.get_segm_end(s)

return (section_start, section_end)

def undefine_section(section_name):
section_start, section_end = get_section_limits(section_name)
if section_start > 0 and section_end > 0 and section_start < section_end:

for ea in range(section_start, section_end):

Page 18 of 41

ida_bytes.del_items(ea)

Remove all dead code in a section.
def patch_nop_to_untainted_addresses(section_name):

section_start, section_end = get_section_limits(section_name)
if section_start > 0 and section_end > 0 and section_start < section_end:

ea = section_start
while ea < section_end:

if ea not in tainted_addresses:
idaapi.patch_byte(ea,0x90)
ea += 1

else:
ins_len = idc.create_insn(ea)
if ins_len > 0:

ea += ins_len
else:

ea = idc.next_head(ea)

if __name__ == "__main__":
Undefine all existing code in the .text section
undefine_section(".text")

Taint shellcode instructions within the section starting from given entry
points

taint_from_entry_point(main_entry_point_ea)
taint_from_entry_point(first_thread_ea)
taint_from_entry_point(second_thread_ea)

Patch out everything in the section other than the tainted code
patch_nop_to_untainted_addresses(".text")

After the script is done running, we can attempt to decompile the code using the Hexrays decompiler. As an
example, the beginning of the main function sub_18003CEDEwill looks as follows (with some fixes of stack
variables):

Page 19 of 41

Figure 20: Yoda ASCII banner seen in the decompilation view after cleaning up the disassembly of y0da.exe

API Address Resolution & Invocation
One adjustment that we can immediately apply on the IDB pertains to the definition of the function
sub_180014D24, which we noted earlier has an unusual calling convention. As we described, this function
gets a name hash as an argument in the r15d register, an unknown flag in the r14 register and the rest of the
arguments to the underlying API function are passed via rcx, rdx, r8, r9 (and the stack, if need be).
Fortunately, IDA allows us to apply custom calling conventions using the __usercall keyword. In our case,
our function definition will now look like this:

Page 20 of 41

https://hex-rays.com/blog/igors-tip-of-the-week-51-custom-calling-conventions/

PVOID __usercall getProcAddressAndExecute@<rax>(int returnAddressMode@<r14d>, int

metasploitNameHashArg@<r15d>, int apiArg1@<ecx>, int apiArg2@<edx>, int

apiArg3@<r8d>, int apiArg4@<r9d>)

The decompiled code of this function after we apply this definition will then look like this:

Figure 21: Decompiled code of the function used for resolving and calling API functions

We can infer that the flag passed in r14 indicates if sub_180014D24will return the resolved API address or
call it directly by passing the control to the API function with the instruction jmp rax.
In addition, we can now cross reference all the calls to this function, collect their hashes and mark-up
functions according to them where applicable. These are the relevant Metasploit name hashes and their
associated API functions:

Page 21 of 41

https://github.com/snus-b/Metasploit_Function_Hashes

Metasploit Name
Hash

Associated API Function

0xE553A458 kernel32!VirtualAlloc

0x300F2F0B kernel32!VirtualFree

0x528796C6 kernel32!CloseHandle

0x56A2B5F0 kernel32!ExitProcess

0x863FCC79 kernel32!CreateProcessA

0x160D6838 kernel32!CreateThread

0xBB5F9EAD kernel32!ReadFile

0x5BAE572D kernel32!WriteFile

0xDDCEADE7 kernel32!GetEnvironmentVariableA

0x601D8708 kernel32!WaitForSingleObject

0x726774C kernel32!LoadLibraryA

0xEAFCF3E kernel32!CreatePipe

0x6558F55E kernel32!FindResourceA

0x8E8BB14A kernel32!LoadResource

0xE8BE94B kernel32!LockResource

0x42F9102E kernel32!SizeOfResource

0xB33CB718 kernel32!PeekNamedPipe

Page 22 of 41

0x614D6E75 ws2_32!closesocket

0x6B8029 ws2_32!WSAStartup

0xF44A6E2B ws2_32!WSACleanup

0xED83E9BA ws2_32!socket

0xFF38E9B7 ws2_32.dll!listen

0xE13BEC74 ws2_32.dll!accept

0x6737DBC2 ws2_32!bind

0x5FC8D902 ws2_32!recv

0x5F38EBC2 ws2_32!send

0xD0EB608D user32!wsprintf

Hidden Commands
Let’s revisit the FLOSS output containing stack strings and observe an interesting one that looks like a
possible shell command. It is found in the function sub_18004e0e7which matches the input processing
thread that we located earlier:

Figure 22: gimmie_advic3 hidden command found in the code of the thread sub_18004e0e7

Looking at the decompilation of this function we spot two similar strings being initialized:

Page 23 of 41

Figure 23: Hidden shell commands found in the decompiled view of sub_18004e0e7

If we enter gimmie_advic3 as an input to the shell, we’ll get a different Yoda advice each time:

Figure 24: Yoda advice presented in the shell in response to a gimmie_advic3 command

This doesn’t bring us closer to the flag, so let’s try the other command which presents us with the following
password prompt:

Page 24 of 41

Figure 25: Password prompt presented in the shell as a response to the gimmie_s3cr3t command

Password Prompt
It is clear at this point that we would like to find out the password that we should enter in the above prompt. If
we revisit the FLOSS output again, we'll find some of the above prompt’s strings and the function
sub_1800216F6 in which they were found. If we look at the decompiled view of this function while using the
information that we already have about the function sub_180014D24 (which we’ll name
getProcAddressAndExecute at this point) as well as do some basic analysis on the functions it invokes, we’ll
get the following code:

Page 25 of 41

Figure 26: Decompiled code of the function sub_1800216F6

We’ll note that the result of sub_18001BB76 is being checked, and if it’s null the darthBanner buffer is sent
over the socket, indicating that we should further seek for the password checking logic in this function.
If we consider our previous CAPA results, we can recall the function sub_1800126AB which is part of the
MD5 hash calculation function sub_18002483.This is being used by the function sub_18004EBC7 invoked
from sub_18001BB76. It’s only if sub_18004EBC7 returns a non-null value that sub_18001BB76 performs
any additional actions, which warrants a deeper inspection of the former.

Page 26 of 41

Figure 27: sub_1800126AB the initialization of an MD5 context struct.

Other than MD5 calculation, there is a call to sub_1800382E1 from sub_18004EBC7. This function is an
implementation of a strtok_r method used to tokenize a string according to a given character.

Figure 28: Implementation of strtok_r

If we go on and look further into what’s happening in sub_18004EBC7we’ll see that it tokenizes an input
string according to a given character and then computes the MD5 hash of each token, comparing it to
hard-coded MD5 hash values on the stack. At this point, we can assess that this is the logic that underlies the
password check in the gimmie_s3cr3t prompt.

Page 27 of 41

Figure 29: Decompiled code outlining password checking logic.

Unfortunately, we may not be able to fully rely on the decompilation results due to some stack analysis issues,
but as the figure above indicates, we can find the address of each call in the disassembly view by setting the
cursor on the line of interest in the Hexrays pseudocode and looking at the current location marked in the bar
at the bottom of the window.

With that information, we can simply attach a debugger to y0da.exe’s process and break on the strtok_r
call at 180046017 to see what character is used to tokenize the password. We’ll find out that this is an
underscore (or 0x5F in ASCII).

Page 28 of 41

Figure 30: The character used to tokenize the input to the password prompt

Then, we can break on each call to memcmp and check the MD5 hash that the token hashes will be compared
to, as pointed to by the argument in the rdx register.

Figure 31: Example of an MD5 hash that the passwords token hashes are compared to

After we collect all the compared hashes, we can use a simple online reverse MD5 tool to give us the
keywords that would correspond to it. As outlined in the table below, we can infer that the password should
be patience_y0u_must_h4v3.

MD5 Reverse MD5

4C8476DB197A1039153CA724674F7E13 patience

627FE11EEEF8994B7254FC1DA4A0A3C7 y0u

D0E6EF34E76C41B0FAC84F608289D013 must

48367C670F6189CF3F413BE394F4F335 h4v3

We can now rename sub_18004EBC7 to checkPassword and go back to sub_18001BB76. After some
analysis of the other functions in sub_18001B76we can learn that if the checked password is correct, it is
being used as the RC4 key that decrypts the Y0D4 resource we found in the basic static analysis phase. The
beginning of the decrypted result is checked against the magic 0xFFD8FFE0 of a JPEG image.

Page 29 of 41

https://md5.gromweb.com/

Figure 32: Code that decrypts the Y0D4 resource using RC4 and the password prompt's input as the key

Decrypting the resource and opening it as an image will yield the following false flag:

Figure 33: The false flag image that gets decrypted from the Y0D4 resource

Since this flag does not end with the flare-on.com domain and it explicitly states that it isn’t the flag, we need
to keep looking for the real one. Let’s see what happens when we enter the password that we just found into
the gimmie_s3cr3t password prompt:

Page 30 of 41

Figure 34: The result of entering the correct password into the prompt

We see a recurring message that is attached to the shell outputs sent to us. In each instance M4st3r Y0d4
says something that appears encoded to us, wherein the encoded string keeps changing all the time. Our
next mission will be to decode Y0d4’s words.

Flag Construction
To get to the part of the code in which the flag is constructed we can revisit our FLOSS results and find the
beginning of the string that presents the encoded flag. The function in which it appears is sub_18004928c
which corresponds to another thread that we still didn’t cover. This thread is responsible for sending output
from the cmd.exe console over the TCP socket and appending the Y0da says message to it after the correct
password has been entered into the gimmie_s3cr3t prompt.

Figure 35: The string of interest that pertains to the correct password output, as presented by FLOSS

As you may have noted, each Y0d4 says print contains a different encoded message. As an example, we’ll
take the first one that appears after entering the correct password:

OIZC4eMC/UnTPfDDMMaHeQXUHMPZy4LfSgg/HnB5SXVOIyKOBIHMe45B2KBCe5T/HRfRHZ4SKJe3eLJHeMe5

IM5QQJ======

Page 31 of 41

One thing we can already get rid of is the final layer of encoding. The above string is in fact Base32 encoded
with the custom index Q4T23aSwLnUgHPOIfyKBJVM5+DXZC/Re= that we have already seen in FLOSS
results (note the length of the index, it cannot be used by Base64 – if that was your first guess). When we
decode the first Y0d4 says related string from Base32, we get the following sequence of 56 bytes:

7F F7 C0 FE DC EA 92 26 C3 39 B5 8A CF 83 4A 65 9B B8 85 10 32 D7 D6 26 77 36 AA

E7 C6 4E 9B D9 6F 86 F3 1C A7 CF DC 5D 67 A1 E6 6C 26 95 3E 4F A2 8C FD BF 77 DA

E0 05

To better understand those, we need to take one step back and see how they are generated. Within
sub_18004928C, the function of interest for the flag construction is sub_180050E82. In that function we’ll
find a couple of binary patterns that are sought within the decrypted resource image – 0xFFE1AA3B and
0xFFE2A1C5. Those are in fact two hidden markers that are used to store data in the underlying JPEG image.
The search for those markers is being done via calls to a memmem function in the addresses 18005C570 and
180002737.

Figure 36: Binary patterns in the decrypted resource image.

We can look for these markers in the decrypted image and note that they are followed by buffers with binary
blobs of lengths 0x3B and 0x1C5.

Page 32 of 41

Figure 37: The sought patterns and the blobs that follow them in the image

After that we’ll see a loop that populates a buffer of 60 bytes generated by the function sub_180063054. If
we revisit our CAPA results from the basic static analysis phase, we’ll see that it’s one of few functions that
pertain to a Mersenne Twister PRNG implementation. This function generates a pseudo-random integer in
each iteration of the loop, which is then assigned as 4 bytes into the buffer in question, until all 60 bytes are
filled.

Figure 38: Calculation of a Mersenne Twister generated sequence

After the loop, we’ll see a call to sub_180015EC1. If we inspect the arguments passed to this function, we’ll
find that it receives the buffer that follows the 0xFFE1AA3B marker in the decrypted resource, the size of this
buffer which is 0x3B, the 60-byte Mersenne Twister sequence that was generated in the loop and the second
buffer from the decrypted resource that follows the 0xFFE2A1C5 marker.

Page 33 of 41

Figure 39: Arguments passed to sub_180015EC1

Looking deeper into the function sub_180015EC1, we’ll see a loop that will iterate over the bytes of the of
the first buffer from the JPEG and will invoke sub_18001D361 for each byte:

Page 34 of 41

Figure 40: Loop that processes encoded bytes, likely used to build the flag

Unfortunately, we don’t get a proper decompilation of sub_18001D361:

Figure 41: Function called from sub_180015EC1, which fails to decompile.

To understand why that happens, let’s trace the instructions of this function with WinDbg by setting a
breakpoint on it and running the command pa 18001D361. You can split the output in two. The first are the
actual instructions of the function that consist of a set of addresses constructed and pushed on the stack.
Those addresses are all within the range of the second buffer of the decrypted resource:

Page 35 of 41

y0da+0x1d364:
00000001`8001d364 e92f7f0300 jmp y0da+0x55298 ;(00000001`80055298)
y0da+0x55298:
00000001`80055298 4883c508 add rbp,8
y0da+0x5529c:
00000001`8005529c e9b032feff jmp y0da+0x38551 ;(00000001`80038551)
y0da+0x38551:
00000001`80038551 498bf1 mov rsi,r9
y0da+0x38554:
00000001`80038554 e9b324feff jmp y0da+0x1aa0c ;(00000001`8001aa0c)
y0da+0x1aa0c:
00000001`8001aa0c 4883c63e add rsi,3Eh
y0da+0x1aa10:
00000001`8001aa10 e927e90000 jmp y0da+0x2933c ;(00000001`8002933c)
y0da+0x2933c:
00000001`8002933c 56 push rsi
y0da+0x2933d:
00000001`8002933d e9c4290100 jmp y0da+0x3bd06 ;(00000001`8003bd06)
y0da+0x3bd06:
00000001`8003bd06 498bf1 mov rsi,r9
y0da+0x3bd09:
00000001`8003bd09 e908eafdff jmp y0da+0x1a716 ;(00000001`8001a716)
y0da+0x1a716:
00000001`8001a716 4883c671 add rsi,71h
y0da+0x1a71a:
00000001`8001a71a e997e20100 jmp y0da+0x389b6 ;(00000001`800389b6)
y0da+0x389b6:
00000001`800389b6 56 push rsi
...
...
y0da+0x3a4ac:
00000001`8003a4ac e945290200 jmp y0da+0x5cdf6 ;(00000001`8005cdf6)
y0da+0x5cdf6:
00000001`8005cdf6 498bf1 mov rsi,r9
y0da+0x5cdf9:
00000001`8005cdf9 e9a2c7feff jmp y0da+0x495a0 ;(00000001`800495a0)
y0da+0x495a0:
00000001`800495a0 4883c660 add rsi,60h
y0da+0x495a4:
00000001`800495a4 e98cf4feff jmp y0da+0x38a35 ;(00000001`80038a35)
y0da+0x38a35:
00000001`80038a35 56 push rsi
y0da+0x38a36:
00000001`80038a36 e9e01dfeff jmp y0da+0x1a81b ;(00000001`8001a81b)
y0da+0x1a81b:
00000001`8001a81b c3 ret

After the ret instruction is invoked, we see the execution of other instructions, wherein each instruction is
followed by a ret:

Page 36 of 41

What we can infer from this is that sub_18001D361 is responsible for constructing a ROP chain such that the
gadgets are taken from the second buffer of the decrypted resource. Each execution of the ROP chain
constructs one encrypted flag byte (the final encrypted flag is what we decoded from Base32 earlier). To
decipher the flag, we don’t need the whole ROP chain, but only the last ~32 instructions (excluding the ret
instructions). If we take those instructions that construct the first encrypted flag byte from the trace and
clean up the ret instructions, we’ll get the following code:

Page 37 of 41

00000000`01e10060 8b4524 mov eax,dword ptr [rbp+24h] ;ss:00000000`01d5dff4=00000000
00000000`01e10063 c3 ret
00000000`01e1006c 488b4d40 mov rcx,qword ptr [rbp+40h]
;ss:00000000`01d5e010=0000000001e00000
00000000`01e10070 c3 ret
00000000`01e1007b 0fb60401 movzx eax,byte ptr [rcx+rax] ;ds:00000000`01e00000=7f
00000000`01e1007f c3 ret
00000000`01e1004b 884520 mov byte ptr [rbp+20h],al ;ss:00000000`01d5dff0=00
00000000`01e1004e c3 ret
00000000`01e10080 0fb64520 movzx eax,byte ptr [rbp+20h] ;ss:00000000`01d5dff0=7f
00000000`01e10084 c3 ret
00000000`01e1009f c1f803 sar eax,3
00000000`01e100a2 c3 ret
00000000`01e1008a 0fb64d20 movzx ecx,byte ptr [rbp+20h] ;ss:00000000`01d5dff0=7f
00000000`01e1008e c3 ret
00000000`01e100ba c1e105 shl ecx,5
00000000`01e100bd c3 ret
00000000`01e10095 0bc1 or eax,ecx
00000000`01e10097 c3 ret
00000000`01e1004b 884520 mov byte ptr [rbp+20h],al ;ss:00000000`01d5dff0=7f
00000000`01e1004e c3 ret
00000000`01e10080 0fb64520 movzx eax,byte ptr [rbp+20h] ;ss:00000000`01d5dff0=ef
00000000`01e10084 c3 ret
00000000`01e10000 05ac000000 add eax,0ACh
00000000`01e10005 c3 ret
00000000`01e1004b 884520 mov byte ptr [rbp+20h],al ;ss:00000000`01d5dff0=ef
00000000`01e1004e c3 ret

...

...
; [rbp + 20h] contains the first character of the flag - 0x50 ('P')
movzx eax,byte ptr [rbp+20h] ;ss:00000000`01d5dff0=50
; [rbp + 24h] contains the index of the flag character we are processing, in this
case 0
mov ecx,dword ptr [rbp+24h] ;ss:00000000`01d5dff4=00000000
; [rbp+50h] points to the Mersenne Twister sequence buffer
mov rdx,qword ptr [rbp+50h] ;ss:00000000`01d5e020=0000000001df0000
; 0x9D is the first character in the Mersenne Twister sequence buffer
movzx ecx,byte ptr [rdx+rcx] ;ds:00000000`01df0000=9d
; The byte at index 0 of the flag (i.e., 'P') is XORed with the first character of
the Mersenne Twister sequence (i.e., 0x9D)
xor eax,ecx
mov ecx,dword ptr [rbp+24h] ;ss:00000000`01d5dff4=00000000
; Next index value (1) is put into ecx
inc ecx
mov ecx,ecx
mov rdx,qword ptr [rbp+50h] ;ss:00000000`01d5e020=0000000001df0000
; Next character in the Mersenne Twister sequence is 0xB5
movzx ecx,byte ptr [rdx+rcx] ;ds:00000000`01df0001=b5
; The character gets shifted left by one bit
shl ecx,1
and ecx,0FFh
mov edx,dword ptr [rbp+24h] ;ss:00000000`01d5dff4=00000000
; Next index value (2) is put into edx
add edx,2
mov edx,edx
mov r8,qword ptr [rbp+50h] ;ss:00000000`01d5e020=0000000001df0000
; Next character in the Mersenne Twister sequence is 0xDF
movzx edx,byte ptr [r8+rdx] ;ds:00000000`01df0002=df
; The character gets shifted right by 1
sar edx,1
and edx,0FFh
and ecx,edx
; The result is XORed with what we calculated thus far
xor eax,ecx
mov ecx,dword ptr [rbp+24h] ;ss:00000000`01d5dff4=00000000
; Next index value (3) is put into ecx
add ecx,3
mov ecx,ecx
mov rdx,qword ptr [rbp+50h] ;ss:00000000`01d5e020=0000000001df0000
; Next character in the Mersenne Twister sequence is 0x75
movzx ecx,byte ptr [rdx+rcx] ;ds:00000000`01df0003=75
; The character gets shifted left by 2
shl ecx,2
and ecx,0FFh
; The result is XORed with what we calculated thus far
xor eax,ecx
mov ecx,dword ptr [rbp+24h] ;ss:00000000`01d5dff4=00000000
; [rbp + 40h] contains the target address to which we write the encoded flag byte
mov rdx,qword ptr [rbp+40h] ;ss:00000000`01d5e010=0000000001e00000
; The encoded flag byte 0x7F is written to memory
mov byte ptr [rdx+rcx],al ;ds:00000000`01e00000=7f
retn

Page 38 of 41

As we can see, the encryption is a mere XOR between the flag bytes and slightly mutated Mersenne Twister
bytes that were calculated formerly. Based on this logic we can write a simple Python script that will decode
the flag:

encodedFlag = [0x7F, 0xF7, 0xC0, 0xFE, 0xDC, 0xEA, 0x92, 0x26, 0xC3, 0x39, 0xB5, 0x8A, 0xCF,
0x83, 0x4A, 0x65, 0x9B, 0xB8, 0x85, 0x10, 0x32, 0xD7, 0xD6, 0x26, 0x77, 0x36, 0xAA, 0xE7,
0xC6, 0x4E, 0x9B, 0xD9, 0x6F, 0x86, 0xF3, 0x1C, 0xA7, 0xCF, 0xDC, 0x5D, 0x67, 0xA1, 0xE6,
0x6C, 0x26, 0x95, 0x3E, 0x4F, 0xA2, 0x8C, 0xFD, 0xBF, 0x77, 0xDA, 0xE0, 0x05]
mersenneTwisterSequence = [0x9D, 0xB5, 0xDF, 0x75, 0x92, 0xC8, 0x67, 0x0B, 0x50, 0x60, 0x0F,
0xB3, 0x4E, 0xEB, 0xD6, 0x67, 0x08, 0xEB, 0x59, 0xE9, 0xCF, 0x7F, 0xF5, 0x39, 0xA4, 0x07,
0xCB, 0xA2, 0xD3, 0x16, 0xC6, 0x93, 0x18, 0x4B, 0x01, 0x04, 0x64, 0xA5, 0x4D, 0xA8, 0x42,
0x7D, 0x24, 0xD0, 0xA8, 0x2B, 0xFB, 0xAF, 0xA1, 0x7D, 0x24, 0x5D, 0x35, 0xEB, 0x3B, 0xDE,
0x4D, 0x64, 0x69, 0xA4]

def decodeFlag(encodedFlag, mersenneTwisterSequence):
decodedFlag = []
m = 0
for e in encodedFlag:

decodedFlag += [chr(e ^ mersenneTwisterSequence[m] ^
(((mersenneTwisterSequence[m+1] << 1) & 0xff) &
((mersenneTwisterSequence[m+2] >> 1) & 0xff)) ^
((mersenneTwisterSequence[m+3] << 2) & 0xff))]
m += 1

return "".join(decodedFlag)

print(decodeFlag(encodedFlag,mersenneTwisterSequence))

The resulting flag would be:

P0w3rfu1_y0u_h4v3_b3c0m3_my_y0ung_flareaw4n@flare-on.com

Y0da’s Advice Revisited
This part is not necessary for getting the flag but serves merely to show a small easter egg in the challenge.
When we enter the gimmie_advic3 command after entering the correct password into the gimmie_s3cr3t
prompt, we’ll note that the number of the tip in each Yoda advice varies:

Page 39 of 41

Figure 42: Varying values that appear in association with Yoda advice after entering the correct
gimmie_s3cr3t password

This is no coincidence – these numbers are in fact the result of an LCG stream that is seeded with the value
0x10D4. Each such value is then used as a seed for the Mersenne Twister algorithm when calculating the 60
bytes that are used as a key to encrypt the flag.

Figure 43: LCG result used to seed the Mersenne Twister sequence generation prior to flag encryption

Page 40 of 41

Figure 44: LCG seed that appears in the main function of the challenge

References
● Time Travel Debugging is now available in WinDbg Preview - Windows Developer Blog
● Deep dive into the TTD ecosystem | Elastic
● WinDbg — the Fun Way: Part 1. A while ago WinDbg added support for a… | by Yarden Shafir | Medium
● WinDbg — the Fun Way: Part 2. Welcome to part 2 of me trying to make… | by Yarden Shafir | Medium
● GitHub - mandiant/capa: The FLARE team's open-source tool to identify capabilities in executable

files.
● GitHub - mandiant/flare-vm: A collection of software installations scripts for Windows systems that

allows you to easily setup and maintain a reverse engineering environment on a VM.
● VirusTotal - File - 8fa35f1694595aa5b92e67a1105af4cc04703dfbe06e12088e68828c46f99569
● Igor’s tip of the week #86: Function chunks – Hex Rays (hex-rays.com)
● ida_funcs API documentation (hex-rays.com)
● Igor’s tip of the week #51: Custom calling conventions – Hex Rays (hex-rays.com)
● GitHub - snus-b/Metasploit_Function_Hashes

Page 41 of 41

https://blogs.windows.com/windowsdeveloper/2017/09/27/time-travel-debugging-now-available-windbg-preview/
https://www.elastic.co/security-labs/deep-dive-into-the-ttd-ecosystem
https://medium.com/@yardenshafir2/windbg-the-fun-way-part-1-2e4978791f9b
https://medium.com/@yardenshafir2/windbg-the-fun-way-part-2-7a904cba5435
https://github.com/mandiant/capa
https://github.com/mandiant/capa
https://github.com/mandiant/flare-vm
https://github.com/mandiant/flare-vm
https://www.virustotal.com/gui/file/8fa35f1694595aa5b92e67a1105af4cc04703dfbe06e12088e68828c46f99569
https://hex-rays.com/blog/igors-tip-of-the-week-86-function-chunks/
https://www.hex-rays.com/products/ida/support/idapython_docs/ida_funcs.html#ida_funcs.append_func_tail
https://hex-rays.com/blog/igors-tip-of-the-week-51-custom-calling-conventions/
https://github.com/snus-b/Metasploit_Function_Hashes

