
Accelerate
State of DevOps

10

2024

A decade with DORA

Gold Sponsors

Executive summary 3

Software delivery performance 9

Artificial intelligence:
Adoption and attitudes 17

Exploring the downstream
impact of AI 27

Platform engineering 47

Developer experience 57

Leading transformations 69

A decade with DORA 77

Final thoughts 83

Acknowledgements 85

Authors 87

Demographics and
firmographics 91

Methodology 99

Models 113

Recommended reading 117

Contents

Contents2
v. 2024.3

Executive
summary

DORA collects data through an annual,
worldwide survey of professionals
working in technical and adjacent roles.
The survey includes questions related to
ways of working and accomplishments
that are relevant across an organization
and to the people working in that
organization.

DORA uses rigorous statistical evaluation
methodology to understand the
relationships between these factors and
how they each contribute to the success
of teams and organizations.

This year, we augmented our survey with
in-depth interviews of professionals as a
way to get deeper insights, triangulate,
and provide additional context for our
findings. See the Methodology chapter
for more details.

DORA has been investigating the
capabilities, practices, and measures
of high-performing technology-driven
teams and organizations for over a
decade. This is our tenth DORA report.
We have heard from more than 39,000
professionals working at organizations
of every size and across many different
industries globally. Thank you for joining
us along this journey and being an
important part of the research!

Executive summary3
v. 2024.3

The key accomplishments and outcomes
we investigated this year are:

Burnout is a state of emotional, physical, and mental exhaustion
caused by prolonged or excessive stress, often characterized by
feelings of cynicism, detachment, and a lack of accomplishment.

Reducing burnout

This measures an organization's performance in areas including
profitability, market share, total customers, operating efficiency,
customer satisfaction, quality of products and services, and its
ability to achieve goals.

Organizational
performance

Flow measures how much focus a person tends to achieve during
development tasks.

Flow

Job satisfaction measures someone’s overall feeling
about their job.

Job satisfaction

This measures the usability, functionality, value, availability,
performance (for example, latency), and security of a product.

Product
performance

Productivity measures the extent to which an individual
feels effective and efficient in their work, creating value
and achieving tasks.

Productivity

This measures a team's ability to collaborate, innovate, work
efficiently, rely on each other, and adapt.

Team performance

Executive summary4
v. 2024.3

Key findings

However, AI adoption also brings some
detrimental effects. We have observed
reductions to software delivery
performance, and the effect on product
performance is uncertain. Additionally,
individuals are reporting a decrease in
the amount of time they spend doing
valuable work as AI adoption increases,
a curious finding that is explored more
later in this report.

Teams should continue experimenting
and learning more about the impact of
increasing reliance on AI.

AI is having broad impact

AI is producing a paradigm shift in the
field of software development. Early
adoption is showing some promising
results, tempered by caution.

AI adoption benefits:

• Flow

• Productivity

• Job satisfaction

• Code quality

• Internal documentation

• Review processes

• Team performance

• Organizational performance

Executive summary5
v. 2024.3

AI adoption increases as trust
in AI increases

Using generative artificial intelligence
(gen AI) makes developers feel more
productive, and developers who trust
gen AI use it more. There is room for
improvement in this area: 39.2% of
respondents reported having little or no
trust in AI.

User-centricity drives performance

Organizations that prioritize the end user
experience produce higher quality
products, with developers who are more
productive, satisfied, and less likely
to experience burnout.

Transformational leadership matters

Transformational leadership improves
employee productivity, job satisfaction,
team performance, product
performance, and organizational
performance while also helping decrease
employee burnout.

Stable priorities boost productivity
and well-being

Unstable organizational priorities
lead to meaningful decreases in
productivity and substantial increases
in burnout, even when organizations
have strong leaders, good internal
documents, and a user-centric approach
to software development.

Platform engineering
can boost productivity

Platform engineering has a positive
impact on productivity and
organizational performance, but there
are some cautionary signals for software
delivery performance.

Cloud enables infrastructure flexibility

Flexible infrastructure can increase
organizational performance. However,
moving to the cloud without adopting
the flexibility that cloud has to offer may
be more harmful than remaining in the
data center. Transforming approaches,
processes, and technologies is required
for a successful migration.

High-levels of software delivery
performance are achievable

The highest performing teams excel
across all four software delivery
metrics (change lead time, deployment
frequency, change fail percentage, and
failed deployment recovery time) while
the lowest performers perform poorly
across all four. We see teams from
every industry vertical in each of the
performance clusters.

Executive summary6
v. 2024.3

Applying insights from DORA

Driving team and organizational
improvements with DORA requires that
you assess how you're doing today,
identify areas to invest in and make
improvements, and have feedback loops
to tell you how you're progressing. Teams
that adopt a mindset and practice of
continuous improvement are likely to
see the most benefits. Invest in building
the organizational muscles required to
repeat this over time.

Findings from our research can
help inform your own experiments
and hypotheses. It's important to
experiment and measure the impact
of your changes to see what works best
for your team and organization. Doing
so will help you validate our findings.
Expect your results to differ and please
share your progress so that we all may
learn from your experience.

We recommend taking an
experimental approach to
improvement.

1. Identify an area or outcome you would
like to improve

2. Measure your baseline or current state

3. Develop a set of hypotheses about
what might get you closer to your
desired state

4. Agree and commit to a plan
for improvement

5. Do the work

6. Measure the progress you’ve made

7. Repeat the process.
Improvement work is achieved
iteratively and incrementally

Executive summary7
v. 2024.3

You cannot improve alone!

We can learn from each other’s
experience; an excellent forum for
sharing and learning about improvement
initiatives is the DORA Community
https://dora.community.

Executive summary8
v. 2024.3

https://dora.community

Software delivery
performance

Technology-driven teams need ways to
measure performance so that they can
assess how they’re doing today, prioritize
improvements, and validate their
progress. DORA has repeatedly validated
four software delivery metrics — the four
keys — that provide an effective way of
measuring the outcomes of the software
delivery process.

Software delivery performance9
v. 2024.3

Failed deployment recovery time:
the time it takes to recover from a
failed deployment.

DORA’s four keys have been used to
measure the throughput and stability
of software changes. This includes
changes of any kind, including changes
to configuration and changes to code.

The four keys

Software delivery performance

Change lead time:
the time it takes for a code
commit or change to be successfully
deployed to production.

Change fail rate:
the percentage of deployments
that cause failures in production,1
requiring hotfixes or rollbacks.

Deployment frequency:
how often application changes are
deployed to production.

We've observed that these metrics
typically move together, the best
performers do well on all four while the
lowest performers do poorly.

10
v. 2024.3

The analysis of the four key metrics
has long had an outlier: change failure
rate.2 Change failure rate is strongly
correlated with the other three metrics
but statistical tests and methods
prevent us from combining all four
into one factor. A change to the way
respondents answered the change
failure rate question improved the
connection but we felt there might
be something else happening.

We have a longstanding hypothesis
that the change failure rate metric works
as a proxy for the amount of rework a
team is asked to do. When a delivery fails,
this requires the team to fix the change,
likely by introducing another change.

To test this theory, we added another
question this year about the rework
rate for an application: "For the primary
application or service you work on,
approximately how many deployments
in the last six months were not planned
but were performed to address a user-
facing bug in the application?"

Our data analysis confirmed our
hypothesis that rework rate and change
failure rate are related. Together, these
two metrics create a reliable factor of
software delivery stability.

This appears in the analysis of software
performance levels, too. More than
half of the teams in our study this
year show differences in software
throughput and software stability.
These differences have led us to
consider software delivery performance
through two different factors:

Evolving the measures of software
delivery performance

Concept

Factor

Software delivery performance

Metrics used

• Change lead
time

• Deployment
frequency

• Failed
deployment
recovery time

• Change failure
rate

• Rework rate

Software
delivery

throughput

Software
delivery
stability

Software delivery performance11
v. 2024.3

Our analysis throughout this report
utilizes the software delivery
performance concept and both factors
at various times. All five metrics are
considered for describing software
delivery performance.

Change lead time, deployment
frequency, and failed deployment
recovery time are used when we
describe software delivery throughput.
This factor measures the speed of
making updates of any kind, normal
changes and changes in response
to a failure.

Change failure rate and rework rate are
used when we describe software delivery
stability. This factor measures the
likelihood deployments unintentionally
lead to immediate, additional work.

Software delivery performance12
v. 2024.3

Each year we ask survey respondents
about the software delivery performance
of the primary application or service they
work on. We analyze their answers using
cluster analysis, which is a statistical
method that identifies responses that are
similar to one another but distinct from
other groups of responses.

We performed the cluster analysis on the
original four software delivery metrics to
remain consistent with previous years'
cluster analyses.

In our analysis of software delivery
performance, four clusters of responses
emerged. We do not set these levels in
advance, rather we let them emerge
from the survey responses. This gives
us a way to see a snapshot of software
delivery performance across all
respondents each year.

Four distinct clusters emerged from the
data this year, as shown below.

Performance
level

Change lead
time

Deployment
frequency

Change fail
rate

Failed
deployment
recovery time

Percentage of
respondents*

Elite Less than
one day

On demand
(multiple
deploys per day)

5% Less than
one hour

19%
(18-20%)

High Between one
day and one
week

Between once
per day and
once per week

20% Less than
one day

22%
(21-23%)

Medium Between one
week and
one month

Between once
per week and
once per month

10% Less than
one day

35%
(33-36%)

Low Between one
month and
six months

Between once
per month and
once every six
months

40% Between one
week and
one month

25%
(23-26%)

Performance levels

Software delivery performance

*89% uncertainty interval

13
v. 2024.3

Throughput or stability?

Within all four clusters, throughput
and stability are correlated. This
correlation persists even in the medium
performance cluster (orange), where
throughput is lower and stability is
higher than in the high performance
cluster (yellow). This suggests that
factors besides throughput and stability
influence cluster performance. The
medium performance cluster, for
example, may benefit from shipping
changes more frequently.

Which is better, more frequent
deployments or fewer failures
when deploying?

There may not be a universal answer
to this question. It depends on the
application or service being considered,
the goals of the team working on that
application, and most importantly the
expectations of the application’s users.

We made a decision to call the faster
teams “high performers,” and the
slower but more stable teams “medium
performers.” This decision highlights
one of the potential pitfalls of using
these performance levels: Improving
should be more important to a team
than reaching a particular performance
level. The best teams are those that
achieve elite improvement, not
necessarily elite performance.

Software delivery performance

Software delivery performance levels

Change lead time

1m : 6m

1w : 1m

1d : 1w

1m : 6m

1w : 1m

1d : 1w

< 1d 1h : 1d

< 1hr On Demand

Elite High Medium Low

50% 1w - 1m

1d - 1w

< 1d

< 1hr

40%

30%

20%

10%

Deployment frequency Change failure rate Failed deployment
recovery time

Software Delivery Performance Levels

Change lead time

1m : 6m

1w : 1m

1d : 1w

1m : 6m

1w : 1m

1d : 1w

< 1d 1h : 1d

< 1hr On Demand

Elite High Medium Low

50% 1w - 1m

1d - 1w

< 1d

< 1hr

40%

30%

20%

10%

Deployment frequency Change failure rate Failed deployment
recovery time

Figure 1: Software delivery performance levels

14
v. 2024.3

Industry does not meaningfully affect
performance levels

Our research rarely3 finds that industry
is a predictor of software delivery
performance; we see high-performing
teams in every industry vertical. This
isn’t to suggest that there are no unique
challenges across industries, but no
one industry appears to be uniquely
encumbered or uniquely capable when it
comes to software delivery performance.

127x 8x182x 2293x
faster lead

time
lower change

failure rate
more

deployments
per year

faster failed
deployment

recovery times

When compared to low performers,
elite performers realize

How to use the
performance clusters

The performance clusters provide
benchmark data that show the
software delivery performance of
this year's survey respondents. The
clusters are intended to help inspire all
that elite performance is achievable.

More important than reaching a
particular performance level, we
believe that teams should focus
on improving performance overall.
The best teams are those that
achieve elite improvement, not
necessarily elite performance.

Software delivery performance15
v. 2024.3

Software delivery performance

Each application or service has its own
unique context. This complexity makes it
difficult to predict how any one change
may affect the overall performance of
the system. Beyond that, it is nearly
impossible to change only one thing
at a time in an organization. With this
complexity in mind, how can we use the
software delivery performance metrics
to help guide our improvement efforts?

Start by identifying the primary
application or service you would
like to measure and improve. We then
recommend gathering the cross-
functional team responsible for this
application to measure and agree
on its current software delivery
performance. The DORA Quick Check
(https://dora.dev/quickcheck) can
help guide a conversation and set
this baseline measurement. Your
team will need to understand what
is preventing better performance.

One effective way to find these
impediments is to complete a value
stream mapping exercise4 with the team.

Next, identify and agree on a plan for
improvement. This plan may focus on
improving one of the many capabilities
that DORA has researched5 or may be
something else that is unique to your
application or organization.

With this plan in-hand, it's now time to
do the work! Dedicate capacity to this
improvement work and pay attention to
the lessons learned along the way.

After the change has had a chance
to be implemented and take hold, it's
now time to re-evaluate the four keys.
How have they changed after the team
implemented the change? What lessons
have you learned?

Repeating this process will help the
team build a practice of continuous
improvement.

Remember: change does not happen
overnight. An iterative approach that
enables a climate for learning, fast flow,
and fast feedback6 is required.

Using the software delivery
performance metrics

1. We consider a deployment to be a change failure only if it causes an issue after landing in production, where it can be experienced
by end users. In contrast, a change that is stopped on its way to production is a successful demonstration of the deployment
process's ability to detect errors.

2. Forsgren, Nicole, Jez Humble, and Gene Kim. 2018. Accelerate: The Science Behind DevOps : Building and Scaling High Performing
Technology Organizations. IT Revolution Press. pp. 37-38

3. The 2019 Accelerate State of DevOps (p 32) report found that the retail industry saw significantly better software delivery
performance. https://dora.dev/research/2019/dora-report/2019-dora-accelerate-state-of-devops-report.pdf#page=32

4. https://dora.dev/guides/value-stream-management/
5. https://dora.dev/capabilities
6. https://dora.dev/research

16
v. 2024.3

https://dora.dev/quickcheck

Artificial
intelligence:
Adoption
and attitudes

Introduction
It would be difficult to ignore the
significant impact that AI has had on
the landscape of development work
this year, given the proliferation of
popular news articles outlining its
effects, from good1 to bad2 to ugly.3
So, while AI was only discussed as one
of many technical capabilities affecting
performance in our 2023 Accelerate
State of DevOps Report,4 this year we
explore this topic more fully.

As the use of AI in professional
development work moves rapidly from
the fringes to ubiquity, we believe our
2024 Accelerate State of DevOps Report
represents an important opportunity to
assess the adoption, use, and attitudes
of development professionals at a critical
inflection point for the industry.

Artificial intelligence: Adoption and attitudes

Takeaways
The vast majority of organizations
across all industries surveyed are
shifting their priorities to more deeply
incorporate AI into their applications
and services. A corresponding majority
of development professionals are
relying on AI to help them perform
their core role responsibilities — and
reporting increases in productivity as
a result. Development professionals’
perceptions that using AI is necessary
for remaining competitive in today’s
market is pervasive and appears to
be an important driver of AI adoption
for both organizations and individual
development professionals.

17
v. 2024.3

A
ns

w
er

0% 10% 20% 30%

Significant decrease in AI prioritization

Moderate decrease in AI prioritization

Slight decrease in AI prioritization

No change in AI prioritization

Slight increase in AI prioritization

Moderate increase in AI prioritization

Significant increase in AI prioritization

Percentage of respondents

Artificial intelligence: Adoption and attitudes

Findings

Adopting Artificial Intelligence

Findings on the adoption of AI suggest a
growing awareness that AI is no longer
“on the horizon,” but has fully arrived and
is, quite likely, here to stay.

Organizational adoption of
Artificial Intelligence

The vast majority of respondents (81%)
reported that their organizations have
shifted their priorities to increase their
incorporation of AI into their applications

Changes in organizational priorities concerning AI

and services. 49.2% of respondents even
described the magnitude of this shift as
being either “moderate” or “significant.”

Notably, 3% of respondents reported
that their organizations are decreasing
focus on AI — within the margin of
error of our survey. 78% of respondents
reported that they trusted their
organizations to be transparent about
how they plan on using AI as a result
of these priority shifts. This data is
visualized in Figure 2.

Figure 2: Respondents’ perceptions of their organizations’ shifts in priorities toward or away from
incorporation of AI into their applications and services.

Error bar represents 89% uncertainty interval

18
v. 2024.3

Participants from all surveyed industries
reported statistically identical levels of
reliance on AI in their daily work, which
suggests that this rapid adoption of AI
is unfolding uniformly across all industry
sectors. This was somewhat surprising
to us. Individual industries can vary
widely with respect to their levels of
regulatory constraints and historical pace
of innovation, each of which can impact
rates of technology adoption.

However, we did find that respondents
working in larger organizations report
less reliance on AI in their daily work
than respondents working in smaller
organizations, which is consistent with
prior literature indicating larger firms
more slowly adapt to technological
change because of their higher
organizational complexities and
coordination costs.5

Artificial intelligence: Adoption and attitudes

Individual adoption of
artificial intelligence

At the individual level, we found that
75.9% of respondents are relying, at
least in part, on AI in one or more of
their daily professional responsibilities.
Among those whose job responsibilities
include the following tasks, a majority of
respondents relied on AI for:

1. Writing code

2. Summarizing information

3. Explaining unfamiliar code

4. Optimizing code

5. Documenting code

6. Writing tests

7. Debugging code

8. Data analysis

Of all tasks included in our survey
responses, the most common use cases
for AI in software development work
were writing code and summarizing
information, with 74.9% and 71.2% of
respondents whose job responsibilities
include these tasks relying on AI to
perform them — at least in part. This data
is visualized in Figure 3.

19
v. 2024.3

Artificial intelligence: Adoption and attitudes

74.9%

71.2%

62.2%

61.3%

60.8%

59.6%

56.1%

54.6%

48.9%

46.3%

45%

44.7%Codebase modernization

Language migration

Security analysis

Code review

Data analysis

Test writing

Documentation

Code optimization

Code explanation

Summarizing information

Code writing

0% 20% 40% 60% 80%

Ta
sk

Debugging

Percentage of respondents

Chatbots were the most common
interface through which respondents
interacted with AI in their daily work
(78.2%), followed by external web
interfaces (73.9%), and AI tools
embedded within their IDEs (72.9%).
Respondents were less likely to use
AI through internal web interfaces
(58.1%) and as part of automated CI/CD
pipelines (50.2%).

However, we acknowledge that
respondents' awareness of AI used
in their CI/CD pipelines and internal
platforms likely depends on the
frequency with which they interface with

Figure 3: Percentage of respondents relying on AI, at least in part, to perform twelve common development tasks

those technologies. So, these numbers
might be artificially low.

We found that data scientists and
machine learning specialists were more
likely than respondents holding all
other job roles to rely on AI. Conversely,
hardware engineers were less likely than
respondents holding all other job roles
to rely on AI, which might be explained
by the responsibilities of hardware
engineers differing from the above tasks
for which AI is commonly used.

Task reliance on AI

Error bar represents 89% credibility interval

20
v. 2024.3

Artificial intelligence: Adoption and attitudes

Drivers of adoption of
artificial intelligence

Interview participants frequently linked
the decision to adopt AI to competitive
pressures and a need to keep up with
industry standards for both organizations
and developers, which are increasingly
recognized to include proficiency with AI.

For several participants’ organizations,
using AI at all was seen as “a big
marketing point” (P3)6 that could help
differentiate their firm from competitors.
Awareness that competitors are
beginning to adopt AI in their own
processes even prompted one firm to
forgo the typical “huge bureaucracy”
involved in adopting new technology
because they felt an urgency to adopt
AI, questioning “what if our competitor
takes those actions before us?” (P11).

At the individual level, many participants
linked their adoption of AI to the
sentiment that proficiency with using AI
in software development is “kind of, like,
the new bar for entry as an engineer”
(P9). Several participants suggested
fellow developers should rapidly adopt
AI in their development workflow,
because “there’s so much happening
in this space, you can barely keep up… I
think, if you don’t use it, you will be left
behind quite soon” (P4).

21
v. 2024.3

Extremely decreased my productivity

Moderately decreased my productivity

Slightly decreased my productivity

No impact on my productivity

Slightly increased my productivity

Moderately increased my productivity

Extremely increased my productivity

A
ns

w
er

0% 10% 20% 30% 40%

Percentage of respondents

Artificial intelligence: Adoption and attitudes

Perceptions of artificial intelligence

Performance improvements from
artificial intelligence

For the large number of organizations
and developers who are adopting it, the
benefits of using AI in development work
appear to be quite high. Seventy-five
percent of respondents reported positive
productivity gains from AI in the three
months preceding our survey, which was
fielded in early 2024.

Notably, more than one-third
of respondents described their
observed productivity increases as
either moderate (25%) or extreme
(10%) in magnitude. Fewer than 10%
of respondents reported negative
impacts of even a slight degree on their
productivity because of AI. This data is
visualized in Figure 4.

Perceptions of productivity changes due to AI

Figure 4: Respondents’ perceptions of AI’s impacts on their productivity.

Error bar represents 89% uncertainty interval

22
v. 2024.3

Across roles, respondents who
reported the largest productivity
improvements from AI were security
professionals, system administrators,
and full-stack developers. Although
they also reported positive productivity
improvement, mobile developers,
site reliability engineers, and project
managers reported lower magnitudes
of productivity benefits than all other
named roles.

Although we suspected that the
novelty of AI in development work,
and corresponding learning curve,
might inhibit developers’ ability to write
code, our findings did not support that
hypothesis. Only 5% of respondents
reported that AI had inhibited their ability
to write code to any degree. In fact, 67%
of respondents reported at least some
improvement to their ability to write code
as a result of AI-assisted coding tools,
and about 10% have observed “extreme”
improvements to their ability to write
code because of AI.

Artificial intelligence: Adoption and attitudes

Trust in AI-generated code

Participants’ perceptions of the
trustworthiness of AI-generated code
used in development work were complex.
While the vast majority of respondents
(87.9%) reported some level of trust in
the quality of AI-generated code, the
degree to which respondents reported
trusting the quality of AI-generated code
was generally low, with 39.2% reporting
little (27.3%) or no trust (11.9%) at all. This
data is visualized in Figure 5.

23
v. 2024.3

Artificial intelligence: Adoption and attitudes

Given the evidence from the survey
that developers are rapidly adopting
AI, relying on it, and perceiving it as
a positive performance contributor,
we found the overall lack of trust in AI
surprising. It’s worth noting that during
our interviews, many of our participants
indicated that they were willing to, or
expected to, tweak the outputs of the
AI-generated code they used in their
professional work.

One participant even likened the need
to evaluate and modify the outputs of
AI-generated code to “the early days
of StackOverflow, [when] you always
thought people on StackOverflow are
really experienced, you know, that they
will know exactly what to do. And then,
you just copy and paste the stuff, and
things explode” (P2).

Perhaps because this is not a new
problem, participants like P3 felt that
their companies are not “worried
about, like, someone just copy-and-
pasting code from Copilot or ChatGPT
[because of] having so many layers to
check it” with their existing code-quality
assurance processes.

We hypothesize that developers do not
necessarily expect absolute trust in
the accuracy of AI-generated code,
nor does absolute trust appear to be
required for developers to find AI-
generated code useful. Rather, it seems
that mostly-correct AI-generated code
that can be perfected with some tweaks
is acceptable, sufficiently valuable to
motivate widespread adoption and use,
and compatible with existing quality
assurance processes.

A
ns

w
er

Percentage of respondents

0% 10% 20% 30%

Not at all

A little

Somewhat

A lot

A great deal

Figure 5: Respondents’ reported trust in the quality of AI-generated code.

Trust in quality of AI-generated code

Error bar represents 89% uncertainty interval

24
v. 2024.3

Pe
rc

en
ta

ge
 o

f
re

sp
on

d
en

ts

w
it

h
ne

ga
ti

ve
 o

ut
lo

ok

Years in the future
Responses about one, five, or 10 years into the future

40

30

20

10

1 5 10 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10
0

Product quality Delivery speed Organizational
performance

Career Society Environment

Expectations for AI’s future

Overall, our findings indicate AI has
already had a massive impact on
development professionals’ work, a trend
we expect to continue to grow. While it
would be impossible to predict exactly
how AI will impact development — and
our world — in the future, we asked
respondents to speculate and share their
expectations about the impacts of AI in
the next one, five, and 10 years.

Respondents reported quite positive
impacts of AI on their development work
in reflecting on their recent experiences,
but their predictions for AI’s future
impacts were not as hopeful.

Artificial intelligence: Adoption and attitudes

Expected negative impacts of AI

Optimistically, and consistent with
our findings that AI has positively
impacted development professionals’
performance, respondents reported that
they expect the quality of their products
to continue to improve as a result of AI
over the next one, five, and 10 years.

However, respondents also reported
expectations that AI will have net-
negative impacts on their careers, the
environment, and society, as a whole,
and that these negative impacts will be
fully realized in about five years time.
This data is visualized in Figure 6.

Figure 6: Respondents’ expectations about AI’s future negative impacts in the next one, five, and 10 years.

Error bar represents 89% credibility interval

25
v. 2024.3

Artificial intelligence: Adoption and attitudes

Interview participants held similarly
mixed feelings about the future impacts
of AI as our survey respondents. Some
wondered about future legal actions in a
yet-to-be-decided regulatory landscape,
worrying they might “be on the wrong
side of it, if things get decided” (P3).

Others echoed long-held anxieties and
asked, “Is it going to replace people?
Who knows? Maybe.” (P2), while their
peers dismissed their fears by drawing
parallels to the past, when “people
used to say ‘Oh, Y2K! Everything will be
doomed!’ Blah, blah… because it was a
new thing, at that time.

1. https://www.sciencedaily.com/releases/2024/03/240306144729.htm
2. https://tech.co/news/list-ai-failures-mistakes-errors
3. https://klyker.com/absurd-yoga-poses-generated-by-ai/
4. https://dora.dev/dora-report-2023
5. Rogers, Everett M., Arvind Singhal, and Margaret M. Quinlan. “Diffusion of innovations.” An integrated approach to communication

theory and research. Routledge, 2014. 432-44, Tornatzky, L. G., & Fleischer, M. (1990). The processes of technological innovation.
Lexington, MA: Lexington Books

6. (P[N]), for example (P1), indicates pseudonym of interview participants.

[But,] nothing got replaced. In fact, there
were more jobs created. I believe the
same thing will happen with AI” (P1).

The future effects AI will have on our
world remain unclear. But, this year, our
survey strongly indicates that AI has
produced an unignorable paradigm shift
in the field of software development. So
far, the changes have been well-received
by development professionals.

26
v. 2024.3

Exploring the
downstream
impact of AI

Takeaways
This chapter investigates the impact
of AI adoption across the spectrum,
from individual developers to entire
organizations. The findings reveal a
complex picture with both clear benefits
and unexpected drawbacks. While AI
adoption boosts individual productivity,
flow, and job satisfaction, it may also
decrease time spent on valuable work.

Similarly, AI positively impacts code
quality, documentation, and review
processes, but surprisingly, these
gains do not translate to improved
software delivery performance.
In fact, AI adoption appears detrimental
in this area, while its effect on product
performance remains negligible.

Exploring the downstream impact of AI

Despite these challenges, AI adoption
is linked to improved team and
organizational performance. This chapter
concludes with a call to critically evaluate
AI's role in software development
and proactively adapt its application
to maximize benefits and mitigate
unforeseen consequences.

27
v. 2024.3

Exploring the downstream impact of AI

The AI moment & DORA

Estimates suggest that leading tech
giants will invest approximately $1 trillion
on the development of AI in the next five
years.1 This aligns well with a statistic
presented in the "Artificial intelligence:
Adoption and attitudes" chapter that 81%
of respondents say their company has
shifted resources into developing AI.

The environmental impacts of AI further
compound the costs. Some estimates
suggest that by 2030, AI will drive an
increase in data center power demand
by 160%.2 The training of an AI model can
add up to roughly “the yearly electricity
consumption of over 1,000 U.S.
households”.3 It is no surprise that more
than 30% of respondents think AI is going
to be detrimental to the environment.

Beyond the development and
environmental costs, we have the
potential for adoption costs.

This could come in many forms, from
productivity decreases to the hiring of
specialists. These adoption costs could
also come at a societal level. Over a
third of respondents believe AI will harm
society in the coming decade. Given
these costs, it seems natural for people to
have a deep curiosity about the returns.

This curiosity has manifested itself in a
wealth of media, articles, and research
whose sentiment and data are both
mixed, at least to some extent.

Some believe that AI has dramatically
enhanced the ability of humanity,4 others
suggest that AI is little more than a
benign tool for helping with homework,5
and some fear that AI will be the downfall
of humanity.6

Evidence for proximal outcomes, such
as the ability to successfully complete a
particular task, is largely positive.7 When
the outcome becomes more distant,
such as a team’s codebase, the results
start becoming a little less clear and a
little less positive. For example, some
research has suggested that code churn
may double from the pre-2021 baseline.8

The challenge of understanding these
downstream effects is unsurprising.
The further away the effect is from
the cause, the less pronounced and
clear the connection.

28
v. 2024.3

Evaluating the downstream effects of
AI mimics quantifying the effect of a
rock thrown into a lake. You can most
easily attribute the ripples closest to the
impact point of the rock in the water,
but the farther from the entry point you
go, the less pronounced the effect of
the rock is and the harder it is to ascribe
waves to its impact.

AI is essentially a rock thrown into a
stormy sea of other processes and
dynamics. Understanding the extent
of the waves caused by AI (or any
technology or practice) is a challenge.
This may be part of the reason the
industry has struggled to adopt a
principled set of measurement and
analytic frameworks for understanding
the impact of AI.9

Exploring the downstream impact of AI

Our approach is specifically designed to
be useful for these types of challenges.
DORA is designed to understand the
utility or disutility of a practice. We’ve
explored the downstream impacts
of myriad practices over the last 10
years, including security practices,
transformational leadership, generative
cultures, documentation practices,
continuous integration, continuous
delivery, and user-centricity.10

We believe that DORA’s approach11 can
help us learn about AI’s impact, especially
as we explore the effects of AI across
many outcomes.

29
v. 2024.3

The first challenge of capturing the
impact of adopting AI is measuring
the adoption of AI. We determined
measuring usage frequency is likely not
as meaningful as measuring reliance
for understanding AI’s centrality to
development workflows. You might only
do code reviews or write documentation
a few times a month or every couple
of months, but you see these tasks as
critically important to your work.

Conversely, just because you use AI
frequently does not mean that you are
using AI for work that you consider
important or central to your role.

Given this, we asked respondents
about their reliance on AI in general
and for particular tasks. The previous
chapter details the survey results
and their interpretation.

Measuring AI adoption

Exploring the downstream impact of AI

Using factor analysis, we found our
“general” AI reliance survey item had high
overlap with reported AI reliance on the
following tasks:

• Code Writing

• Summarizing information

• Code explanation

• Code optimization

• Documentation

• Test writing

The strong commonality and covariance
among these seven items suggests
an underlying factor that we call AI
adoption.

30
v. 2024.3

As we do every year, we measured
a variety of constructs related to an
individual’s success and well-being:

AI’s impact on individuals is a story of clear
benefits (and some potential tradeoffs)

We wanted to figure out if the way
respondents answered these questions
changes as a function of adopting AI. The
results suggest that is often the case.

Exploring the downstream impact of AI

Figure 7 is a visualization that shows
our best estimates about the impact of
adopting AI on an individual’s success
and well-being.

A single item designed to capture someone’s overall feeling about
their job.

Job satisfaction

A factor that encapsulates the multifaceted nature of burnout,
encompassing its physical, emotional, and psychological
dimensions, as well as its impact on personal life.

Burnout

A single item designed to capture how much focus a person tends
to achieve during development tasks.

Flow

A factor score designed to measure the extent an individual
feels effective and efficient in their work, creating value and
achieving tasks.

Productivity

A single item measuring the percentage of an individual’s
time spent on repetitive, manual tasks that offer little
long-term value.

Time doing
toilsome work

A single item measuring the percentage of an individual's time
spent on tasks that they consider valuable.

Time doing
valuable work

31
v. 2024.3

-0.6%

2.6%

2.2%

2.1%

0.4%

-2.6%Time doing valuable work

Burnout

Time doing toilsome work

Productivity

Job satisfaction

Flow

-4 -2 0 2

Estimated % change in outcome

O
ut

co
m

e

Exploring the downstream impact of AI

Figure 7: Impacts of AI adoption on individual success and well-being
Error bar = 89% uncertainty interval
Point = estimated value

If an individual increases AI adoption by 25%…

The clear benefits

The story about the benefit of adopting
AI for individuals is largely favorable,
but like any good story, has some
wrinkles. What seems clear is that
AI has a substantial and beneficial
impact on flow, productivity, and job
satisfaction (see Figure 7).

Productivity, for example, is likely to
increase by approximately 2.1% when
an individual’s AI adoption is increased
by 25% (see Figure 7). This might seem
small, but this is at the individual-level.
Imagine this pattern extended across
tens of developers, or even tens of
thousands of developers.

This pattern is what we expected.
We believe it emerged in part thanks
to AI’s ability to synthesize disparate
sources of information and give a
highly personalized response in a single
location. Doing this on your own takes
time, lots of context switching, and is less
likely to foster flow.

Given the strong connection that
productivity and flow have with job
satisfaction, it shouldn’t be surprising
that we see AI adoption leads to higher
job satisfaction.

32
v. 2024.3

Exploring the downstream impact of AI

The potential tradeoffs

Here is where the story gets a little
complicated. One value proposition for
adopting AI is that it will help people
spend more time doing valuable work.
That is, by automating the manual,
repetitive, toilsome tasks, we expect
respondents will be free to use their time
on “something better.” However, our
data suggest that increased AI adoption
may have the opposite effect—reducing
reported time spent doing valuable
work—while time spent on toilsome work
appears to be unaffected.

Markers of respondents’ well-being, like
flow, job satisfaction, and productivity
have historically been associated with
time spent doing valuable work. So,
observed increases in these measures
independently of decreases in time spent
on valuable work are surprising.

A good explanation of these patterns
will need to wrestle with this seeming
incongruity. A good explanation of
a movie cannot ignore a scene that
contradicts the explanation. A good
explanation of a book cannot ignore a
chapter that doesn’t fit neatly into the
explanation. Similarly, a good explanation
of these patterns cannot just focus on a
subset of the patterns that allows us to
tell a simple story.

There are innumerable hypotheses that
could fit the data, but we came up with a
hypothesis that seems parsimonious with
flow, productivity, and job satisfaction
benefitting from AI while time spent
doing valuable work decreases and toil
remains unchanged.

We call our hypothesis the vacuum
hypothesis. By increasing productivity
and flow, AI is helping people work more
efficiently. This efficiency is helping
people finish up work they consider
valuable faster.

This is where the vacuum is created;
there is extra time. AI does not steal
value from respondents’ work, it
expedites its realization.

33
v. 2024.3

To make sense of these counterintuitive
findings we explored more deeply what
types of work respondents judge to be
valuable or toilsome.

Traditional wisdom, our past reports,
and qualitative data from our interviews
suggest that respondents find
development-related tasks, like coding,
to be valuable work, while less-valuable,
even toilsome, work typically includes
tasks associated with organizational
coordination, like attending meetings.
Within this categorization scheme, AI
is better poised to assist with “valuable”
work than “toilsome” work, as
defined by respondents.

We turned to qualitative data from
our interviews and found that, when
responding to the moderator’s question
of whether or not they would consider
their work “meaningful,” participants
frequently measured the value of their
work in relation to the impact of their
work on others.

This is solidified by two years of past
DORA evidence of the extremely
beneficial impact of user-centricity
on job satisfaction.

For example, when describing a recent
role shift, P1012 indicated making the
decision because “It helps me impact
more people. It helps me impact more
things.” Similarly, P11 noted “if you build
something from scratch and see it's
delivered to a consumer or customer,
you can feel that achievement, you can
say to yourself, ‘Yeah! I delivered this and
people use that!’”

Understanding that the “meaningfulness”
of development work is derived from
the impact of the solution created—
not directly from the writing of the
code—helps explain why we observed
respondents spending less time on
valuable work, while also feeling more
satisfied with their jobs.

Wait, what is valuable work?

Exploring the downstream impact of AI34
v. 2024.3

While AI is making the tasks people
consider valuable easier and faster, it
isn’t really helping with the tasks people
don’t enjoy. That this is happening while
toil and burnout remain unchanged,
obstinate in the face of AI adoption,
highlights that AI hasn’t cracked the
code of helping us avoid the drudgery of
meetings, bureaucracy, and many other
toilsome tasks (Figure 8).

Exploring the downstream impact of AI

Figure 8: Not data, but a visualization of our hypothesis: AI is
helping with our valuable work, but not helping us with our toil.

The good news is that AI hasn’t made
it worse, nor has it negatively affected
respondents’ well-being.

Toilsome work

What AI is
helping with

Valuable work

35
v. 2024.3

The last section explored outcomes
focused on the individual. The next
set of outcomes shift focus to explore
processes, codebases, and team
coordination. Here is a list of the
outcomes we measured:

The promising impact of AI
on development workflows

Exploring the downstream impact of AI

The degree to which code’s intricacy and sophistication
hinders productivity.

Code complexity

The extent to which existing technical debt within the
primary application or service has hindered productivity
over the past six months.

Technical debt

The average time required to complete a code review for the
primary application or service.

Code review
speed

The typical duration from proposing a code change to receiving
approval for production use in the primary application or service.

Approval speed

The level of agreement with the statement: "Over the last
three months, I have been able to effectively collaborate with
cross-functional team members.”

Cross-functional
team (XFN)
coordination

The level of satisfaction or dissatisfaction with the quality of code
underlying the primary service or application in the last six months.

Code quality

The perception of internal documentation (manuals, readmes, code
comments) in terms of its reliability, findability, updatedness, and
ability to provide support.

Documentation
quality

36
v. 2024.3

O
ut

co
m

e

0.1%

1.3%

-1.8%

3.4%

3.1%

7.5%

-0.8%

Code complexity

Tech debt

XFN coordination

Approval speed

Code review speed

Code quality

Documentation quality

0 5

Estimated % change in outcome

Overall, the patterns here suggest a
very compelling story for AI. Here are the
substantial results from this section.

A 25% increase in AI adoption is
associated with a…

7.5% increase in documentation quality

3.4% increase in code quality

3.1% increase in code review speed

1.3% increase in approval speed

1.8% decrease in code complexity

As before, our goal here is to understand
if these aspects seem to vary as a
function of adopting AI. Figure 9 is
a visualization that shows our best
estimates of the change in these
outcomes in relation to a 25% increase
in AI adoption.

Exploring the downstream impact of AI

If AI adoption increases by 25%…

Figure 9: Impacts of AI adoption on organizations.
Error bar = 89% uncertainty interval
Point = estimated value

37
v. 2024.3

The data presented in the "Artificial
intelligence: Adoption and attitudes"
chapter show the most common
use of AI is for writing code. 67% of
respondents report that AI is helping
them improve their code. Here, we see
further confirmation of that sentiment.
AI seems to improve code quality and
reduce code complexity (Figure 9).
When combined with some potential
refactoring of old code, the high-quality,
AI-generated code could lead to an
overall better codebase. This codebase
might be additionally improved by having
better access to quality documentation,
which people are using AI to generate
(see Artificial intelligence: Adoption and
attitudes).

Better code is easier to review and
approve. Combined with AI-assisted
code reviews, we can get faster reviews
and approvals, a pattern that has clearly
emerged in the data (Figure 9).

Of course, faster code reviews and
approvals do not equate to better and
more thorough code review processes
and approval processes. It is possible
that we’re gaining speed through an
over-reliance on AI for assisting in the
process or trusting code generated by AI
a bit too much. This finding is not at odds
with the patterns in Figure 9, but it also
not the obvious conclusion.

Further, it isn’t obvious whether the
quality of the code and the quality of the
documentation are improving because
AI is generating it or if AI has enhanced

Exploring the downstream impact of AI

our ability to get value from what would
have otherwise been considered low-
quality code and documentation. What
if the threshold for what we consider
quality code and documentation simply
moves down a little bit when we’re using
AI because AI is powerful enough to help
us make sense of it? These two ways of
understanding these patterns are not
mutually exclusive interpretations; both
could be contributing to these patterns.

What seems clear in these patterns is
that AI helps people get more from the
documents they depend on and the
codebases they work on. AI also helps
reduce costly bottlenecks in the code
review and approval process. What isn’t
obvious is how exactly AI is doing this
and if these benefits lead to further
downstream benefits, such as software
delivery improvements.

38
v. 2024.3

-7.2%

-1.5%

Delivery stability

Delivery throughput

-7.5 -5.0 -2.5 0.0

Estimated % change in outcome

O
ut

co
m

e

For the past few years, we have seen that software delivery
throughput and software delivery stability indicators were
starting to show some independence from one another.
While the traditional association between throughput and
stability has persisted, emerging evidence suggests these
factors operate with sufficient independence to warrant
separate consideration.

AI is hurting delivery performance

Exploring the downstream impact of AI

If AI adoption increases by 25%…

Figure 10: Impacts of AI adoption on delivery throughput and stability.
Error bar = 89% uncertainty interval
Point = estimated value

39
v. 2024.3

Contrary to our expectations, our
findings indicate that AI adoption is
negatively impacting software delivery
performance. We see that the effect on
delivery throughput is small, but likely
negative (an estimated 1.5% reduction
for every 25% increase in AI adoption).
The negative impact on delivery stability
is larger (an estimated 7.2% reduction for
every 25% increase in AI adoption). This
data is visualized in Figure 10.

Historically, our research has found
that improvements to the software
development process, including
improved documentation quality, code
quality, code review speed, approval
speed, and reduced code complexity
lead to improvements in software
delivery. So, we were surprised to see
AI improve these process measures,
while seemingly hurting our performance
measures of delivery throughput
and stability.

Drawing from our prior years’ findings,
we hypothesize that the fundamental
paradigm shift that AI has produced in
terms of respondent productivity and
code generation speed may have caused
the field to forget one of DORA’s most
basic principles—the importance of
small batch sizes. That is, since AI allows
respondents to produce a much greater
amount of code in the same amount
of time, it is possible, even likely, that
changelists are growing in size. DORA
has consistently shown that larger
changes are slower and more prone to
creating instability.

Considered together, our data
suggest that improving the
development process does not
automatically improve software
delivery—at least not without proper
adherence to the basics of successful
software delivery, like small batch sizes
and robust testing mechanisms.

The beneficial impact that AI has
on many important individual and
organizational factors that foster the
conditions for high software delivery
performance is reason for optimism.
But, AI does not appear to be a panacea.

Exploring the downstream impact of AI40
v. 2024.3

Here we look at AI's relationship with
our most downstream outcomes:

High-performing teams and organizations
use AI, but products don’t seem to benefit.

Exploring the downstream impact of AI

This is a factor score that accounts for an organization's
overall performance, profitability, market share, total
customers, operating efficiency, customer satisfaction,
quality of products/service, and ability to achieve goals.

Organizational
performance

This is a factor score that accounts for a team’s ability to
collaborate, innovate, work efficiently, rely on each other,
and adapt.

Team
performance

This is a factor score that accounts for the usability,
functionality, value, availability, performance
(for example, latency), and security of a product.

Product
performance

41
v. 2024.3

Estimated % change in outcome

O
ut

co
m

e

2.3%

0.2%

1.4%

Product performance

Team performance

Organizational performance

0 1 2 3

Drawing a connection from these
outcomes to an individual adopting AI
is difficult and noisy. Sometimes it feels
like we’re trying to analyze the impact of
what you had for lunch today on how well
your organization performs this year.

There is a logic to making jumps
between the micro-level (for example,
an individual) to the macro-level
(for example, an organization). We
discuss that inferential leap in the
Methodology chapter. For now, let’s
just check out the associations:

Exploring the downstream impact of AI

If AI adoption increases by 25%…

Figure 11. Impacts of AI adoption on organizational, team, and product performance.
Error bar = 89% uncertainty interval
Point = estimated value

42
v. 2024.3

Organization-level performance (an
estimated 2.3% increase for every 25%
increase in AI adoption) and team-level
performance (an estimated 1.4% increase
for every 25% increase in AI adoption)
seem to benefit from AI adoption (Figure
11). Product performance, however, does
not seem to have an obvious association
with AI adoption. Now, we can shift to
trying to understand what is underlying
these effects.

We hypothesize that the factors
contributing to strong team and
organizational performance differ from
those influencing product performance.

Teams and organizations rely heavily
on communication, knowledge sharing,
decision making, and healthy culture. AI
could be alleviating some bottlenecks in
those areas, beneficially impacting teams
and the organizations.

Product success, however, might involve
additional factors. Although good
products surely have similar underlying
causes as good high performing teams
and organizations, there is likely a closer
and more direct connection to the
development workflow and the software
delivery, both of which may be still
stabilizing after the introduction of AI.

The unique importance of technical
aspects underlying a good product
might explain part of it, but there is
also an art and empathy underlying a
great product. This might be difficult to
believe for people who think everything

is a problem to be resolved through
computation, but certain elements of
product development, such as creativity
or user experience design, may still (or
forever) heavily rely on human intuition
and expertise.

The fact remains that organization,
team, and product performance are
undeniably interconnected. When looking
at bivariate correlations (Pearson), we
find product performance has a medium
positive correlation with both team
performance (r = 0.56, 95% confidence
interval = 0.51 to 0.60) and organizational
performance (r = 0.47, 95% confidence
interval = 0.41 to 0.53).

These outcomes influence each
other reciprocally, creating clear
interdependencies. High-performing
teams tend to develop better products,
but inheriting a subpar product
can hinder their success. Similarly,
high-performing organizations foster
high-performing teams through
resources and processes, but
organizational struggles can stifle team
performance. Therefore, if AI adoption
significantly benefits teams and
organizations, it's reasonable to expect
benefits for products to emerge as well.

The adoption of AI is just starting.
Some benefits and detriments may take
time to materialize, either due to the
inherent nature of AI's impact or the
learning curve associated with
its effective utilization.

Exploring the downstream impact of AI43
v. 2024.3

Time using AI

Detriment

Benefit

We are here Product

Teams

Exploring the downstream impact of AI

Perhaps the story is simply that
we're figuring out how AI can help
organizations and teams before
we’ve fully realized its potential for
product innovation and development.
Figure 12 tries to visualize how this
might be unfolding.

Figure 12: Representations of different learning curves. This is an abstraction for demonstrative
purposes. This is not derived from real data.

44
v. 2024.3

Here are some thoughts
about how to orient your
AI adoption strategy:

We wanted to understand the potential
of AI as it currently stands to help
individuals, teams, and organizations. The
patterns that are emerging underscore
that it isn’t all hot air; there really is
something happening.

There is clear evidence in favor
of adopting AI. That said, it is also
abundantly clear that there are plenty of
potential roadblocks, growing pains, and
ways AI might have deleterious effects.

So now what?

Exploring the downstream impact of AI

Adopting AI at scale might not be as
easy as pressing play. A measured,
transparent, and adaptable strategy
has the potential to lead to substantial
benefits. This strategy is going to need
to be co-developed by leaders, teams,
organizations, researchers, and those
developing AI.

Leaders and organizations need to find
ways to prioritize adoption in the areas
that will best support their employees.

Define a clear AI mission and
policies to empower your
organization and team.

Provide employees with transparent
information about your AI mission,
goals, and AI adoption plan. By
articulating both the overarching
vision and specific policies —
addressing procedural concerns
such as permitted code placement
and available tools — you can
alleviate apprehension and position
AI as a means to help everyone focus
on more valuable, fulfilling,
and creative work.

45
v. 2024.3

Exploring the downstream impact of AI

It is obvious that there is a lot to be excited about and even more to learn. DORA will
stay tuned in and do our best to offer honest, accurate, and useful perspectives, just
as it has over the past decade.

1. https://www.goldmansachs.com/insights/top-of-mind/gen-ai-too-much-spend-too-little-benefit
2. https://www.goldmansachs.com/insights/articles/AI-poised-to-drive-160-increase-in-power-demand
3. https://www.washington.edu/news/2023/07/27/how-much-energy-does-chatgpt-use/
4. https://www.gatesnotes.com/The-Age-of-AI-Has-Begun
5. https://www.businessinsider.com/ai-chatgpt-homework-cheating-machine-sam-altman-openai-2024-8
6. https://www.safe.ai/work/statement-on-ai-risk
7. https://github.blog/news-insights/research/research-quantifying-github-copilots-impact-on-developer-productivity-and-

happiness/
8. https://www.gitclear.com/coding_on_copilot_data_shows_ais_downward_pressure_on_code_quality
9. https://www.nytimes.com/2024/04/15/technology/ai-models-measurement.html
10. https://dora.dev/capabilities
11. we should be clear that this isn’t a unique approach, but it is a somewhat unique approach for this space
12. (P[N]), for example (P1), indicates pseudonym of interview participants.

Create a culture of continuous
learning and experimentation
with AI.

Foster an environment that
encourages continuous exploration
of AI tools by dedicating time for
individuals and teams to discover
beneficial use cases and granting
them autonomy to chart their
own course. Build trust with AI
technologies through hands-on
experience in sandbox or low-risk
environments. Consider further
mitigating risks by focusing on
developing robust test automation.
Implement a measurement
framework that evaluates AI not by
sheer adoption but by meaningful
downstream impacts — how it helps
employees thrive, benefits those who
rely on your products, and unlocks
team potential.

Recognize and leverage AI’s trade-
offs for competitive advantage.

By acknowledging potential
drawbacks — such as reduced
time spent on valuable work, over-
reliance on AI, the potential for
benefits gained in one area leading
to challenges in another, and impacts
on software delivery stability and
throughput — you can identify
opportunities to avoid pitfalls and
positively shape AI’s trajectory at
your organization, on your team.
Developing an understanding not
only of how AI can be beneficial, but
of how it can be detrimental allows
you to expedite learning curves,
support exploration, and translate
your learnings into action and a real
competitive advantage.

46
v. 2024.3

https://github.blog/news-insights/research/research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/
https://github.blog/news-insights/research/research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/

Introduction
Platform engineering is an emerging
engineering discipline that has been
gaining interest and momentum across
the industry. Industry leaders such as
Spotify and Netflix, and books such as
Team Topologies1 have helped excite
audiences.

Platform engineering is a sociotechnical
discipline where engineers focus on
the intersection of social interactions
between different teams and the
technical aspects of automation, self-
service, and repeatability of processes.
The concepts behind platform
engineering have been studied for many
years, including by DORA.

Generally, our research is focused on
how we deliver a software to external
users, whereas the output of platform
teams is typically an inwardly-focused
set of APIs, tools, and services designed
to support the software development
and operations lifecycle.

Platform engineering

Platform
engineering

47
v. 2024.3

In platform engineering, a lot of energy
and focus is spent on improving the
developer experience by building golden
paths, which are highly-automated,
self-service workflows that users of
the platform use when interacting
with resources required to deliver and
operate applications. Their purpose is
to abstract away the complexities of
building and delivering software such
that the developer only needs to worry
about their code.

Some examples of the tasks
automated through golden paths
include new application provisioning,
database provisioning, schema
management, test execution, build and
deployment infrastructure provisioning,
and DNS management.

Concepts in platform engineering such
as moving a capability down (sometimes
called “shifting down”)2 into a shared
system can seem counter to approaches
like 'you build it, you run it.' However,
we think of platform engineering as a
method to scale the adoption of these
practices across an organization because
once a capability is in the platform,
teams essentially get it for free through
adoption of the platform.

For example, if the platform has
the capability to execute unit tests
and report back results directly to
development teams, but without that
team needing to build and manage the
testing execution environment, then the
continuous integration platform feature
enables teams to focus on writing
high-quality tests. In this example, the
continuous integration feature can scale
across the larger organization and make
it easier for multiple teams to improve
their capabilities with continuous testing3
and test automation.4

Platform engineering48
v. 2024.3

A key factor in the success is to
approach platform engineering with
user-centeredness (users in the context
of an internal developer platform are
developers), developer independence,
and a product mindset. This isn’t too
surprising given that user centricity was
identified as a key factor in improved
organizational performance this year
and in previous years.5 Without a user-
centered approach, the platform will be
more a hindrance rather than an aid.

In this year’s report, we sought to test
the relationship between platforms
and software delivery and operational
performance. We found some positive
results. Internal developer platform
users had 8% higher levels of individual

productivity and 10% higher levels of
team performance. Additionally, an
organization's software delivery and
operations performance increases
6% when using a platform. However,
these gains do not come without
some drawbacks. Throughput and
change stability saw decreases of 8%
and 14%, respectively, which was a
surprising result.

In the next sections we’ll dig deeper
into the numbers, nuances, and some
surprising data that this survey revealed.
Whether your platform engineering
initiative is just starting or has been
underway for many years, application of
the key findings can help your platform
be more successful.

6.5

7.0

7.5

8.0

Es
tim

at
ed

 p
ro

du
ct

iv
ity

 fa
ct

or
 s

co
re

 (0
-1

0
)

No platform Platform

Platform engineering

Each dot is one of 8000 estimates of the most plausible mean productivity score
Figure 13: Productivity factor for individuals when using or not using an internal developer platform.

49
v. 2024.3

5

6

7

less than a year 1-2 years 2-5 years more than 5 years

Platform age

O
rg

an
iz

at
io

na
l p

erf
or

m
an

ce
The promise of platform engineering

Internal developer platforms are
garnering interest from large sections
of the software developer and IT
industry given the potential efficiency
and productivity gains that could be
achieved through the practice. For this
year’s survey, we left the definition of an
internal developer platform quite broad6

and found that 89% of respondents are
using an internal developer platform.
The interaction models are very diverse
across that population.

These data points align with the broad
level of industry interest in platform
engineering and the emerging nature
of the field.

Overall, the impact of a platform is
positive, individuals were 8% more
productive and teams performed
10% better when using an internal
developer platform.

Beyond productivity, we also see
gains when a platform is used in an
organization’s overall performance, with
an increase of 6%. On the whole, the
organization is able to quickly deliver
software, meet user needs, and drive
business value due to the platform.

Platform engineering

Figure 14: Organization performance change when using an internal developer platform vs the age of the platform.

50
v. 2024.3

Platform engineering

When taking into account the age of
the platform with productivity, we see
initial performance gains at the onset
of a platform engineering initiative,
followed by decrease and recovery as
the platform ages and matures. This
pattern is typical of transformation
initiatives that experience early gains
but encounter challenges once those
have been realized.

In the long run, productivity gains
are maintained showing the overall
potential of an internal developer
platform’s role in the software delivery
and operational processes.

Key finding - impact of developer
independence

Developer independence had a
significant impact on the level of
productivity at both the individual and
team levels when delivering software
using an internal developer platform.
Developer independence is defined
as “developers' ability to perform their
tasks for the entire application lifecycle,
without relying on an enabling team.”

At both the team and individual level we
see a 5% improvement in productivity
when users of the platform are able to
complete their tasks without involving an
enabling team. This finding points back
to one of the key principles of platform
engineering, focusing on enabling self-
service workflows.

For platform teams, this is key because
it points to an important part of the
platform engineering process, collecting
feedback from users. Survey responses
did not indicate which forms of feedback
are most effective, but common
methods are informal conversations
and issue trackers, followed by ongoing
co-development, surveys, telemetry,
and interviews.

All of these methods can be effective
at understanding whether or not
users are able to complete their tasks
independently. The survey data also
showed that not collecting feedback on
the platform has a negative impact.

51
v. 2024.3

Platform engineering

Secondary finding - impact of a
dedicated platform team

Interestingly, the impact on productivity
of having a dedicated platform team
was negligible for individuals. However,
it resulted in a 6% gain in productivity
at the team level. This finding is
surprising because of its uneven impact,
suggesting that having a dedicated
platform team is useful to individuals,
but the dedicated platform team is more
impactful for teams overall.

Since teams have multiple developers
with different responsibilities and skills,
they naturally have a more diverse
set of tasks when compared to an
individual engineer. It is possible that
having a dedicated platform engineering
team allows the platform to be more
supportive of the diversity in tasks
represented by a team.

Overall, the impact of having an
internal developer platform has a
positive impact on productivity.

The key factors are:

A user-centered approach that
enables developer independence
through self-service and
workflows that can be completed
autonomously. Recall that in the
context of the platform, users
are internal engineering and
development teams.

As with other transformations,
the “j-curve” also applies to
platform engineering, so productivity
gains will stabilize through
continuous improvement.

52
v. 2024.3

Platform engineering

The unexpected
downside

Throughput

In the case of throughput, we saw
approximately an 8% decrease when
compared to those who don’t use a
platform. We have hypotheses about
what might be the underlying cause.

First, the added machinery that changes
need to pass through before getting
deployed to production decreases the
overall throughput of changes. In general,
when an internal developer platform is
being used to build and deliver software,
there is usually an increase in the number
of “handoffs” between systems and
implicitly teams.

For example, when code is committed
to source control, it is automatically
picked up by different systems for
testing, security checks, deployment,
and monitoring.

While platform engineering presents
some definite upsides, in terms of teams
and individuals feeling more productive
and improvements in organizational
performance, platform engineering
had an unexpected downside: We also
found that throughput and change
stability decreased.

Unexpectedly, we discovered a very
interesting linkage between change
instability and burnout.

Each of these handoffs is an opportunity
for time to be introduced into the
overall process resulting in a decrease in
throughput, but a net increase in ability
to get work done.

Second, for respondents who reported,
they are required to “exclusively use the
platform to perform tasks for the entire
app lifecycle,” there was a 6% decrease
in throughput. While not a definitive
connection, it could also be related to
the first hypothesis.

If the systems and tools involved in
developing and releasing software
increases with the presence of a
platform, being required to use the
platform when it might not be fit for
purpose or naturally-increasing latency
in the process could account for the
relationship between exclusivity and
decrease in productivity.

To counter this it is important to be
user-centered and work toward
user independence in your platform
engineering initiatives.

53
v. 2024.3

Platform engineering

Change instability and burnout

When considering the stability of the
changes to applications being developed
and operated when using an internal
developer platform, we observed a
surprising 14% decrease in change
stability. This indicates that the change
failure rate and rate of rework are
significantly increased when a platform
is being used.

Even more interesting, in the results
we discovered that instability in
combination with a platform is linked
to higher levels of burnout. That isn’t
to say that platforms lead to burnout,
but the combination of instability and
platforms are particularly troublesome
when it comes to burnout. Similar to
the decrease in throughput, we aren’t
entirely sure why the change in burnout
occurs, but we have some hypotheses.

First, the platform enables developers
and teams to push changes with a higher
degree of confidence that if the change
is bad, it can be quickly remediated. In
this instance the higher level of instability
isn’t necessarily a bad thing since
the platform is empowering teams to
experiment and deliver changes, which
results in an increased level of change
failure and rework.

A second idea is that the platform
isn’t effective at ensuring the quality
of changes and/or deployments
to production.

It could also be that the platform
provides an automated testing
capability that exercises whatever tests
are included in the application. Yet
application teams aren't fully using that
capability by prioritizing throughput over
quality and not improving their tests.
In either scenario, bad changes are
actually making it through the process,
resulting in rework.

A third possibility is that teams with
a high level of change instability and
burnout tend to create platforms in an
effort to improve stability and reduce
burnout. This makes sense because
platform engineering is often viewed
as a practice which reduces burnout
and increases the ability to consistently
ship smaller changes. With this
hypothesis, platform engineering is
symptomatic of an organization with
burnout and change instability.

In the first two scenarios, the rework
allowed by the platform could be seen
as burdensome which could also be
increasing burnout. In particular, the
second scenario where the platform is
enabling bad changes would contribute
more to burnout, but in both scenarios
the team or individual could still feel
productive because of their ability to
push changes and features. In the third
scenario, change instability and burnout
are predictive of a platform engineering
initiative and the platform is seen as a
solution to those challenges.

54
v. 2024.3

Platform engineering

Balancing the
Trade-offs

Collaboration and feedback improve
the user-centeredness of the platform
initiative and will contribute to the long-
term success of the platform. As we
saw in the data, there are many different
methods used to collect feedback, so
employ more than one approach to
maximize feedback collection.

Second, carefully monitor the instability
of your application changes and try
to understand whether the instability
being experienced is intentional or
not. Platforms have the potential to
unlock experimentation in the terms of
instability, increase productivity, and
improve performance at scale.

However, that same instability can also
have the potential to do this at the cost
of instability and burnout, so it needs to
be carefully monitored and accounted
for throughout the platform engineering
journey. When doing so it is important to
understand your appetite for instability.
Using service level objectives (SLOs)
and error budgets from site reliability
engineering (SRE) can help you gauge
your risk tolerance and effectiveness
of the platform in safely enabling
experimentation.

Internal developer platforms put a lot of
emphasis on the developer experience,
however, there are many other teams
(including database administrators,
security, and operations) who are
required to effectively deliver and
operate software.

While platform engineering is no
panacea, it has the potential to be a
powerful discipline when it comes
to the overall software development
and operations process. As with any
discipline, platform engineering has
benefits and drawbacks.

Based on our research, there are a
couple actions you can take to balance
the trade-offs when embarking on a
platform engineering initiative. Doing so
will help your organization achieve the
benefits of platform engineering while
being able to monitor and manage any
potential downsides.

First, prioritize platform functionality
that enables developer independence
and self-service capabilities. When
doing this, pay attention to the balance
between exclusively requiring the
platform to be used for all aspects of
the application lifecycle, which could
hinder developer independence.

As good practice, a platform should
provide methods for users of a platform
to break out of the tools and automations
provided in the platform, which
contributes to independence, however,
it comes at the cost of complexity.
This trade-off can be mitigated with a
dedicated platform team that actively
collaborates with and collects feedback
from users of the platform.

55
v. 2024.3

Platform engineering

In your platform engineering initiatives,
foster a culture of user-centeredness
and continuous improvement across
all teams and aligned with the
organization’s goals.

Doing so will align the platform’s
features, services, and APIs to best serve
individual and team needs as they work
to deliver software and business value.

1. Skelton, Matthew and Pais, Manuel. 2019. Team Topologies: Organizing Business and Technology Teams for Fast Flow. IT Revolution
Press. https://teamtopologies.com/

2. https://cloud.google.com/blog/products/application-development/richard-seroter-on-shifting-down-vs-shifting-left
3. https://dora.dev/capabilities/continuous-integration/
4. https://dora.dev/capabilities/test-automation/
5. https://dora.dev/research/2023/, https://dora.dev/research/2016/
6. https://dora.dev/research/2024/questions/#platform-engineering

56
v. 2024.3

Developer experience

Takeaways
Software doesn’t build itself. Even
when assisted by AI, people build
software, and their experiences at
work are a foundational component
of successful organizations.

In this year’s report, we again found
that alignment between what developers
build and what users need allows
employees and organizations to thrive.
Developers are more productive,
less prone to experiencing burnout,
and more likely to build high quality
products when they build software
with a user-centered mindset.

Developer
experience

Ultimately, software is built for people,
so it’s the organization’s responsibility to
foster environments that help developers
focus on building software that will
improve the user experience. We also
find that stable environments, where
priorities are not constantly shifting,
lead to small but meaningful increases in
productivity and important, meaningful
decreases in employee burnout.

Environmental factors have substantial
consequences in the quality of the
products developed, and the overall
experience of developers whose job
is to build those products.

57
v. 2024.3

Put the user first, and (almost)
everything else falls into place

We think that the job of a developer
is pretty cool. Developers are at the
forefront of technological advancements
and help shape how we live, work, and
interact with the world.

Their jobs are fundamentally tied to
people–the users of the software and
applications they create. Yet developers
often work in environments that prioritize
features and innovation. There’s less
emphasis on figuring out whether these
features provide value to the people who
use the products they make.

Here we provide compelling evidence
showing that an approach to software
development that prioritizes the end
user positively impacts employees and
organizations alike.

Developer experience

This year, we asked questions focused
on understanding whether developers:

1. Incorporate user feedback to revisit
and reprioritize features

2. Know what users want to accomplish
with a specific application/service

3. Believe focusing on the user is key to
the success of the business

4. Believe the user experience is a top
business priority

58
v. 2024.3

Our findings and what they mean

Our data strongly suggests that
organizations that see users’ needs
and challenges as a guiding light
make better products.

We find that focusing on the user
increases productivity and job
satisfaction, while reducing the
risk of burnout.

Importantly, these benefits extend
beyond the individual employee to
the organization. In previous years,
we’ve highlighted that high performing
organizations deliver software quickly
and reliably. The implication is that
software-delivery performance is a
requirement for success.

However, our data indicates there’s
another path that leads to success:

Developers and their employers,
and organizations in general, can
create a user-centered approach to
software development.

We find that when organizations know
and understand users’ needs, stability
and throughput of software delivery are
not a requirement for product quality.
Product quality will be high as long as the
user experience is at the forefront.

When organizations don’t focus on
the user, don’t incorporate user
feedback into their development
process, doubling down on stable
and fast delivery is the only path to
product quality (see Figure 15).

Developer experience59
v. 2024.3

We understand the inclination that
some organizations might have to focus
on creating features and innovating
on technologies. At face value, this
approach makes sense. After all,
developers most certainly know the ins
and outs of the technology much better
than their average user.

However, developing software based on
assumptions about the user experience
increases the likelihood of developers
building features that are perhaps shiny
but hardly used.1

6

7

8

9

0.0 2.5 5.0 7.5 10.0

Delivery throughput

Pr
ed

ic
te

d
 p

ro
d

uc
t

p
erf

or
m

an
ce

Level of user centricity Low Medium High

When organizations and employees
understand how their users experience
the world, they increase the likelihood
of building features that address the real
needs of their users. Addressing real user
needs increases the chances of those
features being actually used.

Focus on building for your user and
you will create delightful products.

Figure 15: Product performance and delivery throughput across 3 levels of user centricity

Developer experience60
v. 2024.3

Why is a user-centered approach
to software development such a
powerful philosophy and practice?

Academic research shows that deriving
a sense of purpose from work benefits
employees and organizations.2,3

For example, a recent survey showed
that 93% of workers reported that it’s
important to have a job where they feel
the work they do is meaningful.4 In a
similar vein, another survey found that
on average, respondents were willing
to relinquish 23% of their entire future
earnings if it meant they could have a
job that was always meaningful.5

That’s an eye-popping trade-off
employees are willing to make. It tells us
something about what motivates people,
and that people want to spend their time
doing something that matters.

Provides a clear sense of direction:

A user-centered approach to software
development can fundamentally alter
how developers view their work. Instead
of shipping arbitrary features and
guessing whether users might use them,
developers can rely on user feedback to
help them prioritize what to build.

This approach gives developers
confidence that the features they are
working on have a reason for being.
Suddenly, their work has meaning: to
ensure people have a superb experience
when using their products and services.
There’s no longer a disconnect between
the software that’s developed and the
world in which it lives.

Developers can see the direct
impact of their work through the
software they create.

“It would be grand if everybody
could work at a company that
affects individuals outside of

the company, or [in] your local
community in a positive way. That’s

not always the case. That’s not
always possible. A lot of the grand

vision of autonomous driving is
that it is going to enable people
that can drive [to] sleep while

they’re on a motorway. That’s not
why I’m here. I want to help people

that can’t drive to be able to get
about, wherever they want, have
the freedom to do whatever they

want to do.” (P2)6

“We are, as a company, under
pressure to deliver. So, all of

these, like, nice shiny things, or
discussion points about how you
want to improve, it’s kind of, like,

with the recent change in how
we’re structured, we’re focusing
on delivery, not quality, and for

me, personally, that’s kind of a big
bugbear.” (P9)

Developer experience61
v. 2024.3

Developer experience

Increases cross-functional
collaborations:

Even the most talented developer
doesn’t build software on their own.
Building high-quality products takes the
collaboration of many people often with
different yet complementary talents.

A user-centered approach to
development allows developers
to engage in cross-functional
collaborations across the organization.
In doing so, their responsibilities
extend beyond simply shipping
software. They are now part of a team
driven to create incredible experiences
for the people who use them.

This approach to software development
can help developers break out of silos,
seek alignment, foster teamwork, and
create opportunities to learn more from
others. Problem solving takes a different
shape. It’s not just about how to solve
technical problems, but how to do so in
ways that serve the user best.

This approach can help increase
employee engagement and create an
even more intellectually-stimulating
environment that can stave off
the feelings of stagnation that are
associated with burnout.

What can organizations do?

Resist the temptation to make
assumptions about your users. Observe
them in their environments, ask them
questions, and be humble enough
to pivot based on what they tell you.
In doing so, developers will be more
productive and be less prone to burnout
while delivering higher quality products.

Based on our findings, we recommend
organizations invest time and resources
in getting to know their users. Focus on
understanding who you are building for,
and the challenges they experience.
We strongly believe this is a worthy
investment.

62
v. 2024.3

The combination of good docs and a
user-centered approach to software
development is a powerful one.

Teams that focus on the user see an
increase in product performance. When
this focus on the user is combined
with an environment of quality internal
documentation, this increase in product
performance is amplified (see Figure 16).
This finding is similar to the behavior that
we see where documentation amplifies
a technical capability’s impact on
organizational performance.7

Documentation helps propagate user
signals and feedback across the team
and into the product itself.

Developer experience

We see that internal documentation
doesn’t meaningfully affect predicted
product performance without user
signals. However, if a team has a high
quality internal documentation then user
signals included in it will have a higher
impact on product performance.

We started to look at documentation
in 2021, and every year we continue
to find extensive impact of quality
documentation. This year’s findings
adds internal documentation’s impact
on predicted product performance
to the list.

7

8

9

0.0 2.5 5.0 7.5 10.0

Documentation quality

Pr
ed

ic
te

d
 p

ro
d

uc
t

p
erf

or
m

an
ce

Low Medium HighLevel of user centricity

The graph is a composite of 12000 lines from simulations trying to estimate the most plausible pattern
Figure 16: Product performance and documentation quality across 3 levels of user centricity

63
v. 2024.3

Culture of documentation

The Agile manifesto advocates for
“working software over comprehensive
documentation”.7 We continue to find,
however, that quality documentation is a
key component of working software.

“Comprehensive documentation”
may be a phrase standing in for
unhealthy practices, which might
include documentation. Problematic
documentation includes documentation
that is created only for bureaucratic
purposes, or to paper over mistrust
between management and employees.
An unhealthy documentation culture
can also include writing documentation,
but not maintaining or consolidating
the documentation.

In these cases, our measure of quality
documentation would likely score low.
This type of content is written for the
wrong audience so doesn’t perform as
well when you try to use it while doing
your work. And too much documentation
can be as problematic as not enough.

Our measure of quality documentation
includes attributes like findability
and reliability of the documentation.
Remember, for internal documentation,
the primary audience is your colleagues
or even your future self trying to
accomplish specific tasks.8 Teams
with a healthy documentation culture
have a focus on serving these readers.
This is another way that focusing on
your users matters.

Documenting critical use cases.

Taking training in technical writing.

Defining ownership and processes
to update the documentation.

Distributing documentation work
within the team.

Maintaining documentation as part of
the software development lifecycle.

Deleting out-of-date or redundant
documentation.

Recognizing documentation work in
performance reviews and promotions.

You can create a healthy culture of documentation on your own teams by
following the practices we’ve identified to create quality documentation,
such as:

Developer experience64
v. 2024.3

Developer experience

The perils of
ever-shifting priorities

We all know the feeling. You’ve spent
the last few months working on a new
feature. You know it’s the right thing to
build for your users, you are focused and
motivated. Suddenly, or seemingly so, the
leadership team decides to change the
organization’s priorities. Now it’s unclear
whether your project will be paused,
scrapped, Frankensteined, or mutated.

This common experience can have
profound implications for employees and
organizations. Here we examine what
happens when organizations constantly
shift their priorities.

Our findings and what they mean

Overall, our findings show small
but meaningful decreases in
productivity and substantial increases
in burnout when organizations have
unstable priorities.

Our data indicates it is challenging
to mitigate this increase in burnout.
We examined whether having strong
leaders, good internal documents, and
a user-centered approach to software
development can help counteract the
effect of shifting priorities on burnout.

The answer is: They can’t. An organization
can have all these positive traits and, if
priorities are unstable, employees will still
be at risk of experiencing burnout.

65
v. 2024.3

Why are unstable
organizational priorities bad
for employees’ well-being?

We hypothesize that unstable
organizational priorities increase
employee burnout by creating unclear
expectations, decreasing employees'
sense of control, and increasing the
size of their workloads.

To be clear, we believe that the
problem is not with changing priorities
themselves. Business goals and product
direction shift all the time. It can be
good for organizational priorities to
be malleable.

We believe it is the frequency with which
priorities change that has a negative
impact on employees' well-being.
The uncertainty that accompanies
unstable priorities implies something
chronic about the frequency with which
priorities change.

Decades of academic research
have shown the detrimental effects of
chronic stress on health and well-being.9
We see parallels between research on
chronic stress and our findings.
Chronic instability increases uncertainty
and decreases perceived control.
This combination is an excellent recipe
for burnout.

What happens when
priorities stabilize?

Our findings here are a little puzzling.
We find that when priorities are
stabilized, software delivery performance
declines. It becomes slow and less stable
in its delivery.

We hypothesize that this might be
because organizations with stable
priorities might have products and
services that are generally in good shape
so changes are made less frequently. It
is also possible that stability of priorities
leads to shipping less and in larger
batches than recommended.

Nevertheless, we find this to be an
unexpected finding. Why do you think
stabilizing organizational priorities
decreases the speed and stability
of software delivery?

Developer experience66
v. 2024.3

Developer experience

7.5

8.0

8.5

9.0

Strongly disagree Mostly disagree Slightly disagree Neither agree nor disagree Slightly agree Mostly agree Strongly agree

Adding AI-powered experiences to service or application

Pr
ed

ic
te

d
 d

el
iv

er
y

st
ab

ili
ty

Building AI for end users creates
stability in priorities, but not stability
in delivery.

Incorporating AI-powered experiences
for end users stabilizes organizational
priorities. This sounds like a flashy
endorsement for AI. However, we do
not interpret this finding as telling us
something meaningful about AI itself.

Instead, we believe that shifting efforts
towards building AI provides clarity and
a northstar for organizations to follow.
This clarity, and not AI, is what leads to a
stabilization of organizational priorities.

This is worth highlighting because it tells
us something about what happens to
organizations when new technologies
emerge. New technologies bring change
and organizations need time to adapt.

This period likely leads to a
destabilization of priorities as leaders
try to figure the best move for the
organization. As the dust settles, and
organizations clarify their next steps,
priorities begin to stabilize.

Priorities stabilizing, however, doesn’t
immediately translate into the software
delivery process stabilizing. Our analyses
show that a shift to adding AI-powered
experiences into your service or
application comes with challenges and
growing pains.

We find that teams that have shifted have
a significant 10% decrease in software
delivery stability relative to teams who
have not. Here is a visualization depicting
the challenge.

*Each line is one of 4000 simulations trying to estimate the most plausible pattern
Figure 17: Software delivery stability as a function of adding AI-powered experiences
to service or application

67
v. 2024.3

1. https://www.nngroup.com/articles/bridging-the-designer-user-gap/
2. https://executiveeducation.wharton.upenn.edu/thought-leadership/wharton-at-work/2024/03/creating-meaning-at-work/
3. https://www.apa.org/pubs/reports/work-in-america/2023-workplace-health-well-being
4. https://bigthink.com/the-present/harvard-business-review-americans-meaningful-work/
5. https://hbr.org/2018/11/9-out-of-10-people-are-willing-to-earn-less-money-to-do-more-meaningful-work
6. (P[N]), for example (P1), indicates pseudonym of interview participants.
7. https://cloud.google.com/blog/products/devops-sre/deep-dive-into-2022-state-of-devops-report-on-documentation and

Accelerate State of DevOps Report 2023 - https://dora.dev/research/2023/dora-report
8. https://agilemanifesto.org/
9. Other audiences exist, such as management, regulators, or auditors.
10. Cohen S, Janicki-Deverts D, Miller GE. Psychological Stress and Disease. JAMA. 2007;298(14):1685–1687.doi:10.1001/

jama.298.14.1685

Developer experience

What can organizations do?

The answer, while easy, might not be
so simple. Based on our findings, we
recommend organizations focus on
stabilizing their priorities. This is one sure
way to counteract the negative effects of
unstable priorities on employee burnout.

Our findings show the negative effects
of unstable priorities are resistant
to having good leaders, good
documentation, and a user-centered
approach to software development.
This leads us to believe that, aside from
creating stability, there’s not much
organizations can do to avoid burnout
aside from finding ways to (1) stabilize
priorities and (2) shield employees from
having their day-to-day be impacted by
the constant shift in priorities.

68
v. 2024.3

Leading
transformations

A lot needs to be in place for
transformation to work. This year,
we’ve found high-performing teams
are ones that prioritize stability, focus
on their users, have good leaders,
and craft quality documentation. Our
research points to some useful paths
in helping you plot a course towards
successful transformation.

We have found the key to success is
to approach transformation from a
mindset of continuous improvement.
High performers in our study understand
the variables holding them back, and
methodically and continuously improve
using the DORA metrics as a baseline.
While long-term success requires
excellence in all pillars, a decade of DORA
research has pointed us to four specific,
impactful ways to get started on driving
transformation in your own organization.

Leading transformations69
v. 2024.3

Transformational leadership is a
model in which leaders inspire and
motivate employees to achieve higher
performance by appealing to their
values and sense of purpose, facilitating
wide-scale organizational change.

These leaders encourage their teams
to work towards a common goal through
the following dimensions:1

Transformational
leadership

They have a clear vision of where their team and the
organization are going.

Vision

 They consider others’ personal feelings before acting; behave in
a manner which is thoughtful of others’ personal needs.

Supportive
leadership

They say positive things about the team; make employees proud
to be a part of their organization; encourage people to see
changing conditions as situations full of opportunities.

Inspirational
communication

They challenge team members to think about old problems
in new ways and to rethink some of their basic assumptions
about their work.

Intellectual
stimulation

They commend team members when they do a better-than-
average job; acknowledge improvement in quality of team
members' work.

Personal
recognition

Leading transformations70
v. 2024.3

This year, we saw that transformational
leadership leads to a boost in
employee productivity. We see that
increasing transformational leadership
by 25% leads to a 9% increase in
employee productivity.

Transformational leadership can help
improve more than just productivity.
Having good leaders can also lead to:

• A decrease in employee burnout

• An increase in job satisfaction

• An increase in team performance

• An improved product performance

• An improved organizational
performance

Our research found a statistically
significant relationship between the
above qualities of leadership and IT
performance in 2017. High-performing
teams had leaders with strong scores
across all five characteristics and low-
performing teams had the lowest scores.
Additionally, we saw that there’s a strong
correlation between transformative
leadership and Employee Net Promoter
Score (eNPS), the likelihood to
recommend working at a company.

That said, transformative leadership by
itself does not lead to high performance,
but should be seen as an enabler.

Transformative leadership plays a key
role in enabling the adoption of technical
and product-management capabilities
and practices. This is enabled by (1)
delegating authority and autonomy to
teams; (2) providing them the metrics
and business intelligence needed to solve
problems; and (3) creating incentive
structures around value delivery as
opposed to feature delivery.

Transformation takes time and requires
tools. Resources must be allocated by
leadership specifically for the task of
improvement. Good leaders play a key
role in providing teams with the time and
funding necessary to improve. Engineers
should not be expected to learn new
things and automate on their off time,
this should be baked into their schedule.

Leading transformations71
v. 2024.3

Organization performance

Product performance

Team performance

Productivity

Burnout

Job satisfaction

-10 10-5 0 5

O
ut

co
m

e

Estimated % change in outcome

9.1%

-9.9%

4.5%

10.3%

8.7%

8.7%

Our research has helped to flip the
narrative of IT being a cost-center
to IT being an investment that drives
business success. In 2020, we wrote
the ROI of DevOps whitepaper,2 which
contains calculations you can use to
help articulate potential value created by
investing in IT improvement.

Monetary return is only one of the
returns you can expect from this
investment. Our research in 2015
showed that, “organizational investment
in DevOps is strongly correlated with
organizational culture; the ability of
development, operations, and infosec

teams to achieve win-win outcomes;
lower levels of burnout; more effective
leadership; and effective implementation
of both continuous delivery and
lean management practices.”3 We
recommend dedicating a certain amount
of capacity specifically for improvement.

Leading transformations

Figure 18: Impacts of transformational leadership on various outcomes.
Error bar = 89% uncertainty interval
Point = estimated value

If transformational leadership increases by 25%...

72
v. 2024.3

This year's research shows that
organizations with strong leaders
and a focus on building software that
addresses user needs leads to the
development of better products: It’s a
powerful combination. When the user is
at the center of software development,
leaders have a clear vision to articulate.

The ultimate goal is for users to love the
products we create. As we discuss in the
Developer experience chapter, focusing
on the user gives product capabilities
a reason to exist. Developers can
confidently build these features knowing
they’ll help improve the user experience.

We see that teams that have a deep
desire to understand and align to their
users’ needs and the mechanisms to
collect, track, and respond to user
feedback have the highest levels of
organizational performance. In fact,
organizations can be successful even
without high levels of software velocity
and stability, as long as they are user-
focused. In 2023 we saw user-centered
teams have a 40% higher level of
organizational performance compared to
those that did not,4 and in 2016 we also
saw that user-centered teams had better
organizational performance.

This year’s research echoes previous
findings. Teams that focus on the user
make better products.

Be relentlessly user-centric

Not only do products improve,
but employees are more satisfied
with their jobs and less likely to
experience burnout.

Fast, stable software delivery
enables organizations more frequent
opportunities to experiment and learn.
Ideally, these experiments and iterations
are based on user feedback. Fast and
stable software delivery allows you to
experiment, better understand user
needs, and quickly respond if those
needs are not being met.

Having speed and stability baked
into your delivery also allows you
to more easily adjust to market
changes or competition.

It is important to remember that
your internal developers are also users.
Internal Developer Platforms (IDPs) are a
way your organization can deliver value
to developers that in turn deliver value to
external users or other internal users.

Our research shows that successful
IDPs are developed as a product and
focus on user centricity to deliver an
experience that allows developers to
work independently. An IDP deployed
in this way leads to higher individual
productivity, higher team productivity,
and higher organizational performance.

Leading transformations73
v. 2024.3

Leading transformations

Become a data-informed organization

The ability to visualize your progress
toward success is critical. Over the last
10 years we have made the case for
becoming a data-informed organization.
DORA's four key metrics5 have become
a global standard for measuring
software delivery performance, but
this is only part of the story. We have
identified more than 30 capabilities and
processes6 that can be used to drive
organizational improvement.

The value in the metrics lies in their
ability to tell you if you are improving. The
four key metrics should be used at the
application and service levels, and not at
the organization or line-of-business level.
The metrics should be used to visualize
your efforts in continuous improvement
and not to compare teams — and
certainly not to compare individuals.

The metrics should also not be used as
a maturity model for your application
or service teams. Being a low, medium,
high, or elite performer is interesting,
but we urge caution as these monikers
have little value in the context of your
transformation journey.

As our research progresses and evolves,
we encourage you to think beyond the
four keys. It has become clear that user
feedback metrics are as important as
the four key metrics. We believe this
is because most teams have devised
workable solutions for improving

speed and stability. As a result, the
benefits gained by speed and stability
are diminished as higher performance
becomes ubiquitous.

Thinking about transformation
holistically, we recommend creating
dashboards and visualizations that
combine both technical metrics
(such as our four keys and reliability
metrics) and business metrics. This helps
bridge the gap between the top-down
and bottom-up transformation efforts.
This also helps connect your northstar,
OKRs, and employee goals with the
investments made in IT. They can help
quantify the ROI.

We believe metrics are a requirement
for excellence. Metrics facilitate decision
making. The more metrics you collect,
quantitative and qualitative, the better
and more informed decisions you can
make. People will always have opinions
on the value of the data or the meaning
of the data, but using data as the
basis by which to make a decision
is often preferable to relying on opinion
or intuition.

74
v. 2024.3

Leading transformations

We have been investigating the
relationship between the NIST defined-5
characteristics of cloud computing7
(on-demand self-service, broad network
access, resource pooling, rapid elasticity,
and measured service also known as
flexible infrastructure) and organizational
performance since 2018. We see that
successful teams are more likely to take
advantage of flexible infrastructure than
less successful teams.

Last year, our research led us to the most
striking bit of information on this topic
to date: Using the cloud without taking
advantage of the five characteristics
can be detrimental and predicts
decreased organizational performance.

Organizations may be better off staying
in the data center if they are not willing
to radically transform their application
or service. Of course, to accomplish
this, it is not simply adopting tools
or technologies, but often an entire
new paradigm in designing, building,
deploying, and running applications.
Making large-scale changes is easier
when starting with a small number of
services, we recommend an iterative
approach that helps teams and
organizations to learn and improve as
they move forward.

Be all-in on cloud or stay in the data center

75
v. 2024.3

Leading transformations

What we’ve seen consistently over the
last 10 years is that transformation is a
requirement for success. What many
organizations misunderstand is that
transformation isn’t a destination, but
a journey of continuous improvement.8
Our research is clear: Companies that are
not continuously improving are actually
falling behind. Conversely, companies
that adopt a mindset of continuous
improvement see the highest levels
of success.

On this journey, be aware that you
will likely hit a little bit of pain and
discomfort along the way. Our research
has shown an initial drop in performance
followed by big gains (also known as
the “ j-curve “) with DevOps,9 SRE,10 and
this year with Platform Engineering. This
is normal, and if you are continuously
improving, things will get better and you
will come out the other end in much
better shape than when you started.

The idea of a never-ending journey can
seem daunting. It’s easy to get stuck
in planning or designing the perfect
transformation. The key to success is
rolling up your sleeves and just getting
to work. The goal of the organization and
your teams should be to simply be a little
better than you were yesterday. The goal
of our last 10 years of research and into
the future is to help you get better at
getting better.

Summary

1. Dimensions of transformational leadership: Conceptual and empirical extensions - Rafferty, A. E., & Griffin, M. A.
2. The ROI of DevOps Transformation - https://dora.dev/research/2020/
3. 2015 State of DevOps Report https://dora.dev/research/2015/2015-state-of-devops-report.pdf#page=25
4. 2023 Accelerate State of DevOps Report -

https://dora.dev/research/2023/dora-report/2023-dora-accelerate-state-of-devops-report.pdf#page=17
5. DORA's Four Key Metrics https://dora.dev/guides/dora-metrics-four-keys/
6. DORA's capabilities and processess https://dora.dev/capabilities/
7. NIST defined-5 characteristics of cloud computing https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
8. Journey of continuous improvement

https://cloud.google.com/transform/moving-shields-into-position-organizing-security-for-digital-transformation
9. 2018 Accelerate State of DevOps Report https://dora.dev/research/2018/dora-report/
10. 2022 State of DevOps Report https://dora.dev/research/2022/dora-report/

76
v. 2024.3

A decade
with DORA

A decade with DORA77
v. 2024.3

The DevOps movement was born
from two topically-related but otherwise
uncoordinated events in 2009. John
Allspaw and Paul Hammond gave a talk
that June at the Velocity conference
titled, "10 deploys per day: Dev & ops
cooperation at Flickr".1 Pactrick Debois
followed a few months later when he
led a team of volunteer organizers to
host the first DevOpsDays event in
Ghent, Belgium.2

It didn’t take long for the DevOps
community to want to learn more about
how it was evolving. Alana Brown, who
was working at Puppet Labs, ran a survey
in 2011 to learn more about DevOps. This
survey helped confirm that, "working in a
'DevOps' way is emerging as a new way
to do business in IT."

As the movement continued to expand
to new industries and organizations,
Alana built on this success and partnered
with IT Revolution Press to field another
survey in 2012, publishing their findings in
the 2013 State of DevOps Report.3

Dr. Nicole Forsgren joined the research
team the following year, bringing more
scientific rigor to the program. The
2014 State of DevOps Report4 made
the connection between software
delivery performance and organizational
performance, finding that, "publicly
traded companies that had high-
performing IT teams had 50 percent

History

A decade with DORA

higher market capitalization growth
over three years than those with low-
performing IT organizations."

The trend of annual reports was well-
established by 2016, and Forsgren,
Jez Humble, and Gene Kim founded
DevOps Research and Assessment
(DORA). That year, the State of DevOps
Report included calculations to help
measure the investments made by teams
adopting DevOps practices. This work
was extended in the ROI of DevOps
Transformation5 whitepaper, published
in 2020.

Accelerate: The science behind devops:
Building and scaling high performing
technology organizations,6 written
by Forsgren, Humble, and Kim was
published by IT Revolution Press in
2017. This book summarized the early
years of the research program and
included a focus on the capabilities
that drive improvement.

DORA, the company, published an
independent report in 2018, the
Accelerate State of DevOps: Strategies
for a New Economy.7 The team at Puppet
continued their own series of reports,8
separate from DORA, beginning that
same year.

In late 2018, DORA was acquired by
Google Cloud9 where the platform-
agnostic, scientific research continues.
This year marks the tenth DORA Report,10
we are happy to share our findings with
you, thank you for reading!

78
v. 2024.3

Teams do not need to sacrifice speed
for stability

Technology-driven teams need ways
to measure performance so that they
can assess how they’re doing today,
prioritize improvements, and validate
their progress. DORA identified and
has validated four software-delivery
metrics—the four keys—that provide
an effective way of measuring the
outcomes of the software delivery
process. These measures of software
delivery performance have become an
industry standard.

The research has demonstrated that the
throughput and stability of changes tend
to move together, we have seen teams
achieving high levels of both in every
industry vertical.

Key insights from
DORA

There are many ways that teams
measure the four keys including:

• Through conversations and reflection
during team meetings

• The DORA Quick Check
(https://dora.dev/quickcheck)

• Commercial and source-available11
tools in the Software Engineering
Intelligence (SEI) category

• Bespoke integrations built for the
specific tools in use by a team

A decade with DORA

Stability

Throughput

79
v. 2024.3

https://dora.dev/quickcheck

A decade with DORA

Software delivery and
operational performance drive
organizational performance

DORA uses the four keys to measure
software delivery performance.
Operational performance was first
studied by DORA in 2018. It measures
the ability to make and keep promises
and assertions about the software
product or service.

The best results are seen when
both software delivery and operational
performance come together to drive
organizational performance and
employee well-being.

Practitioners working in technology-
driven teams recognize the importance
of reducing friction in the delivery
process while meeting the reliability
expectations of an application's users.

Performance

Software delivery
Four keys metrics

Reliability
Service Level Objectives (SLOs)

Organizational performance

Well-being

Predicts

Outcomes

80
v. 2024.3

A decade with DORA

Culture is paramount to success

One of the clearest predictors of
performance is the culture of the
organization. We've continually seen
the power of a high-trust culture that
encourages a climate for learning and
collaboration. For example, culture was
shown to be biggest predictor of an
organization's application-development
security practices in our 2022 research.12

Culture impacts every aspect of our
research, and it’s multifaceted and
always in flux. We've used many different
measures over the years with inspiration
from research such as Westrum's
Typology of Organizational Culture.13
Our measures of well-being have
included burnout, productivity, and
job satisfaction.

Get better at getting better

We encourage teams to set a goal to
get better at getting better. Driving
improvement requires a mindset and a
practice of continuous improvement.
This requires a way to assess how you're
doing today, prioritize improvement
work, and feedback mechanisms that
help you measure progress.

An experimental approach to
improving will involve a mix of victories
and failures, but in both scenarios
teams can take meaningful actions as
a result of lessons learned.

81
v. 2024.3

A decade with DORA

1. Slides - https://www.slideshare.net/jallspaw/10-deploys-per-day-dev-and-ops-cooperation-at-flickr,
recording - https://www.youtube.com/watch?v=LdOe18KhtT4

2. https://legacy.devopsdays.org/events/2009-ghent/
3. https://www.puppet.com/resources/history-of-devops-reports#2013
4. 2014 State of DevOps Report - https://dora.dev/research/2014/
5. The ROI of DevOps Transformation - https://dora.dev/research/2020/
6. Forsgren, Nicole, Jez Humble, and Gene Kim. 2018. Accelerate: The Science Behind DevOps : Building and Scaling High Performing

Technology Organizations. IT Revolution Press.
7. Accelerate State of DevOps: Strategies for a New Economy - https://dora.dev/research/2018/dora-report/
8. https://www.puppet.com/resources/history-of-devops-reports#2018
9. https://dora.dev/news/dora-joins-google-cloud
10. We consider 2014, the year that Dr. Forsgren joined the program, to be the first DORA report, even though DORA was founded a

few years later. There was no report in 2020, making 2024 the tenth report.
11. https://dora.dev/resources/#source-available-tools
12. 2022 Accelerate State of DevOps Report - https://dora.dev/research/2022/dora-report/
13. Ron Westrum, “A typology of organisation culture”, BMJ Quality & Safety 13, no. 2(2004), doi:10.1136/qshc.2003.009522
14. https://dora.community

Collectively, we've learned a lot from
each other over the past decade. Thank
you for engaging in our annual surveys,
participating in the DORA Community of
Practice,14 and putting DORA to work in
your own context.

As the technology landscape
continues to evolve, DORA will continue
to research the capabilities and
practices that help technology-driven
teams and organizations succeed.
We will continue to prioritize the
human aspects of technology and are
committed to publishing platform-
agnostic research that you can use to
guide your own journey.

Many of our past insights are durable
enough to inform your approach to
emerging technologies and practices
and we're excited to find new insights
along with you!

We are committed to the fundamentals
principles that have always been a part
of the DevOps movement: culture,
collaboration, automation, learning, and
using technology to achieve business
goals. Our community and research
benefit from the perspectives of diverse
roles, including people who might not
associate with the "DevOps" label. You
should expect to see the term "DevOps"
moving out of the spotlight.

This year's report has a heavy focus
on the use and impacts of artificial
intelligence (AI). As you've read, adoption
is growing and there is a lot of room for
experimentation in this space. We will
continue to investigate this and other
emerging technologies and practices
into the future. Use our past research,
together with our new findings, to
drive adoption and help improve the
experience of everyone on your team.

The decade ahead

82
v. 2024.3

https://dora.community
https://dora.community

Final thoughts

Replicate our research

The area of research and the findings
in this year's report are complex
and sometimes unclear or even
contradictory. We encourage you to
replicate our research. Focusing on a
single team or organization opens many
opportunities for deeper understanding.

Run experiments within your
organization
DORA's findings can serve as hypotheses
for your next experiments. Learn more
about how your team operates and
identify areas for improvement which
may be inspired by findings from the
DORA research program.

Run surveys within your organization
Take inspiration from this report and
the questions used in this year's survey1
to design your own internal survey.
Your survey can incorporate more
nuanced questions that are relevant to
your audience. 2 Read the Methodology
chapter for more details into how our
research is conducted. Be sure to focus
on putting your findings into practice.

DORA has established itself as a trusted source of research, insights, and information
over the past decade. As the industry continues to adopt new practices and
technologies like platform engineering and artificial intelligence, DORA will be here
with you, investigating the ways of working that help teams improve. Thank you for
having DORA along for the journey.

Final thoughts

Share what you learn
As you learn from your experiments,
spread that knowledge throughout
your organization. Methods for sharing
can range from formal reports for
large audiences, through informal
communities of practice, to casual
chats among peers. Try a variety of
approaches and learn what works best in
your context and culture. This, too, is an
experimental process.

83
v. 2024.3

1. 2024 Survey https://dora.dev/research/2024/questions/
2. Experiences from Doing DORA Surveys Internally in Software Companies -

https://www.infoq.com/news/2024/08/dora-surveys-software-company/

Final thoughts

How are you leveraging this research?

Share your experiences, learn from
others, and get inspiration from other
travelers on the continuous improvement
journey by joining the DORA community
at https://dora.community.

84
v. 2024.3

https://dora.community

Acknowledgements

Acknowledgements

We've come a long way since the first State of DevOps Report
published by Puppet Labs and IT Revolution Press. A heartfelt
thank you to our DORA founders for paving the way. It's
remarkable to reflect on how much has changed since
then and how much we've learned throughout the years.

We're deeply grateful to everyone involved in this
year's publication. It's a tremendous responsibility to
guide and influence industry practices, and your contributions
are invaluable.

To everyone who has been part of this journey, from
the early days to this exciting era of AI, thank you. Your support
and insights have been instrumental. Here's to
the next decade of discovery and collaboration!

This year marks a special milestone: the 10th DORA report. We are thankful
for all of the dedicated work of researchers, experts, practitioners, leaders,
and transformation agents who have joined in shaping this body of work and
evolved alongside us.

85
v. 2024.3

Marie-Blanche Panthou

Miguel Reyes

Yoshi Yamaguchi

Jinhong Yu

DORA guides

Lisa Crispin

Steve Fenton

Denali Lumma

Betsalel (Saul) Williamson

Advisors/experts in the
field

John Allspaw

Birgitta Böckeler

Sander Bogdan

Michele Chubirka

Thomas De Meo

Jessica DeVita

Rob Edwards

Dr. Nicole Forsgren

Acknowledgements

Acknowledgements

DORA Report Team

James Brookbank

Kim Castillo

Derek DeBellis

Benjamin Good

Nathen Harvey

Michelle Irvine

Amanda Lewis

Eric Maxwell

Steve McGhee

Allison Park

Dave Stanke

Kevin Storer

Daniella Villalba

Editor

Seth Rosenblatt

Localization volunteers

Andrew Anolasco

Mauricio Meléndez

Gene Kim and IT
Revolution

Laura Maguire, PhD

James Pashutinski

Ryan J. Salva

Majed Samad

Harini Sampath

Robin Savinar

Sean Sedlock

Dustin Smith

Finn Toner

Gold sponsors

Silver sponsors

86
v. 2024.3

Authors

Derek is a quantitative user experience researcher
at Google and the lead investigator for DORA. Derek
focuses on survey research, logs analysis, and figuring
out ways to measure concepts that demonstrate
a product or feature is delivering capital-v value to
people. Derek has published on human-AI interaction,
the impact of COVID-19's onset on smoking cessation,
designing for NLP errors, the role of UX in privacy
discussions, team culture, and AI’s relationship to
employee well-being and productivity. His current
extracurricular research is exploring ways to simulate
the propagation of beliefs and power.

Dr. Kevin M. Storer is a developer experience researcher
at Google, where he serves as qualitative research
lead for the DORA team. Leveraging professional
experience in software engineering and postgraduate
transdisciplinary training in the social sciences and
humanities, Kevin has been leading human-centered
studies of software developers since 2015, spanning a
diverse set of problem contexts, participant profiles,
and research methods. Kevin’s research has been
published in top scientific venues on the topics of
artificial intelligence, information retrieval, embedded
systems, programming languages, ubiquitous
computing, and interaction design.

Authors

Derek DeBellis

Kevin M. Storer

87
v. 2024.3

Amanda Lewis is the DORA.community development
lead and a developer relations engineer at Google
Cloud. She has spent her career building connections
across developers, operators, product managers,
project managers, and leadership. She has worked
on teams that developed e-commerce platforms,
content management systems, observability tools,
and supported developers. These connections and
conversations lead to happy customers and better
outcomes for the business. She brings her experience
and empathy to the work that she does helping teams
understand and implement software delivery and
artificial intelligence practices.

Ben Good is cloud solutions architect at Google.
He is passionate about improving software delivery
practices through cloud technologies and automation.
As a solutions architect he gets to help Google
Cloud customers solve their problems by providing
architectural guidance, publication of technical guides
and open source contributions. Prior to joining Google,
Ben ran cloud operations for a few different companies
in the Denver/Boulder area, implementing DevOps
practices along the way.

Authors

Amanda Lewis

Benjamin Good

88
v. 2024.3

http://DORA.community

Eric Maxwell leads Google’s DevOps Transformation
practice, where he advises the world’s best companies
on how to improve by delivering value faster. Eric spent
the first half of his career as an engineer in the trenches,
automating all the things and building empathy for
other practitioners. Eric co-created Google’s Cloud
Application Modernization Program (CAMP), and is a
member of the DORA team. Before Google, Eric spent
time whipping up awesome with other punny folks at
Chef Software.

Daniella Villalba is a user experience researcher at
Google. She uses survey research to understand the
factors that make developers happy and productive.
Before Google, Daniella studied the benefits of
meditation training, and the psycho-social factors
that affect the experiences of college students. She
received her PhD in Experimental Psychology from
Florida International University.

Kim Castillo is a user experience program manager at
Google. Kim leads the cross-functional effort behind
DORA, overseeing its research operations and the
publication of this report since 2022. Kim also works
on UX research for Gemini in Google Cloud. Prior
to Google, Kim enjoyed a career in tech working in
technical program management and agile coaching.
Kim's roots are in psycho-social research focused on
topics of extrajudicial killings, urban poor development,
and community resilience in her country of origin, the
Philippines.

Authors

Daniella Villalba

Eric Maxwell

Kim Castillo

89
v. 2024.3

Michelle Irvine is a technical writer at Google, and
her research focuses on documentation and other
technical communication. Before Google, she
worked in educational publishing and as a technical
writer for physics simulation software. Michelle has
a BSc in Physics, as well as an MA in Rhetoric and
Communication Design from the University of Waterloo.

Nathen Harvey leads the DORA team at Google Cloud.
Nathen has learned and shared lessons from some
incredible organizations, teams, and open source
communities. He is a co-author of multiple DORA
reports and was a contributor and editor for 97 Things
Every Cloud Engineer Should Know, published by
O’Reilly in 2020.

Authors

Michelle Irvine

Nathen Harvey

90
v. 2024.3

Demographics and firmographics

Demographics and
firmographics

Over 90,000 respondents participated
in the 2023 Stack Overflow Developer
Survey.1 That survey didn't reach every
technical practitioner, but is about as
close as you can get to a census of the
developer world.

With a sense of the population provided
from that survey, we can locate response
bias in our data and understand how far
we might want to generalize our findings.
Further, the demographic and
firmographic questions asked in this
Stack Overflow Developer Survey are
well-crafted and worth borrowing.

In short, there are no major discrepancies
between our sample and Stack
Overflow’s. This means we have every
reason to believe that our sample is
reflective of the population.

Who took the survey

The DORA research program has been
researching the capabilities, practices,
and measures of high-performing,
technology-driven organizations for
over a decade. We've heard from
roughly 39,000 professionals working in
organizations of every size and across
many different industries. Thank you for
sharing your insights! This year, nearly
3,000 working professionals from a
variety of industries around the world
shared their experiences to help grow
our understanding of the factors that
drive high-performing, technology-
driven organizations.

This year's demographic and
firmographic questions leveraged
research done by Stack Overflow.

91
v. 2024.3

Demographics and firmographics

Industry Percentage of
respondents

Technology 35.69%

Financial Services 15.66%

Retail/Consumer/E-commerce 9.49%

Other 5.94%

Industrials & Manufacturing 5.49%

Healthcare & Pharmaceuticals 4.60%

Media/Entertainment 4.26%

Government 3.89%

Education 3.66%

Energy 3.03%

Insurance 2.39%

Non-Profit 1%

Industry

We asked survey respondents to
identify the industry sector in which
their organization primarily operates,
across 12 categories. The most common
sectors in which respondents worked
were Technology (35.69%), Financial
Services (15.66%) and Retail/Consumer/
E-commerce (9.49%).

Organization Size Percentage

solo 2.0%

2 to 9 3.2%

10 to 19 4.3%

20 to 99 14.5%

100 to 499 18.5%

500 to 999 11.2%

1,000 to 4,999 15.6%

5,000 to 9,999 6.7%

10,000 or more 24.1%

We asked survey respondents to
identify the number of employees at
their organization, using nine buckets.
The organizations in which respondents
worked most commonly had 10,000
or more employees (24.10%),
100 to 499 employees (18.50%) and
1,000 to 9,999 employees (15.60%).

Number of employees

92
v. 2024.3

We identified disability along six
dimensions that follow guidance from the
Washington Group Short Set.2
This is the fifth year we have asked
about disability. The percentage of
respondents reporting disabilities has
decreased from 11% in 2022 to 6% in
2023, and 4% in 2024.

Disability

Disability % of
respondents

None of the disabilities
applied

92%

At least one of the disabilities
applied

4%

Preferred not to say 4%

Demographics and firmographics

We asked survey respondents to report
their gender. 83% of respondents
identified as men, 12% as women,
1% chose to self-describe, and 4%
declined to answer.

Gender

Gender Percentage

Man 83%

Woman 12%

Used their own words 1%

Preferred not to answer 4%

93
v. 2024.3

0 5 10 15 20 25 30

We asked survey respondents to report their years of
experience in their role and team. Respondents had a median
of 16 years of working experience, five years of experience
in their current role, and three years of experience on their
current team.

Experience

Demographics and firmographics

How many years
have you worked
on the team you’re
currently on?

How many years have
you worked on the
team in a role similar
to your current role?

How many years of
working experience
do you have?

Question

Years

16

3

5

Box width represents 25th and 75th percentiles. The line dissecting the box represents the median.

94
v. 2024.3

0%

5%

10%

15%

20%

En
gi

ne
er

in
g

m
an

ag
er

D
ev

el
op

er
, f

ul
l-

st
ac

k

D
ev

O
ps

 s
pe

ci
al

is
t

Se
ni

or
 E

xe
cu

tiv
e

(C
-S

ui
te

, V
P,

…
)

D
ev

el
op

er
, b

ac
k-

en
d

O
th

er
 (p

le
as

e
sp

ec
ify

)

Pr
oj

ec
t m

an
ag

er

C
lo

ud
 in

fr
as

tr
uc

tu
re

 e
ng

in
ee

r

D
ev

el
op

er
, d

es
kt

op
 o

r
en

te
…

D
ev

el
op

er
, f

ro
nt

-e
nd

D
ev

el
op

er
, Q

A
 o

r
te

st

Pr
od

uc
t m

an
ag

er

D
at

a
En

gi
ne

er

Si
te

 R
el

ia
bi

lit
y

En
gi

ne
er

Bu
si

ne
ss

 a
na

ly
st

D
at

a
an

al
ys

t

D
at

ab
as

e
ad

m
in

is
tr

at
or

D
at

a
sc

ie
nt

is
t o

r
m

ac
hi

ne
…

D
ev

el
op

er
 A

dv
oc

at
e

D
ev

el
op

er
, e

m
be

dd
ed

 a
pp

…

D
ev

el
op

er
 E

xp
er

ie
nc

e

D
ev

el
op

er
, m

ob
ile

Pr
ef

er
 n

ot
 to

 a
ns

w
er

Re
se

ar
ch

 &
 D

ev
el

op
m

en
t r

ol
e

Se
cu

rit
y

pr
of

es
si

on
al

Sy
st

em
 a

dm
in

is
tr

at
or

A
ca

de
m

ic
 re

se
ar

ch
er

Bl
oc

kc
ha

in
 E

ng
in

ee
r

D
es

ig
ne

r

D
ev

el
op

er
, g

am
e

or
 g

ra
ph

ic
s

Ed
uc

at
or

H
ar

dw
ar

e
En

gi
ne

er

M
ar

ke
tin

g
pr

of
es

si
on

al

Sa
le

s
pr

of
es

si
on

al

Sc
ie

nt
is

t

St
ud

en
t

In analyses, some individual roles
were grouped together, to help us
meaningfully include roles which
represented a small proportion of
respondents in our analyses. Other
categories were highly represented in
our data, including:

Role

Demographics and firmographics

• Developers, representing 29% of the
respondents.

• Managers, representing 23% of the
respondents.

• Senior executives, representing 9% of
the respondents (+33% from 2023).

• Analytic roles, representing about 5%
of the respondents

Pe
rc

en
ta

g
e

of
 r

es
p

on
d

en
ts

Job title

95
v. 2024.3

0% 10% 20% 30% 40% 50% 60% 70% 80%

Demographics and firmographics

Employment status

We asked survey respondents to report
their current employment status. The
vast majority (90%) of respondents were
full-time employees of an organization.

Employment Type Percentage

Full-time contractor 6%

Full-time employee 90%

Part-time contractor 1%

Part-time employee 2%

Year

Time in office

Work location
Despite another year of return-to-office (RTO) pushes, the
pattern from last year has largely been retained, especially
toward the tails of the distribution. The 37.5% increase in the
median values does suggest that hybrid work or at least, some
regular visits, are becoming more common.

2023

2024

24%

33%

Box width represents 25th and 75th percentiles. The line dissecting the box represents the median.

96
v. 2024.3

We had respondents from 104 different countries. We are always thrilled to see
people from all over the world participate in the survey. Thank you all!

Country

Demographics and firmographics

Country

USA Italy Singapore Iceland Luxembourg Guatemala

UK Switzerland Albania Iran Nicaragua Hong Kong (S.A.R.)

Canada Argentina Georgia Jordan Pakistan Malta

Germany Mexico Greece Kenya Peru Mauritius

Japan Portugal Philippines Saudi Arabia South Korea Morocco

India Austria Hungary Slovakia Sri Lanka Nepal

France Romania Serbia Slovenia Tunisia Paraguay

Brazil Finland Afghanistan Thailand Andorra Swaziland

Spain Turkey Algeria Uzbekistan Barbados Syrian Arab Republic

Australia Bulgaria Egypt Angola Belize Taiwan

Netherlands Ireland Indonesia Armenia Benin The former Yugoslav
Republic of
Macedonia

China Israel Russian Federation Bosnia and
Herzegovina

Bolivia Trinidad and Tobago

Sweden Belgium Ukraine Dominican Republic Burkina Faso Uruguay

Norway Chile Viet Nam Ecuador Comoros Venezuela,
Bolivarian Republic
of..

New Zealand Colombia Bangladesh Estonia Côte d'Ivoire

Poland Czech Republic Belarus Kazakhstan El Salvador

South Africa Malaysia Costa Rica Latvia Ethiopia

Denmark Nigeria Croatia Lithuania Gambia

97
v. 2024.3

We asked survey respondents to report
their race and ethnicity. Our largest
group of respondents were White
(32.4%), and/or European (22.7%).

Race and ethnicity

1. https://survey.stackoverflow.co/2023/
2. https://www.washingtongroup-disability.com/question-sets/wg-short-set-on-functioning-wg-ss/

Demographics and firmographics

Race or ethnicity Percentage

White 32.4

European 22.7

Asian 9.9

North American 4.6

Indian 4.1

Prefer not to say 4.1

Hispanic or Latino/a 3.5

South American 3.2

East Asian 2.5

African 1.8

South Asian 1.7

Multiracial 1.5

Or, in your own words: 1.5

Southeast Asian 1.4

Black 1.3

Race or ethnicity Percentage

Middle Eastern 1.3

Biracial 0.4

Central American 0.4

I don't know 0.4

North African 0.4

Caribbean 0.2

Central Asian 0.2

South Asian 1.7

Ethnoreligious group 0.2

Pacific Islander 0.2

Indigenous (such as Native
American or Indigenous
Australian)

0.1

98
v. 2024.3

Methodology

A methodology is supposed to be like
a recipe that will help you replicate our
work and determine if the way our data
was generated and analyzed is likely to
return valuable information. Although
we don’t have the space to go into the
exacts, hopefully this is a great starting
point for those considerations.

Methodology99
v. 2024.3

Question selection

We think about the following aspects
when considering whether to include
a question into a survey:

Is this question…

• Established so we can connect our
work to previous efforts?

• Capturing an outcome the industry
wants to accomplish (for example,
high team performance)?

• Capturing a capability the industry
is considering investing resources
into (for example, AI)?

• Capturing a capability we believe
will help people accomplish
their goals (for example, quality
documentation)?

• Something that helps us evaluate the
representativeness of our sample
(for example, role or gender)?

• Something that helps us block
biasing pathways (for example,
coding language or role)?

• Something that is possible to
answer with at least a decent
degree of accuracy for the vast
majority of respondents?

Survey development

We address the literature, engage with
the DORA community, conduct cognitive
interviews, run parallel qualitative
research, work with subject matter
experts, and hold team workshops to
inform our decision as to whether to
include a question into our survey.

Methodology

Survey experience

We take great care to improve the
usability of the survey. We conduct
cognitive interviews and usability tests
to make sure that the survey hits certain
specification points:

• Time needed to complete survey
should, on average, be low

• Comprehension of the questionnaire
should be high

• Effortfulness should be reasonably
low, which is a huge challenge given
the technical nature of the concepts

100
v. 2024.3

http://DORA.community

Localizations

People around the world have responded
to our survey every year. This year
we worked to make the survey more
accessible to a larger audience by
localizing the survey into English,
Español, Français, Português,日本語,
and 简体中文.

Data collection

Methodology101
v. 2024.3

Collect survey responses

We use multiple channels to recruit.
These channels fall into two categories:
organic and panel.

The organic approach is to use all the
social means at our disposal to let
people know that there is a survey that
we want them to take. We create blog
posts. We use email campaigns. We post
on social media, and we ask people in
the community to do the same (that is,
snowball sampling).

We use the panel approach to
supplement the organic channel.
Here we try to recruit people who are
traditionally underrepresented in the
broader technical community and try
to get adequate responses from certain
industries and organization types.

In short, this is where we get some
control over our recruitment—control
we don’t have with the organic approach.
The panel approach also allows us to
simply make sure that we get enough
respondents, because we never know
if the organic approach is going to yield
the responses necessary to do the types
of analyses we do. This year we had
sufficient organic responses to run our
analysis and the panel helped round out
our group of participants.

Methodology

Survey flow

This year we had a lot of questions we
wanted to ask, but not enough time to
ask them. Our options were…

• Make an extremely long survey

• Choose a subset of areas
to focus on

• Randomly assign people
to different topics

We didn’t want to give up on any of
our interests, so we chose to randomly
assign participants to one of three
separate flows. There was a lot of
overlap among the three different
flows, but each flow dove deeply in
a different space.

Here are the three different pathways:

• AI

• Workplace

• Platform Engineering

102
v. 2024.3

Measurement validation

There is a wide variety of concepts that
we try to capture in the survey. There
are a lot of different language games we
could partake in, but one view is that this
measure of a concept is called a variable.
These variables are the ingredients of the
models, which are the elements included
in our research. There are two broad
ways to analyze the validity of these
measures: internally and externally.

To understand the internal validity
of the measure, we look at what we think
indicates the presence of a concept.
For example, quality documentation
might be indicated by people using their
documentation to solve problems.

A majority of our variables consist
of multiple indicators because the
constructs we’re interested in appear
to be multifaceted.

To understand the multifaceted nature of
a variable, we test how well the items we
use to represent that concept gel. If they
gel well (that is, they share a high level
of communal variance), we assume that
something underlies them—such as the
concept of interest.

Think of happiness, for example,
happiness is multifaceted. We expect
someone to feel a certain way, act a
certain way, and think a certain way

Survey analysis

Methodology

when they’re happy. We assume that
happiness is underlying a certain pattern
of feelings, thoughts, and action.

Therefore, we expect certain types
of feelings, thoughts, and actions to
emerge together when happiness is
present. We would then ask questions
about these feelings, thoughts, and
actions. We would use confirmatory
factor analysis to test whether they
actually do show up together.

This year we used the lavaan1 R package
to do this analysis. Lavaan returns
a variety of fit statistics that help us
understand whether constructs
actually represent the way people
answer the questions.

If the indicators of a concept don't gel,
the concepts might need to be revised
or dropped because it’s clear that we
haven't found a reliable way to measure
the concept.

The external validity of a construct is
all about looking at how the construct
fits into the world. We might expect a
construct to have certain relationships to
other constructs. Sometimes we might
expect two constructs to have a negative
relationship, like happiness and sadness.

If our happiness measure comes back
positively correlated with sadness, we
might question our measure or our theory.

103
v. 2024.3

Methodology

Similarly, we might expect two
constructs to have positive
relationships, but not strong ones.
Productivity and job satisfaction are
likely to be positively correlated, but
we don’t think they’re identical. If the
correlation gets too high, we might
say it looks like we’re measuring the
same thing. This then means that our
measures are not calibrated enough
to pick up on the differences between
the two concepts, or the difference we
hypothesized isn’t actually there.

Model evaluation

Using a set of hypotheses as our guiding
principle, we build hypothetical models,
little toys that try to capture some aspect
about how the world works. We examine
how well those models fit the data we
collected. For evaluating a model, we go
for parsimony. This amounts to starting
with a very simplistic model2 and adding
complexity until the complexity is no
longer justified.

For example, we predict that
organizational performance is the
product of the interaction between
software delivery performance and
operational performance. Our simplistic
model doesn’t include the interaction:

Our second model adds the interaction:

Based on the recommendations in
“Regression and other stories”3 and
“Statistical Rethinking,”4 we use leave-
one-out cross-validation (LOOCV)5 and
Watanabe–Akaike information criterion6
to determine whether the additional
complexity is necessary.

Organizational performance ~ Software delivery performance + Operational performance

Organizational performance ~ Software delivery performance + Operational performance +

Software delivery performance ✕ Operational performance

104
v. 2024.3

Methodology

Directed Acyclic Graphs for
Causal Inference

A validated model tells us what we
need to know to start thinking
causally. We talk about the challenges
of thinking causally below.

Here are some reasons why we’re trying
to talk causally:

We think your question is fundamentally
a causal one. You want to know if doing
something is going to create something.
You are not going to invest in doing
something if you just think there is a non-
causal correlation.

The results of our analyses depend on
our causal understanding of the world.
The actual numbers we get from the
regression change based on what we
include in the regression. What we
include in the regression should depend
on how we think the data is generated,
which is a causal claim. Hence, we should
be clear.

Causal thinking is where our curiosity
will take us and where we all spend a lot
of time. We are often wondering about
how the various aspects of the world are
connected and why. We don’t need to
run experiments on every facet of our
lives to think causally about them.

Causal thinking is central to action, which
is what we’re hoping this report helps you
with, making decisions to act.

We are able to use the validated model
to tell us what we need to account for
to understand an effect. In short, it lets
us try to get our data in the form of
an A/B experiment, where one tries to
create two identical worlds with only
one difference between them. The logic
suggests that in doing so any differences
that emerge between those two worlds
is attributable to that initial difference.

In observational data and survey data,
things are not as clearly divided — many
things are different between participants,
which introduces confounds. Our
method of causal inference tries to
account for these differences in an
attempt to mimic an experiment — that
is, holding everything constant except for
one thing (for example, AI adoption).

Let’s take the classic example of ice
cream “causing” shark attacks. There is
a problem in that observation, namely
that people tend to eat ice cream on hot
days and also go to the beach on hot
days. The situation where people tend
to eat ice cream and go to the beach
is not the same as the situation where
people tend not to eat ice cream and not
go to the beach. The data isn’t following
the logic of an experiment. We’ve got a
confounding variable, temperature.

105
v. 2024.3

Methodology

Directed Acyclic Graphs (DAGs) help
you identify the ways in which the world
is different and offer approaches to
remedy the situation, to try to mimic an
experiment by making everything in the
world except one thing constant. Let’s
see how the DAG directs us in the ice
cream and shark attack example, where
we want to quantify the impact of ice
cream consumption on shark attacks:

The image is from https://www.dagitty.net/dags.html.

I draw my model, tell the tool what effect
I want to understand, and the tool tells
me what is going to bias my estimate
of the effect. In this case, the tool says
that I cannot estimate the effect of ice
cream consumption on shark attacks
without adjusting for temperature,
which is a statistical approach of trying
to make everything equal besides ice
cream consumption and then seeing if
shark attacks continue to fluctuate as a
function of ice cream consumption.

We outline our models in the, you
guessed it, Models chapter.

106
v. 2024.3

Methodology

• We move away from thinking in
terms of significant or insignificant
(ask 10 people to explain frequentist
p-values and you’ll get 10 different
answers)

• We want to know the probability of
hypothesis given the data, not the
probability of the data given our
hypothesis

• We like to incorporate our prior
knowledge into our models, or
at least be explicit about how much
we don’t know7

• We are forced to confront the
underlying assumptions of the
modeling process

• We can explore the posterior
distributions to get a sense of the
magnitude, uncertainty, and overall,
how and how well the model made
sense of the data. Ultimately, it gives
a great sense of what we do and do
not know given our data

• A flexible framework that addresses
many statistical problems in a very
unified manner

The directed acyclic graph tells us
what to account for in our analyses
of particular effects.

For example, what do we need to
account for in our analysis of AI
adoption's impact on productivity?

Bayesian statistics

This analysis is done using Bayesian statistics.
Bayesian statistics offer a lot of benefits:

107
v. 2024.3

Methodology

What do you mean by “simulation”?

It isn’t that we made up the data. We
use Bayesian statistics to calculate a
posterior, which tries to capture “the
expected frequency that different
parameter values will appear.”8 The
“simulation” part is drawing from this
posterior more than 1,000 times to
explore the values that are most credible
for a parameter (mean, beta weight,
sigma, intercept, etc.) given our data.

“Imagine the posterior is a bucket full of
parameter values, numbers such as 0.1,
0.7, 0.5, 1, etc. Within the bucket,
each value exists in proportion to its
posterior probability, such that values
near the peak are much more common
than those in the tails.”9

This all amounts to our using simulations
to explore possible interpretations of
the data and get a sense of how much

uncertainty there is. You can think of
each simulation as a little AI that knows
nothing besides our data and a few rules
trying to fill in a blank (parameter) with an
informed guess. You do this 4,000 times
and you get the guesses of 4,000 little
AIs for a given parameter.

You can learn a lot from these guesses.
You can learn what the average guess is,
between which values do 89%10 of these
guesses fall, how many guesses are
above a certain level, how much variation
is there in these guesses, etc. You can
even do fun things like combine guesses
(simulations) across many models.

When we show a graph with a bunch of
lines or a distribution of potential values,
we are trying to show you what is most
plausible given our data and how much
uncertainty there is.

108
v. 2024.3

Synthesize findings with the
community

Our findings offer a valuable
perspectives for technology-driven
teams and organizations, but they are
best understood through dialogue
and shared learning. Engaging with
the DORA community gives us diverse
insights, challenges our assumptions,
and helps us discover new ways to
interpret and apply these findings.

We encourage you to join the DORA
community (https://dora.community)
to share your experiences, learn
from others, and discover diverse
approaches to implementing these
recommendations. Together, we can
explore the best ways to leverage these
insights and drive meaningful change
within your organization.

https://dora.community

This year, we supplemented our annual
survey with in-depth, semi-structured
interviews to triangulate, contextualize,
and clarify our quantitative findings.
The interview guide paralleled the topics
included in our survey and was designed
for sessions to last approximately 75
minutes each, conducted remotely
via Google Meet.

In total, we interviewed 11 participants
whose profiles matched the inclusion
criteria of our survey. All interviews were
video- and audio-recorded. Sessions
lasted between 57 minutes and 85
minutes, totaling 14 hours and 15 minutes
of data collected across all participants.
Participants’ data were pseudonymized
using identifiers in the form of P(N),
where N corresponds to the order in
which they were interviewed.

All interviews were transcribed using
automated software. Transcriptions were
manually coded using our survey topics
as a priori codes. Quotations appearing
in the final publication of this report were
revisited and transcribed manually prior
to inclusion. Words added to participant
quotations by the authors of this report
are indicated by brackets ([]), words
removed are indicated by ellipses (..),
and edits were made only in cases where
required for clarity.

Our goal is to create a pragmatic
representation of the world, something
that we can all leverage to help improve
the way we work. We know there is
complexity we’re simplifying. That is kind
of the point of the model. Jorge Luis
Borges has a very short story, called
“On Exactitude in Science”, where he
talks of an empire that makes maps of
the empire on a 1:1 scale.11 The absurdity
is that this renders the map absolutely
useless (at least that’s my interpretation).
The simplifications we make are
supposed to be helpful.

That said, there are some inferential leaps
that we want to be clear about.

Interviews Inferential leaps in
results

Methodology109
v. 2024.3

Methodology

Causality

According to John Stuart Mill, you
needed to check three boxes to say
X causes Y:12

• Correlation: X needs to covary with Y?

• Temporal precedence: X needs to
happen before Y?

• Biasing pathways are accounted for (as
described in the DAG section above)?

We feel confident that we can
understand correlation — that’s often
a standard statistical procedure. Our
survey is capturing a moment in time, so
temporal precedence is theoretical, not
part of our data.

As for biasing pathways, as we mention
above when talking about structural
equation models and directed acyclic

graphs, we do the work to account for
biasing pathways, but that is a highly
theoretical exercise, one that, unlike
temporal precedence, has implications
that can be explored in the data.

This is all to say that we didn’t do
longitudinal studies or a proper
experiment. Despite this, we think causal
thinking is how we understand the world
and we try our best to use emerging
techniques in causal inference to provide
you with good estimates. Correlation
does not imply causation, but it does
imply how you think about causation.

110
v. 2024.3

Micro-level phenomena
-> Macro-level phenomena

Often we take capabilities at an individual
level and see how those connect to
higher levels. For example, we tied the
individual adoption of AI to an application
or service and to team performance.
This isn’t terribly intuitive at first glance.
The story of a macro-level phenomenon
causing an individual level phenomenon
is usually easier to tell. Inflation (macro)
impacting whether I buy eggs (micro)
seems like a more palatable story than
me not buying eggs causing inflation.

The same is true for an organization's
performance (macro) impacting an
individual’s well-being (micro). As a
heuristic, it is likely the organization
exerts more of an influence on
the individual than the individual
on the organization.

So, why do we even bother saying an
individual action impacts something like
team or organizational performance?
We make an inferential leap that we
think isn’t completely illogical. Namely,
we assume that at scale, the following
statement tends to be true:

That is, we believe that the probability
of an individual doing something (X) is
higher when they are in an organization
or a team that also does X. Hence,
individuals who do something represent
teams and organizations that also tend to
do X. Of course the noise here is pretty
loud, but the pattern should emerge and
allow this assumption to give us some
important abilities.

Let’s back up for an example outside of
DORA: imagine two different countries
where the average height differs. In one
country, people have an average height
of 5’6”. The other’s average height is 6’2”.
The standard deviation is identical. If you
picked a person at random from each
country, which country do you think the
taller person would be more likely to be
drawn from? If you do this thousands
of times, taller countries would be
represented by taller people. The
height of the individuals would loosely
approximate the heights of the countries.

Methodology

p(individual does X | organization does X) > p(individual does X | organization doesn’t do X).

111
v. 2024.3

Methodology

1. Rosseel Y (2012). “lavaan: An R Package for Structural Equation Modeling.” Journal of Statistical Software, 48(2), 1–36.
https://doi.org/10.18637/jss.v048.i02

2. This would also involve the examination of potential confounds.
3. Gelman, Andrew, Jennifer Hill, and Aki Vehtari. 2021. Regression and Other Stories. N.p.: Cambridge University Press.
4. McElreath, Richard. 2016. Statistical Rethinking: A Bayesian Course with Examples in R and Stan. N.p.: CRC Press/Taylor & Francis

Group.
5. Gelman, Andrew, Jennifer Hill, and Aki Vehtari. 2021. Regression and Other Stories. N.p.: Cambridge University Press
6. McElreath, Richard. 2016. Statistical Rethinking: A Bayesian Course with Examples in R and Stan. N.p.: CRC Press/Taylor & Francis

Group.
7. Our priors tend to be weak (skeptical, neutral, and low information) and we check that the results are not conditioned by our

priors.
8. McElreath, Richard. Statistical rethinking: A Bayesian course with examples in R and Stan. Chapman and Hall/CRC, 2018, pg. 50
9. McElreath, Richard. Statistical rethinking: A Bayesian course with examples in R and Stan. Chapman and Hall/CRC, 2018, pg. 52
10. Followed McElreath’s reasoning in Statistical Rethinking, pg. 56 for choosing 89%. “Why these values? No reason… And these

values avoid conventional 95%, since conventional 95% intervals encourage many readers to conduct unconscious hypothesis
tests.” The interval we’re providing is simply trying to show a plausible “range of parameter values compatible with the model and
data”.

11. Borges, J. L. (1999). Collected fictions. Penguin.
12. Duckworth, Angela Lee, Eli Tsukayama, and Henry May. “Establishing causality using longitudinal hierarchical linear modeling: An

illustration predicting achievement from self-control.” Social psychological and personality science 1, no. 4 (2010): 311-317.

The results are unsurprising. 97.2%
of the 1,000 random draws are in
the correct direction. Of course, it
would be easy to get fooled with
non-random draws, smaller differences
between the countries, and small
samples. Still, the point stands:
differences at the macro-level tend
to be represented in the micro-level.

#R code

#set seed for reproducibility
set.seed(10)

#6'2 and 5'6
height_means = c(6 + 1/6, 5.5)

#constant standard deviation at 1/4 of
foot
std_dev =0.25

#random draws
draws = 1000

#random draws from country A
country_a <-rnorm(draws, mean = height_
means[1], sd = std_dev)

#random draws from country B
country_b <-rnorm(draws, mean = height_
means[2], sd = std_dev)

#how of the draws represent the correct
difference
represented_difference = sum(country_a >
country_b) / 1000

#show results as percentage
represented_difference * 100

Not that it is necessary, but we ran a
quick simulation to validate this is true:

112
v. 2024.3

Models

Traditionally, we have built one giant
model that we validated using various
structural equation modeling techniques
(partial least squares, covariance-based,
bayesian). For the 2023 report, we
switched to focusing on many smaller
models aimed at helping us understand
specific processes.

For example, we made a nuanced model
to understand the physics of quality
documentation. There are important
benefits that come with creating smaller
models1 tailored to understanding
specific effects:

• Ease of identifying areas of poor
model fit

• Everything you add to a model
exerts a force, has a gravity. As your
model gets large, it is really difficult
to understand all the different ways
the variables are exerting force on
each other

• Prevents you from conditioning on
something that creates spurious
relationships2

Models113
v. 2024.3

We all have a lot of questions, but many
vital questions have the following form:

if we do X, what happens to Y?

X is usually a practice, such as creating
quality documentation, adopting AI, or
investing in culture.

Y is usually something that we care
about achieving or avoiding, which
could happen at the individual level
(for example, productivity) up to the
organizational level (for example,
market share).

We construct, evaluate, and use the
models3 with the goal of addressing
questions of this form. We work to
provide an accurate estimate of what
happens to important outcomes as
a result of doing X.4 When we report
effects, we convey two vital features:

1. How much certainty we have in the
direction of the effect, that is, how
clear is it that this practice will be
beneficial or detrimental?

2. How much certainty we have in the
magnitude of the effect. We will
provide an estimate a relative sense
of how impactful certain practices
are and the degree of uncertainty
surrounding these estimates.

How do we use the models?

Models

Here are some of this year's capabilities
of interest:

• AI adoption

• platform use

• platform age

• transformational leadership

• priority stability

• user centricity

Here are some of this year’s outcomes
and outcome groups:

• individual performance and
well-being (for example, burnout)

• team performance

• product performance

• development workflow
(for example, codebase complexity
and document quality)

• software delivery performance

• organizational performance

114
v. 2024.3

We developed and explored many
nuanced hypotheses over the
past three years, especially about
moderation and mediation.

This year, we spent less time focusing
on those types of hypotheses and more
time trying to estimate a capability’s
effect on an outcome. This means that
the model for each capability is largely
the same.

Hence, the model for AI adoption’s
effects is very similar in design to the
model for User-centricity’s effects. We
could copy the model and change the
name of capability, but that might not
be terribly useful for you.

Instead, we are just going to show the
AI model, but know it is the schematic
or form behind each of our models.
Should you be interested in running your
analysis, constructing this model in a tool
like DAGitty should allow you to get close
to replicating the regressions we used in
our analysis. That said, what is presented
is slightly simplified for readability.
Additionally, while the models are very
similar across each capability, the effects
are different. For example you'll see
below that AI adoption generally harms
software delivery performance but the
opposite is true for things like internal
documentation and user-centricity,
see each chapter for additional details.

A repeated modelWe focus on these outcomes because
we believe that they are ends in
themselves. Of course, that is more true
for some of these outcomes than others.
If you found out that organizational
performance and team performance
had nothing to do with the software
delivery performance, you would
probably be okay having low software
delivery performance.

We hope, however, that even if
organizational performance did not
depend on individual well-being
you would still want to prioritize the
well-being of employees.

Models115
v. 2024.3

https://www.dagitty.net/

Models

1. Gelman et. al’s “Regression and other stories” offers some important tips on page 495 through 496
that seem illuminating: B.6 Fit many models and B.9 Do causal inference in a targeted way, not as a byproduct of a large regression

2. A great discussion about this can be found in chapter 6 of Statistical Rethinking. I am talking
particularly about collider bias.

3. See the conversation about how these models are tied with directed acyclic graphs in the methodology chapter
4. We talk about causality briefly in the methods chapter.

Capability
The practice, state or trait of
interest as a potential cause

Covariate
Something that we use to
account alternative hypotheses
and block biasing pathways

Outcome
This is either a single
indicator or a latent factor

Outcome group
A composite of outcomes that
we combined for the sake of
clarity and easy of visualization.
They were understood
separately in the analysis

Effect of interest
These are the effects that
we wanted to quantify and
report to you

Auxiliary Effect
We did not focus on quantifying
this effect this year. It is part of
our model, but not used

Capability
The practice, state or trait of
interest as a potential cause

Covariate
Something that we use to
account alternative hypotheses
and block biasing pathways

Outcome
This is either a single
indicator or a latent factor

Outcome group
A composite of outcomes that
we combined for the sake of
clarity and easy of visualization.
They were understood
separately in the analysis

Effect of interest
These are the effects that
we wanted to quantify and
report to you

Auxiliary Effect
We did not focus on quantifying
this effect this year. It is part of
our model, but not used

Capability
The practice, state or trait of
interest as a potential cause

Covariate
Something that we use to
account alternative hypotheses
and block biasing pathways

Outcome
This is either a single
indicator or a latent factor

Outcome group
A composite of outcomes that
we combined for the sake of
clarity and easy of visualization.
They were understood
separately in the analysis

Effect of interest
These are the effects that
we wanted to quantify and
report to you

Auxiliary Effect
We did not focus on quantifying
this effect this year. It is part of
our model, but not used

Capability
The practice, state or trait of
interest as a potential cause

Covariate
Something that we use to
account alternative hypotheses
and block biasing pathways

Outcome
This is either a single
indicator or a latent factor

Outcome group
A composite of outcomes that
we combined for the sake of
clarity and easy of visualization.
They were understood
separately in the analysis

Effect of interest
These are the effects that
we wanted to quantify and
report to you

Auxiliary Effect
We did not focus on quantifying
this effect this year. It is part of
our model, but not used

Capability
The practice, state or trait of
interest as a potential cause

Covariate
Something that we use to
account alternative hypotheses
and block biasing pathways

Outcome
This is either a single
indicator or a latent factor

Outcome group
A composite of outcomes that
we combined for the sake of
clarity and easy of visualization.
They were understood
separately in the analysis

Effect of interest
These are the effects that
we wanted to quantify and
report to you

Auxiliary Effect
We did not focus on quantifying
this effect this year. It is part of
our model, but not used

Capability
The practice, state or trait of
interest as a potential cause

Covariate
Something that we use to
account alternative hypotheses
and block biasing pathways

Outcome
This is either a single
indicator or a latent factor

Outcome group
A composite of outcomes that
we combined for the sake of
clarity and easy of visualization.
They were understood
separately in the analysis

Effect of interest
These are the effects that
we wanted to quantify and
report to you

Auxiliary Effect
We did not focus on quantifying
this effect this year. It is part of
our model, but not used

Helps

Helps

Mostly
Helps

Harms

Team
Performanc

Product
Performanc

Organizational
Performance

Individual
Performance

and

Development
Workflow

Softwear
Delivery

Performance
AI adoption

Indivisual
Traits

Firmographic
Traits

Service
Features

no effect

The key

116
v. 2024.3

Recommended
reading

Read the book: Team Topologies:
Organizing Business and Technology
Teams for Fast Flow. IT Revolution Press.
https://teamtopologies.com/

Publications from DORA’s research
program, including prior DORA Reports.
https://dora.dev/publications

Frequently asked questions about the
research and the reports.
http://dora.dev/faq

Errata - Read and submit changes,
corrections, and clarifications to this
report. https://dora.dev/publications/
errata

Check if this is the latest version
of the 2024 DORA Report:
https://dora.dev/vc/?v=2024.3

Join the DORA Community to discuss,
learn, and collaborate on improving
software delivery and operations
performance. https://dora.community

Take the DORA Quick Check.
https://dora.dev/quickcheck

Explore the capabilities that enable a
climate for learning, fast flow, and fast
feedback. https://dora.dev/capabilities

Fostering developers’ trust in generative
artificial intelligence. https://dora.dev/
research/2024/trust-in-ai/

Read the book: Accelerate: The science
behind devops: Building and scaling high
performing technology organizations.
IT Revolution. https://itrevolution.com/
product/accelerate

Recommended reading117
v. 2024.3

https://teamtopologies.com/
https://dora.dev/publications
http://dora.dev/faq
https://dora.dev/publications/errata/
https://dora.dev/publications/errata/
https://dora.dev/vc?v=2024.2
https://dora.dev/vc/?v=2024.3
https://dora.community
https://dora.dev/quickcheck
https://dora.dev/capabilities
https://dora.dev/research/2024/trust-in-ai/
https://dora.dev/research/2024/trust-in-ai/
https://itrevolution.com/product/accelerate
https://itrevolution.com/product/accelerate

“Accelerate State of DevOps 2024”
by Google LLC is licensed under CC BY-NC-SA 4.0

118
v. 2024.3

https://creativecommons.org/licenses/by-nc-sa/4.0/

119
v. 2024.3

