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Executive
summary

DORA collects data through an annual, 
worldwide survey of professionals 
working in technical and adjacent roles. 
The survey includes questions related to 
ways of working and accomplishments 
that are relevant across an organization 
and to the people working in that 
organization. 

DORA uses rigorous statistical evaluation 
methodology to understand the 
relationships between these factors and 
how they each contribute to the success 
of teams and organizations. 

This year, we augmented our survey with 
in-depth interviews of professionals as a 
way to get deeper insights, triangulate, 
and provide additional context for our 
findings. See the Methodology chapter 
for more details.

DORA has been investigating the 
capabilities, practices, and measures 
of high-performing technology-driven 
teams and organizations for over a 
decade. This is our tenth DORA report. 
We have heard from more than 39,000 
professionals working at organizations 
of every size and across many different 
industries globally. Thank you for joining 
us along this journey and being an 
important part of the research!
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The key accomplishments and outcomes 
we investigated this year are:

Burnout is a state of emotional, physical, and mental exhaustion 
caused by prolonged or excessive stress, often characterized by 
feelings of cynicism, detachment, and a lack of accomplishment.

Reducing burnout 

This measures an organization's performance in areas including 
profitability, market share, total customers, operating efficiency, 
customer satisfaction, quality of products and services, and its 
ability to achieve goals.

Organizational 
performance

Flow measures how much focus a person tends to achieve during 
development tasks.

Flow

Job satisfaction measures someone’s overall feeling 
about their job.

Job satisfaction

This measures the usability, functionality, value, availability, 
performance (for example, latency), and security of a product. 

Product  
performance 

Productivity measures the extent to which an individual  
feels effective and efficient in their work, creating value  
and achieving tasks.

Productivity

This measures a team's ability to collaborate, innovate, work 
efficiently, rely on each other, and adapt.

Team performance
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Key findings

However, AI adoption also brings some 
detrimental effects. We have observed 
reductions to software delivery 
performance, and the effect on product 
performance is uncertain. Additionally, 
individuals are reporting a decrease in 
the amount of time they spend doing 
valuable work as AI adoption increases, 
a curious finding that is explored more 
later in this report.

Teams should continue experimenting 
and learning more about the impact of 
increasing reliance on AI.

AI is having broad impact

AI is producing a paradigm shift in the 
field of software development. Early 
adoption is showing some promising 
results, tempered by caution. 

AI adoption benefits:

• Flow

• Productivity

• Job satisfaction

• Code quality

• Internal documentation

• Review processes

• Team performance

• Organizational performance
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AI adoption increases as trust  
in AI increases

Using generative artificial intelligence 
(gen AI) makes developers feel more 
productive, and developers who trust 
gen AI use it more. There is room for 
improvement in this area: 39.2% of 
respondents reported having little or no 
trust in AI. 

User-centricity drives performance

Organizations that prioritize the end user 
experience produce higher quality  
products, with developers who are more 
productive, satisfied, and less likely  
to experience burnout.

Transformational leadership matters

Transformational leadership improves 
employee productivity, job satisfaction, 
team performance, product 
performance, and organizational 
performance while also helping decrease 
employee burnout.

Stable priorities boost productivity  
and well-being

Unstable organizational priorities  
lead to meaningful decreases in 
productivity and substantial increases  
in burnout, even when organizations  
have strong leaders, good internal 
documents, and a user-centric approach 
to software development. 

Platform engineering  
can boost productivity

Platform engineering has a positive 
impact on productivity and 
organizational performance, but there 
are some cautionary signals for software 
delivery performance.

Cloud enables infrastructure flexibility

Flexible infrastructure can increase 
organizational performance. However, 
moving to the cloud without adopting 
the flexibility that cloud has to offer may 
be more harmful than remaining in the 
data center. Transforming approaches, 
processes, and technologies is required 
for a successful migration.

High-levels of software delivery 
performance are achievable

The highest performing teams excel  
across all four software delivery 
metrics (change lead time, deployment 
frequency, change fail percentage, and 
failed deployment recovery time) while 
the lowest performers perform poorly 
across all four. We see teams from 
every industry vertical in each of the 
performance clusters.
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Applying insights from DORA

Driving team and organizational 
improvements with DORA requires that 
you assess how you're doing today, 
identify areas to invest in and make 
improvements, and have feedback loops 
to tell you how you're progressing. Teams 
that adopt a mindset and practice of 
continuous improvement are likely to 
see the most benefits. Invest in building 
the organizational muscles required to 
repeat this over time.

Findings from our research can  
help inform your own experiments  
and hypotheses. It's important to 
experiment and measure the impact  
of your changes to see what works best 
for your team and organization. Doing  
so will help you validate our findings. 
Expect your results to differ and please 
share your progress so that we all may 
learn from your experience.

We recommend taking an 
experimental approach to 
improvement. 

1. Identify an area or outcome you would 
like to improve

2. Measure your baseline or current state

3. Develop a set of hypotheses about 
what might get you closer to your 
desired state

4. Agree and commit to a plan  
for improvement

5. Do the work

6. Measure the progress you’ve made

7. Repeat the process.  
Improvement work is achieved 
iteratively and incrementally
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You cannot improve alone!

We can learn from each other’s 
experience; an excellent forum for 
sharing and learning about improvement 
initiatives is the DORA Community 
https://dora.community.

Executive summary8
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Software delivery 
performance

Technology-driven teams need ways to 
measure performance so that they can 
assess how they’re doing today, prioritize 
improvements, and validate their 
progress. DORA has repeatedly validated 
four software delivery metrics — the four 
keys — that provide an effective way of 
measuring the outcomes of the software 
delivery process. 

Software delivery performance9
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Failed deployment recovery time: 
the time it takes to recover from a 
failed deployment. 

DORA’s four keys have been used to 
measure the throughput and stability 
of software changes. This includes 
changes of any kind, including changes 
to configuration and changes to code.

The four keys

Software delivery performance

Change lead time: 
the time it takes for a code  
commit or change to be successfully 
deployed to production.

Change fail rate:  
the percentage of deployments 
that cause failures in production,1 
requiring hotfixes or rollbacks.

Deployment frequency:  
how often application changes are 
deployed to production. 

We've observed that these metrics 
typically move together, the best 
performers do well on all four while the 
lowest performers do poorly.

10
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The analysis of the four key metrics 
has long had an outlier: change failure 
rate.2 Change failure rate is strongly 
correlated with the other three metrics 
but statistical tests and methods  
prevent us from combining all four 
into one factor. A change to the way 
respondents answered the change 
failure rate question improved the 
connection but we felt there might  
be something else happening.

We have a longstanding hypothesis  
that the change failure rate metric works 
as a proxy for the amount of rework a 
team is asked to do. When a delivery fails, 
this requires the team to fix the change, 
likely by introducing another change.

To test this theory, we added another 
question this year about the rework 
rate for an application: "For the primary 
application or service you work on, 
approximately how many deployments  
in the last six months were not planned 
but were performed to address a user-
facing bug in the application?"

Our data analysis confirmed our 
hypothesis that rework rate and change 
failure rate are related. Together, these 
two metrics create a reliable factor of 
software delivery stability.

This appears in the analysis of software 
performance levels, too. More than  
half of the teams in our study this  
year show differences in software 
throughput and software stability.  
These differences have led us to  
consider software delivery performance 
through two different factors:

Evolving the measures of software 
delivery performance

Concept

Factor

Software delivery performance

Metrics used

• Change lead 
time

• Deployment 
frequency

• Failed 
deployment 
recovery time

• Change failure 
rate

• Rework rate

Software 
delivery 

throughput

Software 
delivery  
stability

Software delivery performance11
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Our analysis throughout this report 
utilizes the software delivery 
performance concept and both factors 
at various times. All five metrics are 
considered for describing software 
delivery performance.

Change lead time, deployment 
frequency, and failed deployment 
recovery time are used when we 
describe software delivery throughput. 
This factor measures the speed of 
making updates of any kind, normal 
changes and changes in response  
to a failure.

Change failure rate and rework rate are 
used when we describe software delivery 
stability. This factor measures the 
likelihood deployments unintentionally 
lead to immediate, additional work.

Software delivery performance12
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Each year we ask survey respondents 
about the software delivery performance 
of the primary application or service they 
work on. We analyze their answers using 
cluster analysis, which is a statistical 
method that identifies responses that are 
similar to one another but distinct from 
other groups of responses. 

We performed the cluster analysis on the 
original four software delivery metrics to 
remain consistent with previous years' 
cluster analyses.

In our analysis of software delivery 
performance, four clusters of responses 
emerged. We do not set these levels in 
advance, rather we let them emerge 
from the survey responses. This gives 
us a way to see a snapshot of software 
delivery performance across all 
respondents each year. 

Four distinct clusters emerged from the 
data this year, as shown below.

Performance 
level

Change lead 
time

Deployment 
frequency

Change fail 
rate

Failed 
deployment 
recovery time

Percentage of 
respondents*

Elite Less than 
one day

On demand 
(multiple 
deploys per day)

5% Less than 
one hour

19%  
(18-20%)

High Between one 
day and one 
week

Between once 
per day and 
once per week

20% Less than 
one day

22%  
(21-23%)

Medium Between one 
week and 
one month

Between once 
per week and 
once per month

10% Less than 
one day

35%  
(33-36%)

Low Between one 
month and 
six months

Between once 
per month and 
once every six 
months

40% Between one 
week and 
one month

25%  
(23-26%)

Performance levels

Software delivery performance

*89% uncertainty interval
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Throughput or stability?

Within all four clusters, throughput 
and stability are correlated. This 
correlation persists even in the medium 
performance cluster (orange), where 
throughput is lower and stability is 
higher than in the high performance 
cluster (yellow). This suggests that 
factors besides throughput and stability 
influence cluster performance. The 
medium performance cluster, for 
example, may benefit from shipping 
changes more frequently. 

Which is better, more frequent 
deployments or fewer failures  
when deploying? 

There may not be a universal answer 
to this question. It depends on the 
application or service being considered, 
the goals of the team working on that 
application, and most importantly the 
expectations of the application’s users. 

We made a decision to call the faster 
teams “high performers,” and the 
slower but more stable teams “medium 
performers.” This decision highlights  
one of the potential pitfalls of using  
these performance levels: Improving 
should be more important to a team  
than reaching a particular performance 
level. The best teams are those that 
achieve elite improvement, not 
necessarily elite performance.

Software delivery performance

Software delivery performance levels

Change lead time 

1m : 6m

1w : 1m

1d : 1w

1m : 6m

1w : 1m

1d : 1w

< 1d 1h : 1d

< 1hr On Demand

Elite High Medium Low

50% 1w - 1m

1d - 1w

< 1d

< 1hr

40%

30%

20%

10%

Deployment frequency Change failure rate Failed deployment 
recovery time

Software Delivery Performance Levels

Change lead time 

1m : 6m

1w : 1m

1d : 1w

1m : 6m

1w : 1m

1d : 1w

< 1d 1h : 1d

< 1hr On Demand

Elite High Medium Low

50% 1w - 1m

1d - 1w

< 1d

< 1hr

40%

30%

20%

10%

Deployment frequency Change failure rate Failed deployment 
recovery time

Figure 1: Software delivery performance levels
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Industry does not meaningfully affect 
performance levels

Our research rarely3 finds that industry 
is a predictor of software delivery 
performance; we see high-performing 
teams in every industry vertical. This 
isn’t to suggest that there are no unique 
challenges across industries, but no 
one industry appears to be uniquely 
encumbered or uniquely capable when it 
comes to software delivery performance.

127x 8x182x 2293x
faster lead 

time
lower change  

failure rate
more 

deployments 
per year

faster failed 
deployment 

recovery times

When compared to low performers,  
elite performers realize

How to use the 
performance clusters

The performance clusters provide 
benchmark data that show the 
software delivery performance of 
this year's survey respondents. The 
clusters are intended to help inspire all 
that elite performance is achievable. 

More important than reaching a 
particular performance level, we 
believe that teams should focus  
on improving performance overall. 
The best teams are those that  
achieve elite improvement, not 
necessarily elite performance.

Software delivery performance15
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Software delivery performance

Each application or service has its own 
unique context. This complexity makes it 
difficult to predict how any one change 
may affect the overall performance of 
the system. Beyond that, it is nearly 
impossible to change only one thing 
at a time in an organization. With this 
complexity in mind, how can we use the 
software delivery performance metrics 
to help guide our improvement efforts?

Start by identifying the primary 
application or service you would  
like to measure and improve. We then 
recommend gathering the cross-
functional team responsible for this 
application to measure and agree  
on its current software delivery 
performance. The DORA Quick Check 
(https://dora.dev/quickcheck) can  
help guide a conversation and set  
this baseline measurement. Your  
team will need to understand what  
is preventing better performance. 

One effective way to find these 
impediments is to complete a value 
stream mapping exercise4 with the team. 

Next, identify and agree on a plan for 
improvement. This plan may focus on 
improving one of the many capabilities 
that DORA has researched5 or may be 
something else that is unique to your 
application or organization. 

With this plan in-hand, it's now time to 
do the work! Dedicate capacity to this 
improvement work and pay attention to 
the lessons learned along the way. 

After the change has had a chance 
to be implemented and take hold, it's 
now time to re-evaluate the four keys. 
How have they changed after the team 
implemented the change? What lessons 
have you learned? 

Repeating this process will help the 
team build a practice of continuous 
improvement.

Remember: change does not happen 
overnight. An iterative approach that 
enables a climate for learning, fast flow, 
and fast feedback6 is required.

Using the software delivery 
performance metrics

1.  We consider a deployment to be a change failure only if it causes an issue after landing in production, where it can be experienced 
by end users. In contrast, a change that is stopped on its way to production is a successful demonstration of the deployment 
process's ability to detect errors.

2. Forsgren, Nicole, Jez Humble, and Gene Kim. 2018. Accelerate: The Science Behind DevOps : Building and Scaling High Performing 
Technology Organizations. IT Revolution Press. pp. 37-38

3. The 2019 Accelerate State of DevOps (p 32) report found that the retail industry saw significantly better software delivery 
performance. https://dora.dev/research/2019/dora-report/2019-dora-accelerate-state-of-devops-report.pdf#page=32

4. https://dora.dev/guides/value-stream-management/
5. https://dora.dev/capabilities
6. https://dora.dev/research
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Artificial 
intelligence: 
Adoption  
and attitudes

Introduction
It would be difficult to ignore the 
significant impact that AI has had on  
the landscape of development work  
this year, given the proliferation of 
popular news articles outlining its 
effects, from good1 to bad2 to ugly.3  
So, while AI was only discussed as one 
of many technical capabilities affecting 
performance in our 2023 Accelerate 
State of DevOps Report,4 this year we 
explore this topic more fully. 

As the use of AI in professional 
development work moves rapidly from 
the fringes to ubiquity, we believe our 
2024 Accelerate State of DevOps Report 
represents an important opportunity to 
assess the adoption, use, and attitudes 
of development professionals at a critical 
inflection point for the industry. 

Artificial intelligence: Adoption and attitudes

Takeaways
The vast majority of organizations  
across all industries surveyed are 
shifting their priorities to more deeply 
incorporate AI into their applications  
and services. A corresponding majority 
of development professionals are  
relying on AI to help them perform  
their core role responsibilities — and 
reporting increases in productivity as 
a result. Development professionals’ 
perceptions that using AI is necessary  
for remaining competitive in today’s 
market is pervasive and appears to  
be an important driver of AI adoption 
for both organizations and individual 
development professionals.
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Artificial intelligence: Adoption and attitudes

Findings

Adopting Artificial Intelligence

Findings on the adoption of AI suggest a 
growing awareness that AI is no longer 
“on the horizon,” but has fully arrived and 
is, quite likely, here to stay. 

Organizational adoption of  
Artificial Intelligence

The vast majority of respondents (81%) 
reported that their organizations have 
shifted their priorities to increase their 
incorporation of AI into their applications 

Changes in organizational priorities concerning AI

and services. 49.2% of respondents even 
described the magnitude of this shift as 
being either “moderate” or “significant.” 

Notably, 3% of respondents reported  
that their organizations are decreasing 
focus on AI — within the margin of 
error of our survey. 78% of respondents 
reported that they trusted their 
organizations to be transparent about 
how they plan on using AI as a result 
of these priority shifts. This data is 
visualized in Figure 2.

Figure 2: Respondents’ perceptions of their organizations’ shifts in priorities toward or away from 
incorporation of AI into their applications and services. 

Error bar represents 89% uncertainty interval
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Participants from all surveyed industries 
reported statistically identical levels of 
reliance on AI in their daily work, which 
suggests that this rapid adoption of AI 
is unfolding uniformly across all industry 
sectors. This was somewhat surprising 
to us. Individual industries can vary 
widely with respect to their levels of 
regulatory constraints and historical pace 
of innovation, each of which can impact 
rates of technology adoption. 

However, we did find that respondents 
working in larger organizations report 
less reliance on AI in their daily work 
than respondents working in smaller 
organizations, which is consistent with 
prior literature indicating larger firms 
more slowly adapt to technological 
change because of their higher 
organizational complexities and 
coordination costs.5

Artificial intelligence: Adoption and attitudes

Individual adoption of  
artificial intelligence

At the individual level, we found that 
75.9% of respondents are relying, at 
least in part, on AI in one or more of 
their daily professional responsibilities. 
Among those whose job responsibilities 
include the following tasks, a majority of 
respondents relied on AI for:

1. Writing code

2. Summarizing information

3. Explaining unfamiliar code

4. Optimizing code

5. Documenting code

6. Writing tests

7. Debugging code

8. Data analysis

Of all tasks included in our survey 
responses, the most common use cases 
for AI in software development work 
were writing code and summarizing 
information, with 74.9% and 71.2% of 
respondents whose job responsibilities 
include these tasks relying on AI to 
perform them — at least in part. This data 
is visualized in Figure 3.
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Artificial intelligence: Adoption and attitudes

74.9%

71.2%

62.2%

61.3%
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59.6%
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46.3%

45%
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Language migration

Security analysis

Code review
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Test writing

Documentation
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Summarizing information

Code writing
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sk

Debugging

Percentage of respondents

Chatbots were the most common 
interface through which respondents 
interacted with AI in their daily work 
(78.2%), followed by external web 
interfaces (73.9%), and AI tools 
embedded within their IDEs (72.9%). 
Respondents were less likely to use 
AI through internal web interfaces 
(58.1%) and as part of automated CI/CD 
pipelines (50.2%). 

However, we acknowledge that 
respondents' awareness of AI used 
in their CI/CD pipelines and internal 
platforms likely depends on the 
frequency with which they interface with 

Figure 3: Percentage of respondents relying on AI, at least in part, to perform twelve common development tasks

those technologies. So, these numbers 
might be artificially low.

We found that data scientists and 
machine learning specialists were more 
likely than respondents holding all 
other job roles to rely on AI. Conversely, 
hardware engineers were less likely than 
respondents holding all other job roles 
to rely on AI, which might be explained 
by the responsibilities of hardware 
engineers differing from the above tasks 
for which AI is commonly used.

Task reliance on AI

Error bar represents 89% credibility interval
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Artificial intelligence: Adoption and attitudes

Drivers of adoption of  
artificial intelligence

Interview participants frequently linked 
the decision to adopt AI to competitive 
pressures and a need to keep up with 
industry standards for both organizations 
and developers, which are increasingly 
recognized to include proficiency with AI. 

For several participants’ organizations, 
using AI at all was seen as “a big 
marketing point” (P3)6 that could help 
differentiate their firm from competitors. 
Awareness that competitors are 
beginning to adopt AI in their own 
processes even prompted one firm to 
forgo the typical “huge bureaucracy” 
involved in adopting new technology 
because they felt an urgency to adopt 
AI, questioning “what if our competitor 
takes those actions before us?” (P11). 

At the individual level, many participants 
linked their adoption of AI to the 
sentiment that proficiency with using AI 
in software development is “kind of, like, 
the new bar for entry as an engineer” 
(P9). Several participants suggested 
fellow developers should rapidly adopt  
AI in their development workflow, 
because “there’s so much happening 
in this space, you can barely keep up… I 
think, if you don’t use it, you will be left 
behind quite soon” (P4). 
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Artificial intelligence: Adoption and attitudes

Perceptions of artificial intelligence

Performance improvements from 
artificial intelligence

For the large number of organizations 
and developers who are adopting it, the 
benefits of using AI in development work 
appear to be quite high. Seventy-five 
percent of respondents reported positive 
productivity gains from AI in the three 
months preceding our survey, which was 
fielded in early 2024. 

Notably, more than one-third 
of respondents described their 
observed productivity increases as 
either moderate (25%) or extreme 
(10%) in magnitude. Fewer than 10% 
of respondents reported negative 
impacts of even a slight degree on their 
productivity because of AI. This data is 
visualized in Figure 4.

Perceptions of productivity changes due to AI

Figure 4: Respondents’ perceptions of AI’s impacts on their productivity.

Error bar represents 89% uncertainty interval
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Across roles, respondents who 
reported the largest productivity 
improvements from AI were security 
professionals, system administrators, 
and full-stack developers. Although 
they also reported positive productivity 
improvement, mobile developers, 
site reliability engineers, and project 
managers reported lower magnitudes 
of productivity benefits than all other 
named roles. 

Although we suspected that the 
novelty of AI in development work, 
and corresponding learning curve, 
might inhibit developers’ ability to write 
code, our findings did not support that 
hypothesis. Only 5% of respondents 
reported that AI had inhibited their ability 
to write code to any degree. In fact, 67% 
of respondents reported at least some 
improvement to their ability to write code 
as a result of AI-assisted coding tools, 
and about 10% have observed “extreme” 
improvements to their ability to write 
code because of AI.

Artificial intelligence: Adoption and attitudes

Trust in AI-generated code

Participants’ perceptions of the 
trustworthiness of AI-generated code 
used in development work were complex. 
While the vast majority of respondents 
(87.9%) reported some level of trust in 
the quality of AI-generated code, the 
degree to which respondents reported 
trusting the quality of AI-generated code 
was generally low, with 39.2% reporting 
little (27.3%) or no trust (11.9%) at all. This 
data is visualized in Figure 5.
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Artificial intelligence: Adoption and attitudes

Given the evidence from the survey 
that developers are rapidly adopting 
AI, relying on it, and perceiving it as 
a positive performance contributor, 
we found the overall lack of trust in AI 
surprising. It’s worth noting that during 
our interviews, many of our participants 
indicated that they were willing to, or 
expected to, tweak the outputs of the 
AI-generated code they used in their 
professional work. 

One participant even likened the need 
to evaluate and modify the outputs of 
AI-generated code to “the early days 
of StackOverflow, [when] you always 
thought people on StackOverflow are 
really experienced, you know, that they 
will know exactly what to do. And then, 
you just copy and paste the stuff, and 
things explode” (P2).

Perhaps because this is not a new 
problem, participants like P3 felt that 
their companies are not “worried 
about, like, someone just copy-and-
pasting code from Copilot or ChatGPT 
[because of] having so many layers to 
check it” with their existing code-quality 
assurance processes.

We hypothesize that developers do not  
necessarily expect absolute trust in 
the accuracy of AI-generated code, 
nor does absolute trust appear to be 
required for developers to find AI-
generated code useful. Rather, it seems 
that mostly-correct AI-generated code 
that can be perfected with some tweaks 
is acceptable, sufficiently valuable to 
motivate widespread adoption and use, 
and compatible with existing quality 
assurance processes.
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Figure 5: Respondents’ reported trust in the quality of AI-generated code.

Trust in quality of AI-generated code

Error bar represents 89% uncertainty interval
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Expectations for AI’s future

Overall, our findings indicate AI has 
already had a massive impact on 
development professionals’ work, a trend 
we expect to continue to grow. While it 
would be impossible to predict exactly 
how AI will impact development — and 
our world — in the future, we asked 
respondents to speculate and share their 
expectations about the impacts of AI in 
the next one, five, and 10 years.

Respondents reported quite positive 
impacts of AI on their development work 
in reflecting on their recent experiences, 
but their predictions for AI’s future 
impacts were not as hopeful. 

Artificial intelligence: Adoption and attitudes

Expected negative impacts of AI

Optimistically, and consistent with 
our findings that AI has positively 
impacted development professionals’ 
performance, respondents reported that 
they expect the quality of their products 
to continue to improve as a result of AI 
over the next one, five, and 10 years. 

However, respondents also reported 
expectations that AI will have net-
negative impacts on their careers, the 
environment, and society, as a whole,  
and that these negative impacts will be 
fully realized in about five years time.  
This data is visualized in Figure 6.

Figure 6: Respondents’ expectations about AI’s future negative impacts in the next one, five, and 10 years.

Error bar represents 89% credibility interval
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Artificial intelligence: Adoption and attitudes

Interview participants held similarly 
mixed feelings about the future impacts 
of AI as our survey respondents. Some 
wondered about future legal actions in a 
yet-to-be-decided regulatory landscape, 
worrying they might “be on the wrong 
side of it, if things get decided” (P3). 

Others echoed long-held anxieties and 
asked, “Is it going to replace people? 
Who knows? Maybe.” (P2), while their 
peers dismissed their fears by drawing 
parallels to the past, when “people 
used to say ‘Oh, Y2K! Everything will be 
doomed!’ Blah, blah… because it was a 
new thing, at that time. 

1. https://www.sciencedaily.com/releases/2024/03/240306144729.htm
2. https://tech.co/news/list-ai-failures-mistakes-errors
3. https://klyker.com/absurd-yoga-poses-generated-by-ai/
4. https://dora.dev/dora-report-2023
5. Rogers, Everett M., Arvind Singhal, and Margaret M. Quinlan. “Diffusion of innovations.” An integrated approach to communication 

theory and research. Routledge, 2014. 432-44, Tornatzky, L. G., & Fleischer, M. (1990). The processes of technological innovation. 
Lexington, MA: Lexington Books

6. (P[N]), for example (P1), indicates pseudonym of interview participants.

[But,] nothing got replaced. In fact, there 
were more jobs created. I believe the 
same thing will happen with AI” (P1).

The future effects AI will have on our 
world remain unclear. But, this year, our 
survey strongly indicates that AI has 
produced an unignorable paradigm shift 
in the field of software development. So 
far, the changes have been well-received 
by development professionals.
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Exploring the 
downstream 
impact of AI

Takeaways
This chapter investigates the impact 
of AI adoption across the spectrum, 
from individual developers to entire 
organizations. The findings reveal a 
complex picture with both clear benefits 
and unexpected drawbacks. While AI 
adoption boosts individual productivity, 
flow, and job satisfaction, it may also 
decrease time spent on valuable work.

Similarly, AI positively impacts code 
quality, documentation, and review 
processes, but surprisingly, these  
gains do not translate to improved 
software delivery performance. 
In fact, AI adoption appears detrimental 
in this area, while its effect on product 
performance remains negligible. 

Exploring the downstream impact of AI

Despite these challenges, AI adoption 
is linked to improved team and 
organizational performance. This chapter 
concludes with a call to critically evaluate 
AI's role in software development 
and proactively adapt its application 
to maximize benefits and mitigate 
unforeseen consequences.
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The AI moment & DORA

Estimates suggest that leading tech 
giants will invest approximately $1 trillion 
on the development of AI in the next five 
years.1 This aligns well with a statistic 
presented in the "Artificial intelligence: 
Adoption and attitudes" chapter that 81% 
of respondents say their company has 
shifted resources into developing AI. 

The environmental impacts of AI further 
compound the costs. Some estimates 
suggest that by 2030, AI will drive an 
increase in data center power demand 
by 160%.2 The training of an AI model can 
add up to roughly “the yearly electricity 
consumption of over 1,000 U.S. 
households”.3 It is no surprise that more 
than 30% of respondents think AI is going 
to be detrimental to the environment. 

Beyond the development and 
environmental costs, we have the 
potential for adoption costs.

This could come in many forms, from 
productivity decreases to the hiring of 
specialists. These adoption costs could 
also come at a societal level. Over a 
third of respondents believe AI will harm 
society in the coming decade. Given 
these costs, it seems natural for people to 
have a deep curiosity about the returns. 

This curiosity has manifested itself in a 
wealth of media, articles, and research 
whose sentiment and data are both 
mixed, at least to some extent. 

Some believe that AI has dramatically 
enhanced the ability of humanity,4 others 
suggest that AI is little more than a 
benign tool for helping with homework,5 
and some fear that AI will be the downfall 
of humanity.6 

Evidence for proximal outcomes, such 
as the ability to successfully complete a 
particular task, is largely positive.7 When 
the outcome becomes more distant, 
such as a team’s codebase, the results 
start becoming a little less clear and a 
little less positive. For example, some 
research has suggested that code churn 
may double from the pre-2021 baseline.8

The challenge of understanding these 
downstream effects is unsurprising.  
The further away the effect is from  
the cause, the less pronounced and  
clear the connection.
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Evaluating the downstream effects of  
AI mimics quantifying the effect of a  
rock thrown into a lake. You can most 
easily attribute the ripples closest to the 
impact point of the rock in the water, 
but the farther from the entry point you 
go, the less pronounced the effect of 
the rock is and the harder it is to ascribe 
waves to its impact. 

AI is essentially a rock thrown into a 
stormy sea of other processes and 
dynamics. Understanding the extent 
of the waves caused by AI (or any 
technology or practice) is a challenge. 
This may be part of the reason the 
industry has struggled to adopt a 
principled set of measurement and 
analytic frameworks for understanding 
the impact of AI.9

Exploring the downstream impact of AI

Our approach is specifically designed to 
be useful for these types of challenges. 
DORA is designed to understand the 
utility or disutility of a practice. We’ve 
explored the downstream impacts 
of myriad practices over the last 10 
years, including security practices, 
transformational leadership, generative 
cultures, documentation practices, 
continuous integration, continuous 
delivery, and user-centricity.10 

We believe that DORA’s approach11 can 
help us learn about AI’s impact, especially 
as we explore the effects of AI across 
many outcomes. 
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The first challenge of capturing the 
impact of adopting AI is measuring 
the adoption of AI. We determined 
measuring usage frequency is likely not 
as meaningful as measuring reliance 
for understanding AI’s centrality to 
development workflows. You might only 
do code reviews or write documentation 
a few times a month or every couple 
of months, but you see these tasks as 
critically important to your work. 

Conversely, just because you use AI 
frequently does not mean that you are 
using AI for work that you consider 
important or central to your role. 

Given this, we asked respondents  
about their reliance on AI in general  
and for particular tasks. The previous 
chapter details the survey results  
and their interpretation.

Measuring AI adoption

Exploring the downstream impact of AI

Using factor analysis, we found our 
“general” AI reliance survey item had high 
overlap with reported AI reliance on the 
following tasks:  

• Code Writing

• Summarizing information

• Code explanation

• Code optimization

• Documentation

• Test writing

The strong commonality and covariance 
among these seven items suggests 
an underlying factor that we call AI 
adoption. 
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As we do every year, we measured 
a variety of constructs related to an 
individual’s success and well-being: 

AI’s impact on individuals is a story of clear 
benefits (and some potential tradeoffs)

We wanted to figure out if the way 
respondents answered these questions 
changes as a function of adopting AI. The 
results suggest that is often the case.

Exploring the downstream impact of AI

Figure 7 is a visualization that shows 
our best estimates about the impact of 
adopting AI on an individual’s success 
and well-being.

A single item designed to capture someone’s overall feeling about 
their job.

Job satisfaction

A factor that encapsulates the multifaceted nature of burnout, 
encompassing its physical, emotional, and psychological 
dimensions, as well as its impact on personal life.

Burnout

A single item designed to capture how much focus a person tends 
to achieve during development tasks.

Flow

A factor score designed to measure the extent an individual  
feels effective and efficient in their work, creating value and 
achieving tasks.

Productivity

A single item measuring the percentage of an individual’s  
time spent on repetitive, manual tasks that offer little  
long-term value.

Time doing 
toilsome work

A single item measuring the percentage of an individual's time 
spent on tasks that they consider valuable.

Time doing 
valuable work 
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Figure 7: Impacts of AI adoption on individual success and well-being
Error bar = 89% uncertainty interval
Point = estimated value

If an individual increases AI adoption by 25%…

The clear benefits

The story about the benefit of adopting 
AI for individuals is largely favorable,  
but like any good story, has some 
wrinkles. What seems clear is that 
AI has a substantial and beneficial 
impact on flow, productivity, and job 
satisfaction (see Figure 7). 

Productivity, for example, is likely to 
increase by approximately 2.1% when 
an individual’s AI adoption is increased 
by 25% (see Figure 7). This might seem 
small, but this is at the individual-level. 
Imagine this pattern extended across 
tens of developers, or even tens of 
thousands of developers. 

This pattern is what we expected. 
We believe it emerged in part thanks 
to AI’s ability to synthesize disparate 
sources of information and give a 
highly personalized response in a single 
location. Doing this on your own takes 
time, lots of context switching, and is less 
likely to foster flow.

Given the strong connection that 
productivity and flow have with job 
satisfaction, it shouldn’t be surprising 
that we see AI adoption leads to higher 
job satisfaction. 
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The potential tradeoffs 

Here is where the story gets a little 
complicated. One value proposition for 
adopting AI is that it will help people 
spend more time doing valuable work. 
That is, by automating the manual, 
repetitive, toilsome tasks, we expect 
respondents will be free to use their time 
on “something better.” However, our 
data suggest that increased AI adoption 
may have the opposite effect—reducing 
reported time spent doing valuable 
work—while time spent on toilsome work 
appears to be unaffected. 

Markers of respondents’ well-being, like 
flow, job satisfaction, and productivity 
have historically been associated with 
time spent doing valuable work. So, 
observed increases in these measures 
independently of decreases in time spent 
on valuable work are surprising. 

A good explanation of these patterns 
will need to wrestle with this seeming 
incongruity. A good explanation of 
a movie cannot ignore a scene that 
contradicts the explanation. A good 
explanation of a book cannot ignore a 
chapter that doesn’t fit neatly into the 
explanation. Similarly, a good explanation 
of these patterns cannot just focus on a 
subset of the patterns that allows us to 
tell a simple story. 

There are innumerable hypotheses that 
could fit the data, but we came up with a 
hypothesis that seems parsimonious with 
flow, productivity, and job satisfaction 
benefitting from AI while time spent 
doing valuable work decreases and toil 
remains unchanged.

We call our hypothesis the vacuum 
hypothesis. By increasing productivity 
and flow, AI is helping people work more 
efficiently. This efficiency is helping 
people finish up work they consider 
valuable faster. 

This is where the vacuum is created; 
there is extra time. AI does not steal  
value from respondents’ work, it 
expedites its realization. 
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To make sense of these counterintuitive 
findings we explored more deeply what 
types of work respondents judge to be 
valuable or toilsome.

Traditional wisdom, our past reports, 
and qualitative data from our interviews 
suggest that respondents find 
development-related tasks, like coding, 
to be valuable work, while less-valuable, 
even toilsome, work typically includes 
tasks associated with organizational 
coordination, like attending meetings. 
Within this categorization scheme, AI  
is better poised to assist with “valuable” 
work than “toilsome” work, as  
defined by respondents. 

We turned to qualitative data from 
our interviews and found that, when 
responding to the moderator’s question 
of whether or not they would consider 
their work “meaningful,” participants 
frequently measured the value of their 
work in relation to the impact of their 
work on others. 

This is solidified by two years of past 
DORA evidence of the extremely 
beneficial impact of user-centricity  
on job satisfaction.

For example, when describing a recent 
role shift, P1012 indicated making the 
decision because “It helps me impact 
more people. It helps me impact more 
things.” Similarly, P11 noted “if you build 
something from scratch and see it's 
delivered to a consumer or customer, 
you can feel that achievement, you can 
say to yourself, ‘Yeah! I delivered this and 
people use that!’” 

Understanding that the “meaningfulness” 
of development work is derived from 
the impact of the solution created—
not directly from the writing of the 
code—helps explain why we observed 
respondents spending less time on 
valuable work, while also feeling more 
satisfied with their jobs.

Wait, what is valuable work?

Exploring the downstream impact of AI34
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While AI is making the tasks people 
consider valuable easier and faster, it 
isn’t really helping with the tasks people 
don’t enjoy. That this is happening while 
toil and burnout remain unchanged, 
obstinate in the face of AI adoption, 
highlights that AI hasn’t cracked the 
code of helping us avoid the drudgery of 
meetings, bureaucracy, and many other 
toilsome tasks (Figure 8). 

Exploring the downstream impact of AI

Figure 8: Not data, but a visualization of our hypothesis: AI is 
helping with our valuable work, but not helping us with our toil.

The good news is that AI hasn’t made 
it worse, nor has it negatively affected 
respondents’ well-being. 

Toilsome work

What AI is 
helping with

Valuable work
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The last section explored outcomes 
focused on the individual. The next 
set of outcomes shift focus to explore 
processes, codebases, and team 
coordination. Here is a list of the 
outcomes we measured: 

The promising impact of AI 
on development workflows

Exploring the downstream impact of AI

The degree to which code’s intricacy and sophistication  
hinders productivity.

Code complexity

The extent to which existing technical debt within the  
primary application or service has hindered productivity  
over the past six months.

Technical debt

The average time required to complete a code review for the 
primary application or service.

Code review 
speed

The typical duration from proposing a code change to receiving 
approval for production use in the primary application or service.

Approval speed

The level of agreement with the statement: "Over the last  
three months, I have been able to effectively collaborate with  
cross-functional team members.”

Cross-functional 
team (XFN) 
coordination

The level of satisfaction or dissatisfaction with the quality of code 
underlying the primary service or application in the last six months.

Code quality

The perception of internal documentation (manuals, readmes, code 
comments) in terms of its reliability, findability, updatedness, and 
ability to provide support.

Documentation 
quality
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Overall, the patterns here suggest a  
very compelling story for AI. Here are the 
substantial results from this section.

A 25% increase in AI adoption is 
associated with a…

7.5% increase in documentation quality

3.4% increase in code quality 

3.1% increase in code review speed

1.3% increase in approval speed

1.8% decrease in code complexity 

As before, our goal here is to understand 
if these aspects seem to vary as a 
function of adopting AI. Figure 9 is 
a visualization that shows our best 
estimates of the change in these 
outcomes in relation to a 25% increase  
in AI adoption. 

Exploring the downstream impact of AI

If AI adoption increases by 25%…

Figure 9: Impacts of AI adoption on organizations.
Error bar = 89% uncertainty interval
Point = estimated value
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The data presented in the "Artificial 
intelligence: Adoption and attitudes" 
chapter show the most common 
use of AI is for writing code. 67% of 
respondents report that AI is helping 
them improve their code. Here, we see 
further confirmation of that sentiment. 
AI seems to improve code quality and 
reduce code complexity (Figure 9). 
When combined with some potential 
refactoring of old code, the high-quality, 
AI-generated code could lead to an 
overall better codebase. This codebase 
might be additionally improved by having 
better access to quality documentation, 
which people are using AI to generate 
(see Artificial intelligence: Adoption and 
attitudes). 

Better code is easier to review and 
approve. Combined with AI-assisted 
code reviews, we can get faster reviews 
and approvals, a pattern that has clearly 
emerged in the data (Figure 9). 

Of course, faster code reviews and 
approvals do not equate to better and 
more thorough code review processes 
and approval processes. It is possible 
that we’re gaining speed through an 
over-reliance on AI for assisting in the 
process or trusting code generated by AI 
a bit too much. This finding is not at odds 
with the patterns in Figure 9, but it also 
not the obvious conclusion.

Further, it isn’t obvious whether the 
quality of the code and the quality of the 
documentation are improving because 
AI is generating it or if AI has enhanced 

Exploring the downstream impact of AI

our ability to get value from what would 
have otherwise been considered low-
quality code and documentation. What 
if the threshold for what we consider 
quality code and documentation simply 
moves down a little bit when we’re using 
AI because AI is powerful enough to help 
us make sense of it? These two ways of 
understanding these patterns are not 
mutually exclusive interpretations; both 
could be contributing to these patterns.

What seems clear in these patterns is 
that AI helps people get more from the 
documents they depend on and the 
codebases they work on. AI also helps 
reduce costly bottlenecks in the code 
review and approval process. What isn’t 
obvious is how exactly AI is doing this 
and if these benefits lead to further 
downstream benefits, such as software 
delivery improvements. 
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For the past few years, we have seen that software delivery 
throughput and software delivery stability indicators were 
starting to show some independence from one another. 
While the traditional association between throughput and 
stability has persisted, emerging evidence suggests these 
factors operate with sufficient independence to warrant 
separate consideration.

AI is hurting delivery performance

Exploring the downstream impact of AI

If AI adoption increases by 25%…

Figure 10: Impacts of AI adoption on delivery throughput and stability.
Error bar = 89% uncertainty interval
Point = estimated value
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Contrary to our expectations, our 
findings indicate that AI adoption is 
negatively impacting software delivery 
performance. We see that the effect on 
delivery throughput is small, but likely 
negative (an estimated 1.5% reduction 
for every 25% increase in AI adoption). 
The negative impact on delivery stability 
is larger (an estimated 7.2% reduction for 
every 25% increase in AI adoption). This 
data is visualized in Figure 10.

Historically, our research has found 
that improvements to the software 
development process, including 
improved documentation quality, code 
quality, code review speed, approval 
speed, and reduced code complexity 
lead to improvements in software 
delivery. So, we were surprised to see  
AI improve these process measures, 
while seemingly hurting our performance 
measures of delivery throughput  
and stability.

Drawing from our prior years’ findings, 
we hypothesize that the fundamental 
paradigm shift that AI has produced in 
terms of respondent productivity and 
code generation speed may have caused 
the field to forget one of DORA’s most 
basic principles—the importance of 
small batch sizes. That is, since AI allows 
respondents to produce a much greater 
amount of code in the same amount 
of time, it is possible, even likely, that 
changelists are growing in size. DORA 
has consistently shown that larger 
changes are slower and more prone to 
creating instability.

Considered together, our data  
suggest that improving the 
development process does not 
automatically improve software 
delivery—at least not without proper 
adherence to the basics of successful 
software delivery, like small batch sizes 
and robust testing mechanisms. 

The beneficial impact that AI has 
on many important individual and 
organizational factors that foster the 
conditions for high software delivery 
performance is reason for optimism. 
But, AI does not appear to be a panacea. 
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Here we look at AI's relationship with 
our most downstream outcomes: 

High-performing teams and organizations 
use AI, but products don’t seem to benefit.

Exploring the downstream impact of AI

This is a factor score that accounts for an organization's  
overall performance, profitability, market share, total  
customers, operating efficiency, customer satisfaction,  
quality of products/service, and ability to achieve goals.

Organizational 
performance

This is a factor score that accounts for a team’s ability to 
collaborate, innovate, work efficiently, rely on each other,  
and adapt.

Team 
performance

This is a factor score that accounts for the usability,  
functionality, value, availability, performance  
(for example, latency), and security of a product. 

Product 
performance
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Drawing a connection from these 
outcomes to an individual adopting AI 
is difficult and noisy. Sometimes it feels 
like we’re trying to analyze the impact of 
what you had for lunch today on how well 
your organization performs this year. 

There is a logic to making jumps 
between the micro-level (for example,  
an individual) to the macro-level  
(for example, an organization). We 
discuss that inferential leap in the 
Methodology chapter. For now, let’s  
just check out the associations:

Exploring the downstream impact of AI

If AI adoption increases by 25%…

Figure 11. Impacts of AI adoption on organizational, team, and product performance.
Error bar = 89% uncertainty interval
Point = estimated value
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Organization-level performance (an 
estimated 2.3% increase for every 25% 
increase in AI adoption) and team-level 
performance (an estimated 1.4% increase 
for every 25% increase in AI adoption) 
seem to benefit from AI adoption (Figure 
11). Product performance, however, does 
not seem to have an obvious association 
with AI adoption. Now, we can shift to 
trying to understand what is underlying 
these effects. 

We hypothesize that the factors 
contributing to strong team and 
organizational performance differ from 
those influencing product performance.

Teams and organizations rely heavily 
on communication, knowledge sharing, 
decision making, and healthy culture. AI 
could be alleviating some bottlenecks in 
those areas, beneficially impacting teams 
and the organizations. 

Product success, however, might involve 
additional factors. Although good 
products surely have similar underlying 
causes as good high performing teams 
and organizations, there is likely a closer 
and more direct connection to the 
development workflow and the software 
delivery, both of which may be still 
stabilizing after the introduction of AI.

The unique importance of technical 
aspects underlying a good product 
might explain part of it, but there is 
also an art and empathy underlying a 
great product. This might be difficult to 
believe for people who think everything 

is a problem to be resolved through 
computation, but certain elements of 
product development, such as creativity 
or user experience design, may still (or 
forever) heavily rely on human intuition 
and expertise.

The fact remains that organization, 
team, and product performance are 
undeniably interconnected. When looking 
at bivariate correlations (Pearson), we 
find product performance has a medium 
positive correlation with both team 
performance (r = 0.56, 95% confidence 
interval = 0.51 to 0.60) and organizational 
performance (r = 0.47, 95% confidence 
interval = 0.41 to 0.53). 

These outcomes influence each 
other reciprocally, creating clear 
interdependencies. High-performing 
teams tend to develop better products, 
but inheriting a subpar product  
can hinder their success. Similarly,  
high-performing organizations foster 
high-performing teams through 
resources and processes, but 
organizational struggles can stifle team 
performance. Therefore, if AI adoption 
significantly benefits teams and 
organizations, it's reasonable to expect 
benefits for products to emerge as well.

The adoption of AI is just starting.  
Some benefits and detriments may take 
time to materialize, either due to the 
inherent nature of AI's impact or the 
learning curve associated with  
its effective utilization. 
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Perhaps the story is simply that 
we're figuring out how AI can help 
organizations and teams before  
we’ve fully realized its potential for 
product innovation and development. 
Figure 12 tries to visualize how this  
might be unfolding.

Figure 12: Representations of different learning curves. This is an abstraction for demonstrative 
purposes. This is not derived from real data.
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Here are some thoughts 
about how to orient your 
AI adoption strategy:

We wanted to understand the potential 
of AI as it currently stands to help 
individuals, teams, and organizations. The 
patterns that are emerging underscore 
that it isn’t all hot air; there really is 
something happening. 

There is clear evidence in favor 
of adopting AI. That said, it is also 
abundantly clear that there are plenty of 
potential roadblocks, growing pains, and 
ways AI might have deleterious effects. 

So now what? 

Exploring the downstream impact of AI

Adopting AI at scale might not be as 
easy as pressing play. A measured, 
transparent, and adaptable strategy 
has the potential to lead to substantial 
benefits. This strategy is going to need 
to be co-developed by leaders, teams, 
organizations, researchers, and those 
developing AI. 

Leaders and organizations need to find 
ways to prioritize adoption in the areas 
that will best support their employees.

Define a clear AI mission and 
policies to empower your 
organization and team.

Provide employees with transparent 
information about your AI mission, 
goals, and AI adoption plan. By 
articulating both the overarching 
vision and specific policies — 
addressing procedural concerns  
such as permitted code placement 
and available tools — you can 
alleviate apprehension and position  
AI as a means to help everyone focus 
on more valuable, fulfilling,  
and creative work.
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It is obvious that there is a lot to be excited about and even more to learn. DORA will 
stay tuned in and do our best to offer honest, accurate, and useful perspectives, just 
as it has over the past decade.

1. https://www.goldmansachs.com/insights/top-of-mind/gen-ai-too-much-spend-too-little-benefit
2. https://www.goldmansachs.com/insights/articles/AI-poised-to-drive-160-increase-in-power-demand
3. https://www.washington.edu/news/2023/07/27/how-much-energy-does-chatgpt-use/
4. https://www.gatesnotes.com/The-Age-of-AI-Has-Begun
5. https://www.businessinsider.com/ai-chatgpt-homework-cheating-machine-sam-altman-openai-2024-8
6. https://www.safe.ai/work/statement-on-ai-risk
7. https://github.blog/news-insights/research/research-quantifying-github-copilots-impact-on-developer-productivity-and-

happiness/
8. https://www.gitclear.com/coding_on_copilot_data_shows_ais_downward_pressure_on_code_quality
9. https://www.nytimes.com/2024/04/15/technology/ai-models-measurement.html
10. https://dora.dev/capabilities
11. we should be clear that this isn’t a unique approach, but it is a somewhat unique approach for this space
12. (P[N]), for example (P1), indicates pseudonym of interview participants.

Create a culture of continuous 
learning and experimentation  
with AI.

Foster an environment that 
encourages continuous exploration 
of AI tools by dedicating time for 
individuals and teams to discover 
beneficial use cases and granting 
them autonomy to chart their 
own course. Build trust with AI 
technologies through hands-on 
experience in sandbox or low-risk 
environments. Consider further 
mitigating risks by focusing on 
developing robust test automation. 
Implement a measurement 
framework that evaluates AI not by 
sheer adoption but by meaningful 
downstream impacts — how it helps 
employees thrive, benefits those who 
rely on your products, and unlocks 
team potential.

Recognize and leverage AI’s trade-
offs for competitive advantage. 

By acknowledging potential 
drawbacks — such as reduced 
time spent on valuable work, over-
reliance on AI, the potential for 
benefits gained in one area leading 
to challenges in another, and impacts 
on software delivery stability and 
throughput — you can identify 
opportunities to avoid pitfalls and 
positively shape AI’s trajectory at 
your organization, on your team. 
Developing an understanding not 
only of how AI can be beneficial, but 
of how it can be detrimental allows 
you to expedite learning curves, 
support exploration, and translate 
your learnings into action and a real 
competitive advantage. 
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Introduction
Platform engineering is an emerging 
engineering discipline that has been 
gaining interest and momentum across 
the industry. Industry leaders such as 
Spotify and Netflix, and books such as 
Team Topologies1 have helped excite 
audiences. 

Platform engineering is a sociotechnical 
discipline where engineers focus on 
the intersection of social interactions 
between different teams and the 
technical aspects of automation, self-
service, and repeatability of processes. 
The concepts behind platform 
engineering have been studied for many 
years, including by DORA. 

Generally, our research is focused on 
how we deliver a software to external 
users, whereas the output of platform 
teams is typically an inwardly-focused 
set of APIs, tools, and services designed 
to support the software development 
and operations lifecycle. 

Platform engineering

Platform 
engineering
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In platform engineering, a lot of energy 
and focus is spent on improving the 
developer experience by building golden 
paths, which are highly-automated, 
self-service workflows that users of 
the platform use when interacting 
with resources required to deliver and 
operate applications. Their purpose is 
to abstract away the complexities of 
building and delivering software such 
that the developer only needs to worry 
about their code. 

Some examples of the tasks  
automated through golden paths  
include new application provisioning, 
database provisioning, schema 
management, test execution, build and 
deployment infrastructure provisioning, 
and DNS management.

Concepts in platform engineering such 
as moving a capability down (sometimes 
called “shifting down”)2 into a shared 
system can seem counter to approaches 
like 'you build it, you run it.' However, 
we think of platform engineering as a 
method to scale the adoption of these 
practices across an organization because 
once a capability is in the platform, 
teams essentially get it for free through 
adoption of the platform.

For example, if the platform has 
the capability to execute unit tests 
and report back results directly to 
development teams, but without that 
team needing to build and manage the 
testing execution environment, then the 
continuous integration platform feature 
enables teams to focus on writing 
high-quality tests. In this example, the 
continuous integration feature can scale 
across the larger organization and make 
it easier for multiple teams to improve 
their capabilities with continuous testing3 
and test automation.4
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A key factor in the success is to 
approach platform engineering with 
user-centeredness (users in the context 
of an internal developer platform are 
developers), developer independence, 
and a product mindset. This isn’t too 
surprising given that user centricity was 
identified as a key factor in improved 
organizational performance this year 
and in previous years.5 Without a user-
centered approach, the platform will be 
more a hindrance rather than an aid.

In this year’s report, we sought to test 
the relationship between platforms 
and software delivery and operational 
performance. We found some positive 
results. Internal developer platform 
users had 8% higher levels of individual 

productivity and 10% higher levels of 
team performance. Additionally, an 
organization's software delivery and 
operations performance increases  
6% when using a platform. However, 
these gains do not come without  
some drawbacks. Throughput and 
change stability saw decreases of 8% 
and 14%, respectively, which was a 
surprising result. 

In the next sections we’ll dig deeper 
into the numbers, nuances, and some 
surprising data that this survey revealed. 
Whether your platform engineering 
initiative is just starting or has been 
underway for many years, application of 
the key findings can help your platform 
be more successful.
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Each dot is one of 8000 estimates of the most plausible mean productivity score
Figure 13: Productivity factor for individuals when using or not using an internal developer platform.
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The promise of platform engineering

Internal developer platforms are 
garnering interest from large sections 
of the software developer and IT 
industry given the potential efficiency 
and productivity gains that could be 
achieved through the practice. For this 
year’s survey, we left the definition of an 
internal developer platform quite broad6 

and found that 89% of respondents are 
using an internal developer platform. 
The interaction models are very diverse 
across that population. 

These data points align with the broad 
level of industry interest in platform 
engineering and the emerging nature  
of the field. 

Overall, the impact of a platform is 
positive, individuals were 8% more 
productive and teams performed  
10% better when using an internal 
developer platform. 

Beyond productivity, we also see 
gains when a platform is used in an 
organization’s overall performance, with 
an increase of 6%. On the whole, the 
organization is able to quickly deliver 
software, meet user needs, and drive 
business value due to the platform.

Platform engineering

Figure 14: Organization performance change when using an internal developer platform vs the age of the platform.
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Platform engineering

When taking into account the age of 
the platform with productivity, we see 
initial performance gains at the onset 
of a platform engineering initiative, 
followed by decrease and recovery as 
the platform ages and matures. This  
pattern is typical of transformation 
initiatives that experience early gains  
but encounter challenges once those 
have been realized. 

In the long run, productivity gains  
are maintained showing the overall 
potential of an internal developer 
platform’s role in the software delivery 
and operational processes.

Key finding - impact of developer 
independence

Developer independence had a 
significant impact on the level of 
productivity at both the individual and 
team levels when delivering software 
using an internal developer platform. 
Developer independence is defined 
as “developers' ability to perform their 
tasks for the entire application lifecycle, 
without relying on an enabling team.” 

At both the team and individual level we 
see a 5% improvement in productivity 
when users of the platform are able to 
complete their tasks without involving an 
enabling team. This finding points back 
to one of the key principles of platform 
engineering, focusing on enabling self-
service workflows. 

For platform teams, this is key because 
it points to an important part of the 
platform engineering process, collecting 
feedback from users. Survey responses 
did not indicate which forms of feedback 
are most effective, but common 
methods are informal conversations  
and issue trackers, followed by ongoing 
co-development, surveys, telemetry,  
and interviews. 

All of these methods can be effective 
at understanding whether or not 
users are able to complete their tasks 
independently. The survey data also 
showed that not collecting feedback on 
the platform has a negative impact.
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Platform engineering

Secondary finding - impact of a 
dedicated platform team

Interestingly, the impact on productivity 
of having a dedicated platform team 
was negligible for individuals. However, 
it resulted in a 6% gain in productivity 
at the team level. This finding is 
surprising because of its uneven impact, 
suggesting that having a dedicated 
platform team is useful to individuals, 
but the dedicated platform team is more 
impactful for teams overall. 

Since teams have multiple developers 
with different responsibilities and skills, 
they naturally have a more diverse 
set of tasks when compared to an 
individual engineer. It is possible that 
having a dedicated platform engineering 
team allows the platform to be more 
supportive of the diversity in tasks 
represented by a team.

Overall, the impact of having an 
internal developer platform has a 
positive impact on productivity. 

The key factors are:

A user-centered approach that 
enables developer independence 
through self-service and 
workflows that can be completed 
autonomously. Recall that in the 
context of the platform, users 
are internal engineering and 
development teams.

As with other transformations,  
the “j-curve” also applies to  
platform engineering, so productivity 
gains will stabilize through 
continuous improvement.
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The unexpected 
downside

Throughput

In the case of throughput, we saw 
approximately an 8% decrease when 
compared to those who don’t use a 
platform. We have hypotheses about 
what might be the underlying cause.

First, the added machinery that changes 
need to pass through before getting 
deployed to production decreases the 
overall throughput of changes. In general, 
when an internal developer platform is 
being used to build and deliver software, 
there is usually an increase in the number 
of “handoffs” between systems and 
implicitly teams. 

For example, when code is committed  
to source control, it is automatically 
picked up by different systems for 
testing, security checks, deployment, 
and monitoring. 

While platform engineering presents 
some definite upsides, in terms of teams 
and individuals feeling more productive 
and improvements in organizational 
performance, platform engineering  
had an unexpected downside: We also 
found that throughput and change 
stability decreased. 

Unexpectedly, we discovered a very 
interesting linkage between change 
instability and burnout.

Each of these handoffs is an opportunity 
for time to be introduced into the 
overall process resulting in a decrease in 
throughput, but a net increase in ability 
to get work done.

Second, for respondents who reported, 
they are required to “exclusively use the 
platform to perform tasks for the entire 
app lifecycle,” there was a 6% decrease 
in throughput. While not a definitive 
connection, it could also be related to  
the first hypothesis. 

If the systems and tools involved in 
developing and releasing software 
increases with the presence of a 
platform, being required to use the 
platform when it might not be fit for 
purpose or naturally-increasing latency 
in the process could account for the 
relationship between exclusivity and 
decrease in productivity.

To counter this it is important to be 
user-centered and work toward 
user independence in your platform 
engineering initiatives. 
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Platform engineering

Change instability and burnout

When considering the stability of the 
changes to applications being developed 
and operated when using an internal 
developer platform, we observed a 
surprising 14% decrease in change 
stability. This indicates that the change 
failure rate and rate of rework are 
significantly increased when a platform  
is being used.

Even more interesting, in the results 
we discovered that instability in 
combination with a platform is linked 
to higher levels of burnout. That isn’t 
to say that platforms lead to burnout, 
but the combination of instability and 
platforms are particularly troublesome 
when it comes to burnout. Similar to 
the decrease in throughput, we aren’t 
entirely sure why the change in burnout 
occurs, but we have some hypotheses.

First, the platform enables developers 
and teams to push changes with a higher 
degree of confidence that if the change 
is bad, it can be quickly remediated. In 
this instance the higher level of instability 
isn’t necessarily a bad thing since 
the platform is empowering teams to 
experiment and deliver changes, which 
results in an increased level of change 
failure and rework.

A second idea is that the platform  
isn’t effective at ensuring the quality  
of changes and/or deployments  
to production. 

It could also be that the platform 
provides an automated testing 
capability that exercises whatever tests 
are included in the application. Yet 
application teams aren't fully using that 
capability by prioritizing throughput over 
quality and not improving their tests.  
In either scenario, bad changes are 
actually making it through the process, 
resulting in rework.

A third possibility is that teams with 
a high level of change instability and 
burnout tend to create platforms in an 
effort to improve stability and reduce 
burnout. This makes sense because 
platform engineering is often viewed  
as a practice which reduces burnout  
and increases the ability to consistently 
ship smaller changes. With this 
hypothesis, platform engineering is 
symptomatic of an organization with 
burnout and change instability.

In the first two scenarios, the rework 
allowed by the platform could be seen 
as burdensome which could also be 
increasing burnout. In particular, the 
second scenario where the platform is 
enabling bad changes would contribute 
more to burnout, but in both scenarios 
the team or individual could still feel 
productive because of their ability to 
push changes and features. In the third 
scenario, change instability and burnout 
are predictive of a platform engineering 
initiative and the platform is seen as a 
solution to those challenges.
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Balancing the 
Trade-offs

Collaboration and feedback improve 
the user-centeredness of the platform 
initiative and will contribute to the long-
term success of the platform. As we 
saw in the data, there are many different 
methods used to collect feedback, so 
employ more than one approach to 
maximize feedback collection.

Second, carefully monitor the instability 
of your application changes and try 
to understand whether the instability 
being experienced is intentional or 
not. Platforms have the potential to 
unlock experimentation in the terms of 
instability, increase productivity, and 
improve performance at scale. 

However, that same instability can also 
have the potential to do this at the cost 
of instability and burnout, so it needs to 
be carefully monitored and accounted 
for throughout the platform engineering 
journey. When doing so it is important to 
understand your appetite for instability. 
Using service level objectives (SLOs) 
and error budgets from site reliability 
engineering (SRE) can help you gauge 
your risk tolerance and effectiveness 
of the platform in safely enabling 
experimentation.

Internal developer platforms put a lot of 
emphasis on the developer experience, 
however, there are many other teams 
(including database administrators, 
security, and operations) who are 
required to effectively deliver and 
operate software. 

While platform engineering is no 
panacea, it has the potential to be a 
powerful discipline when it comes 
to the overall software development 
and operations process. As with any 
discipline, platform engineering has 
benefits and drawbacks. 

Based on our research, there are a 
couple actions you can take to balance 
the trade-offs when embarking on a 
platform engineering initiative. Doing so 
will help your organization achieve the 
benefits of platform engineering while 
being able to monitor and manage any 
potential downsides.

First, prioritize platform functionality  
that enables developer independence 
and self-service capabilities. When 
doing this, pay attention to the balance 
between exclusively requiring the 
platform to be used for all aspects of  
the application lifecycle, which could 
hinder developer independence. 

As good practice, a platform should 
provide methods for users of a platform 
to break out of the tools and automations 
provided in the platform, which 
contributes to independence, however, 
it comes at the cost of complexity. 
This trade-off can be mitigated with a 
dedicated platform team that actively 
collaborates with and collects feedback 
from users of the platform. 
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Platform engineering

In your platform engineering initiatives, 
foster a culture of user-centeredness 
and continuous improvement across  
all teams and aligned with the 
organization’s goals. 

Doing so will align the platform’s 
features, services, and APIs to best serve 
individual and team needs as they work 
to deliver software and business value.

1. Skelton, Matthew and Pais, Manuel. 2019. Team Topologies: Organizing Business and Technology Teams for Fast Flow. IT Revolution 
Press. https://teamtopologies.com/

2. https://cloud.google.com/blog/products/application-development/richard-seroter-on-shifting-down-vs-shifting-left
3. https://dora.dev/capabilities/continuous-integration/
4. https://dora.dev/capabilities/test-automation/
5. https://dora.dev/research/2023/, https://dora.dev/research/2016/
6. https://dora.dev/research/2024/questions/#platform-engineering
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Developer experience

Takeaways
Software doesn’t build itself. Even  
when assisted by AI, people build 
software, and their experiences at  
work are a foundational component  
of successful organizations. 

In this year’s report, we again found  
that alignment between what developers 
build and what users need allows 
employees and organizations to thrive. 
Developers are more productive,  
less prone to experiencing burnout,  
and more likely to build high quality  
products when they build software  
with a user-centered mindset. 

Developer 
experience

Ultimately, software is built for people, 
so it’s the organization’s responsibility to 
foster environments that help developers 
focus on building software that will 
improve the user experience. We also 
find that stable environments, where 
priorities are not constantly shifting, 
lead to small but meaningful increases in 
productivity and important, meaningful 
decreases in employee burnout. 

Environmental factors have substantial 
consequences in the quality of the 
products developed, and the overall 
experience of developers whose job  
is to build those products. 
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Put the user first, and (almost) 
everything else falls into place 

We think that the job of a developer 
is pretty cool. Developers are at the 
forefront of technological advancements 
and help shape how we live, work, and 
interact with the world. 

Their jobs are fundamentally tied to 
people–the users of the software and 
applications they create. Yet developers 
often work in environments that prioritize 
features and innovation. There’s less 
emphasis on figuring out whether these 
features provide value to the people who 
use the products they make. 

Here we provide compelling evidence 
showing that an approach to software 
development that prioritizes the end 
user positively impacts employees and 
organizations alike.

Developer experience

This year, we asked questions focused 
on understanding whether developers:

1. Incorporate user feedback to revisit 
and reprioritize features 

2. Know what users want to accomplish 
with a specific application/service 

3. Believe focusing on the user is key to 
the success of the business

4. Believe the user experience is a top 
business priority
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Our findings and what they mean 

Our data strongly suggests that 
organizations that see users’ needs  
and challenges as a guiding light  
make better products. 

We find that focusing on the user 
increases productivity and job 
satisfaction, while reducing the  
risk of burnout. 

Importantly, these benefits extend 
beyond the individual employee to 
the organization. In previous years, 
we’ve highlighted that high performing 
organizations deliver software quickly 
and reliably. The implication is that 
software-delivery performance is a 
requirement for success. 

However, our data indicates there’s 
another path that leads to success: 

Developers and their employers,  
and organizations in general, can  
create a user-centered approach to 
software development. 

We find that when organizations know 
and understand users’ needs, stability 
and throughput of software delivery are 
not a requirement for product quality. 
Product quality will be high as long as the 
user experience is at the forefront. 

When organizations don’t focus on  
the user, don’t incorporate user  
feedback into their development 
process, doubling down on stable  
and fast delivery is the only path to 
product quality (see Figure 15).
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We understand the inclination that 
some organizations might have to focus 
on creating features and innovating 
on technologies. At face value, this 
approach makes sense. After all, 
developers most certainly know the ins 
and outs of the technology much better 
than their average user. 

However, developing software based on 
assumptions about the user experience 
increases the likelihood of developers 
building features that are perhaps shiny 
but hardly used.1 
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When organizations and employees 
understand how their users experience 
the world, they increase the likelihood 
of building features that address the real 
needs of their users. Addressing real user 
needs increases the chances of those 
features being actually used. 

Focus on building for your user and 
you will create delightful products.

Figure 15: Product performance and delivery throughput across 3 levels of user centricity
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Why is a user-centered approach 
to software development such a 
powerful philosophy and practice? 

Academic research shows that deriving 
a sense of purpose from work benefits 
employees and organizations.2,3

For example, a recent survey showed 
that 93% of workers reported that it’s 
important to have a job where they feel 
the work they do is meaningful.4 In a 
similar vein, another survey found that 
on average, respondents were willing 
to relinquish 23% of their entire future 
earnings if it meant they could have a  
job that was always meaningful.5 

That’s an eye-popping trade-off 
employees are willing to make. It tells us 
something about what motivates people, 
and that people want to spend their time 
doing something that matters. 

Provides a clear sense of direction: 

A user-centered approach to software 
development can fundamentally alter 
how developers view their work. Instead 
of shipping arbitrary features and 
guessing whether users might use them, 
developers can rely on user feedback to 
help them prioritize what to build. 

This approach gives developers 
confidence that the features they are 
working on have a reason for being. 
Suddenly, their work has meaning: to 
ensure people have a superb experience 
when using their products and services. 
There’s no longer a disconnect between 
the software that’s developed and the 
world in which it lives. 

Developers can see the direct  
impact of their work through the 
software they create. 

“It would be grand if everybody 
could work at a company that 
affects individuals outside of 

the company, or [in] your local 
community in a positive way. That’s 

not always the case. That’s not 
always possible. A lot of the grand 

vision of autonomous driving is 
that it is going to enable people 
that can drive [to] sleep while 

they’re on a motorway. That’s not 
why I’m here. I want to help people 

that can’t drive to be able to get 
about, wherever they want, have 
the freedom to do whatever they 

want to do.” (P2)6

“We are, as a company, under 
pressure to deliver. So, all of 

these, like, nice shiny things, or 
discussion points about how you 
want to improve, it’s kind of, like, 

with the recent change in how 
we’re structured, we’re focusing 
on delivery, not quality, and for 

me, personally, that’s kind of a big 
bugbear.” (P9)
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Increases cross-functional 
collaborations: 

Even the most talented developer 
doesn’t build software on their own. 
Building high-quality products takes the 
collaboration of many people often with 
different yet complementary talents. 

A user-centered approach to 
development allows developers  
to engage in cross-functional 
collaborations across the organization.  
In doing so, their responsibilities  
extend beyond simply shipping  
software. They are now part of a team 
driven to create incredible experiences 
for the people who use them. 

This approach to software development 
can help developers break out of silos, 
seek alignment, foster teamwork, and 
create opportunities to learn more from 
others. Problem solving takes a different 
shape. It’s not just about how to solve 
technical problems, but how to do so in 
ways that serve the user best. 

This approach can help increase 
employee engagement and create an 
even more intellectually-stimulating 
environment that can stave off  
the feelings of stagnation that are 
associated with burnout. 

What can organizations do? 

Resist the temptation to make 
assumptions about your users. Observe 
them in their environments, ask them 
questions, and be humble enough 
to pivot based on what they tell you. 
In doing so, developers will be more 
productive and be less prone to burnout 
while delivering higher quality products. 

Based on our findings, we recommend 
organizations invest time and resources 
in getting to know their users. Focus on 
understanding who you are building for, 
and the challenges they experience. 
We strongly believe this is a worthy 
investment. 
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The combination of good docs and a 
user-centered approach to software 
development is a powerful one. 

Teams that focus on the user see an 
increase in product performance. When 
this focus on the user is combined 
with an environment of quality internal 
documentation, this increase in product 
performance is amplified (see Figure 16). 
This finding is similar to the behavior that 
we see where documentation amplifies 
a technical capability’s impact on 
organizational performance.7

Documentation helps propagate user 
signals and feedback across the team 
and into the product itself.

Developer experience

We see that internal documentation 
doesn’t meaningfully affect predicted 
product performance without user 
signals. However, if a team has a high 
quality internal documentation then user 
signals included in it will have a higher 
impact on product performance.

We started to look at documentation 
in 2021, and every year we continue 
to find extensive impact of quality 
documentation. This year’s findings  
adds internal documentation’s impact  
on predicted product performance  
to the list.
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The graph is a composite of 12000 lines from simulations trying to estimate the most plausible pattern
Figure 16: Product performance and documentation quality across 3 levels of user centricity
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Culture of documentation

The Agile manifesto advocates for 
“working software over comprehensive 
documentation”.7 We continue to find, 
however, that quality documentation is a 
key component of working software. 

“Comprehensive documentation” 
may be a phrase standing in for 
unhealthy practices, which might 
include documentation. Problematic 
documentation includes documentation 
that is created only for bureaucratic 
purposes, or to paper over mistrust 
between management and employees. 
An unhealthy documentation culture  
can also include writing documentation, 
but not maintaining or consolidating  
the documentation. 

In these cases, our measure of quality 
documentation would likely score low. 
This type of content is written for the 
wrong audience so doesn’t perform as 
well when you try to use it while doing 
your work. And too much documentation 
can be as problematic as not enough.

Our measure of quality documentation 
includes attributes like findability 
and reliability of the documentation. 
Remember, for internal documentation, 
the primary audience is your colleagues 
or even your future self trying to 
accomplish specific tasks.8 Teams  
with a healthy documentation culture 
have a focus on serving these readers. 
This is another way that focusing on  
your users matters.

Documenting critical use cases.

Taking training in technical writing.

Defining ownership and processes  
to update the documentation.

Distributing documentation work  
within the team.

Maintaining documentation as part of 
the software development lifecycle.

Deleting out-of-date or redundant 
documentation.

Recognizing documentation work in 
performance reviews and promotions.

You can create a healthy culture of documentation on your own teams by 
following the practices we’ve identified to create quality documentation, 
such as:
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The perils of  
ever-shifting priorities

We all know the feeling. You’ve spent 
the last few months working on a new 
feature. You know it’s the right thing to 
build for your users, you are focused and 
motivated. Suddenly, or seemingly so, the 
leadership team decides to change the 
organization’s priorities. Now it’s unclear 
whether your project will be paused, 
scrapped, Frankensteined, or mutated. 

This common experience can have 
profound implications for employees and 
organizations. Here we examine what 
happens when organizations constantly 
shift their priorities. 

Our findings and what they mean

Overall, our findings show small  
but meaningful decreases in  
productivity and substantial increases 
in burnout when organizations have 
unstable priorities. 

Our data indicates it is challenging 
to mitigate this increase in burnout. 
We examined whether having strong 
leaders, good internal documents, and 
a user-centered approach to software 
development can help counteract the 
effect of shifting priorities on burnout. 

The answer is: They can’t. An organization 
can have all these positive traits and, if 
priorities are unstable, employees will still 
be at risk of experiencing burnout. 
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Why are unstable  
organizational priorities bad  
for employees’ well-being? 

We hypothesize that unstable 
organizational priorities increase 
employee burnout by creating unclear 
expectations, decreasing employees' 
sense of control, and increasing the  
size of their workloads. 

To be clear, we believe that the 
problem is not with changing priorities 
themselves. Business goals and product 
direction shift all the time. It can be  
good for organizational priorities to  
be malleable.

We believe it is the frequency with which 
priorities change that has a negative 
impact on employees' well-being.  
The uncertainty that accompanies 
unstable priorities implies something 
chronic about the frequency with which 
priorities change. 

Decades of academic research  
have shown the detrimental effects of 
chronic stress on health and well-being.9 
We see parallels between research on 
chronic stress and our findings.  
Chronic instability increases uncertainty 
and decreases perceived control.  
This combination is an excellent recipe 
for burnout. 

What happens when  
priorities stabilize? 

Our findings here are a little puzzling.  
We find that when priorities are 
stabilized, software delivery performance 
declines. It becomes slow and less stable 
in its delivery. 

We hypothesize that this might be 
because organizations with stable 
priorities might have products and 
services that are generally in good shape 
so changes are made less frequently. It 
is also possible that stability of priorities 
leads to shipping less and in larger 
batches than recommended. 

Nevertheless, we find this to be an 
unexpected finding. Why do you think 
stabilizing organizational priorities 
decreases the speed and stability  
of software delivery? 
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Developer experience
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Building AI for end users creates 
stability in priorities, but not stability 
in delivery.

Incorporating AI-powered experiences 
for end users stabilizes organizational 
priorities. This sounds like a flashy 
endorsement for AI. However, we do 
not interpret this finding as telling us 
something meaningful about AI itself. 

Instead, we believe that shifting efforts 
towards building AI provides clarity and 
a northstar for organizations to follow. 
This clarity, and not AI, is what leads to a 
stabilization of organizational priorities. 

This is worth highlighting because it tells 
us something about what happens to 
organizations when new technologies 
emerge. New technologies bring change 
and organizations need time to adapt.  

This period likely leads to a 
destabilization of priorities as leaders 
try to figure the best move for the 
organization. As the dust settles, and 
organizations clarify their next steps, 
priorities begin to stabilize. 

Priorities stabilizing, however, doesn’t 
immediately translate into the software 
delivery process stabilizing. Our analyses 
show that a shift to adding AI-powered 
experiences into your service or 
application comes with challenges and 
growing pains. 

We find that teams that have shifted have 
a significant 10% decrease in software 
delivery stability relative to teams who 
have not. Here is a visualization depicting 
the challenge. 

*Each line is one of 4000 simulations trying to estimate the most plausible pattern
Figure 17: Software delivery stability as a function of adding AI-powered experiences 
to service or application
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1. https://www.nngroup.com/articles/bridging-the-designer-user-gap/
2. https://executiveeducation.wharton.upenn.edu/thought-leadership/wharton-at-work/2024/03/creating-meaning-at-work/ 
3. https://www.apa.org/pubs/reports/work-in-america/2023-workplace-health-well-being
4. https://bigthink.com/the-present/harvard-business-review-americans-meaningful-work/
5. https://hbr.org/2018/11/9-out-of-10-people-are-willing-to-earn-less-money-to-do-more-meaningful-work
6. (P[N]), for example (P1), indicates pseudonym of interview participants.
7. https://cloud.google.com/blog/products/devops-sre/deep-dive-into-2022-state-of-devops-report-on-documentation and 

Accelerate State of DevOps Report 2023 - https://dora.dev/research/2023/dora-report
8. https://agilemanifesto.org/
9. Other audiences exist, such as management, regulators, or auditors.
10. Cohen S, Janicki-Deverts D, Miller GE. Psychological Stress and Disease. JAMA. 2007;298(14):1685–1687.doi:10.1001/

jama.298.14.1685

Developer experience

What can organizations do?

The answer, while easy, might not be 
so simple. Based on our findings, we 
recommend organizations focus on 
stabilizing their priorities. This is one sure 
way to counteract the negative effects of 
unstable priorities on employee burnout. 

Our findings show the negative effects  
of unstable priorities are resistant 
to having good leaders, good 
documentation, and a user-centered 
approach to software development. 
This leads us to believe that, aside from 
creating stability, there’s not much 
organizations can do to avoid burnout 
aside from finding ways to (1) stabilize 
priorities and (2) shield employees from 
having their day-to-day be impacted by 
the constant shift in priorities. 
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Leading 
transformations

A lot needs to be in place for 
transformation to work. This year,  
we’ve found high-performing teams  
are ones that prioritize stability, focus  
on their users, have good leaders, 
and craft quality documentation. Our 
research points to some useful paths 
in helping you plot a course towards 
successful transformation. 

We have found the key to success is 
to approach transformation from a 
mindset of continuous improvement. 
High performers in our study understand 
the variables holding them back, and 
methodically and continuously improve 
using the DORA metrics as a baseline. 
While long-term success requires 
excellence in all pillars, a decade of DORA 
research has pointed us to four specific, 
impactful ways to get started on driving 
transformation in your own organization. 
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Transformational leadership is a 
model in which leaders inspire and 
motivate employees to achieve higher 
performance by appealing to their  
values and sense of purpose, facilitating 
wide-scale organizational change. 

These leaders encourage their teams  
to work towards a common goal through 
the following dimensions:1

Transformational 
leadership

They have a clear vision of where their team and the 
organization are going. 

Vision

 They consider others’ personal feelings before acting; behave in 
a manner which is thoughtful of others’ personal needs.

Supportive 
leadership

They say positive things about the team; make employees proud 
to be a part of their organization; encourage people to see 
changing conditions as situations full of opportunities.

Inspirational 
communication

They challenge team members to think about old problems  
in new ways and to rethink some of their basic assumptions 
about their work. 

Intellectual 
stimulation

They commend team members when they do a better-than-
average job; acknowledge improvement in quality of team 
members' work.

Personal 
recognition
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This year, we saw that transformational 
leadership leads to a boost in  
employee productivity. We see that 
increasing transformational leadership  
by 25% leads to a 9% increase in 
employee productivity. 

Transformational leadership can help 
improve more than just productivity. 
Having good leaders can also lead to: 

• A decrease in employee burnout 

• An increase in job satisfaction

• An increase in team performance 

• An improved product performance

• An improved organizational 
performance 

Our research found a statistically 
significant relationship between the 
above qualities of leadership and IT 
performance in 2017. High-performing 
teams had leaders with strong scores 
across all five characteristics and low-
performing teams had the lowest scores. 
Additionally, we saw that there’s a strong 
correlation between transformative 
leadership and Employee Net Promoter 
Score (eNPS), the likelihood to 
recommend working at a company. 

That said, transformative leadership by 
itself does not lead to high performance, 
but should be seen as an enabler. 

Transformative leadership plays a key 
role in enabling the adoption of technical 
and product-management capabilities 
and practices. This is enabled by (1) 
delegating authority and autonomy to 
teams; (2) providing them the metrics 
and business intelligence needed to solve 
problems; and (3) creating incentive 
structures around value delivery as 
opposed to feature delivery. 

Transformation takes time and requires 
tools. Resources must be allocated by 
leadership specifically for the task of 
improvement. Good leaders play a key 
role in providing teams with the time and 
funding necessary to improve. Engineers 
should not be expected to learn new 
things and automate on their off time, 
this should be baked into their schedule. 

Leading transformations71
v. 2024.3



Organization performance

Product performance

Team performance

Productivity

Burnout

Job satisfaction

-10 10-5 0 5

O
ut

co
m

e

Estimated % change in outcome

9.1%

-9.9%

4.5%

10.3%

8.7%

8.7%

Our research has helped to flip the 
narrative of IT being a cost-center 
to IT being an investment that drives 
business success. In 2020, we wrote 
the ROI of DevOps whitepaper,2 which 
contains calculations you can use to 
help articulate potential value created by 
investing in IT improvement.

Monetary return is only one of the 
returns you can expect from this 
investment. Our research in 2015 
showed that, “organizational investment 
in DevOps is strongly correlated with 
organizational culture; the ability of 
development, operations, and infosec 

teams to achieve win-win outcomes; 
lower levels of burnout; more effective 
leadership; and effective implementation 
of both continuous delivery and 
lean management practices.”3 We 
recommend dedicating a certain amount 
of capacity specifically for improvement. 

Leading transformations

Figure 18: Impacts of transformational leadership on various outcomes.
Error bar = 89% uncertainty interval
Point = estimated value

If transformational leadership increases by 25%...
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This year's research shows that 
organizations with strong leaders 
and a focus on building software that 
addresses user needs leads to the 
development of better products: It’s a 
powerful combination. When the user is 
at the center of software development, 
leaders have a clear vision to articulate. 

The ultimate goal is for users to love the 
products we create. As we discuss in the 
Developer experience chapter, focusing 
on the user gives product capabilities 
a reason to exist. Developers can 
confidently build these features knowing 
they’ll help improve the user experience. 

We see that teams that have a deep 
desire to understand and align to their 
users’ needs and the mechanisms to 
collect, track, and respond to user 
feedback have the highest levels of 
organizational performance. In fact, 
organizations can be successful even 
without high levels of software velocity 
and stability, as long as they are user-
focused. In 2023 we saw user-centered 
teams have a 40% higher level of 
organizational performance compared to 
those that did not,4 and in 2016 we also 
saw that user-centered teams had better 
organizational performance. 

This year’s research echoes previous 
findings. Teams that focus on the user 
make better products. 

Be relentlessly user-centric 

Not only do products improve,  
but employees are more satisfied  
with their jobs and less likely to 
experience burnout.

Fast, stable software delivery 
enables organizations more frequent 
opportunities to experiment and learn. 
Ideally, these experiments and iterations 
are based on user feedback. Fast and 
stable software delivery allows you to 
experiment, better understand user 
needs, and quickly respond if those 
needs are not being met. 

Having speed and stability baked  
into your delivery also allows you  
to more easily adjust to market  
changes or competition. 

It is important to remember that  
your internal developers are also users. 
Internal Developer Platforms (IDPs) are a 
way your organization can deliver value 
to developers that in turn deliver value to 
external users or other internal users. 

Our research shows that successful 
IDPs are developed as a product and 
focus on user centricity to deliver an 
experience that allows developers to 
work independently. An IDP deployed 
in this way leads to higher individual 
productivity, higher team productivity, 
and higher organizational performance.
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Leading transformations

Become a data-informed organization 

The ability to visualize your progress 
toward success is critical. Over the last 
10 years we have made the case for 
becoming a data-informed organization. 
DORA's four key metrics5 have become  
a global standard for measuring  
software delivery performance, but 
this is only part of the story. We have 
identified more than 30 capabilities and 
processes6 that can be used to drive 
organizational improvement.

The value in the metrics lies in their 
ability to tell you if you are improving. The 
four key metrics should be used at the 
application and service levels, and not at 
the organization or line-of-business level. 
The metrics should be used to visualize 
your efforts in continuous improvement 
and not to compare teams — and 
certainly not to compare individuals. 

The metrics should also not be used as 
a maturity model for your application 
or service teams. Being a low, medium, 
high, or elite performer is interesting,  
but we urge caution as these monikers  
have little value in the context of your 
transformation journey. 

As our research progresses and evolves, 
we encourage you to think beyond the 
four keys. It has become clear that user 
feedback metrics are as important as 
the four key metrics. We believe this 
is because most teams have devised 
workable solutions for improving 

speed and stability. As a result, the 
benefits gained by speed and stability 
are diminished as higher performance 
becomes ubiquitous. 

Thinking about transformation 
holistically, we recommend creating 
dashboards and visualizations that 
combine both technical metrics  
(such as our four keys and reliability 
metrics) and business metrics. This helps 
bridge the gap between the top-down 
and bottom-up transformation efforts.  
This also helps connect your northstar, 
OKRs, and employee goals with the 
investments made in IT. They can help 
quantify the ROI. 

We believe metrics are a requirement 
for excellence. Metrics facilitate decision 
making. The more metrics you collect, 
quantitative and qualitative, the better 
and more informed decisions you can 
make. People will always have opinions 
on the value of the data or the meaning 
of the data, but using data as the  
basis by which to make a decision  
is often preferable to relying on opinion 
or intuition. 
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Leading transformations

We have been investigating the 
relationship between the NIST defined-5 
characteristics of cloud computing7 
(on-demand self-service, broad network 
access, resource pooling, rapid elasticity, 
and measured service also known as 
flexible infrastructure) and organizational 
performance since 2018. We see that 
successful teams are more likely to take 
advantage of flexible infrastructure than  
less successful teams.

Last year, our research led us to the most 
striking bit of information on this topic 
to date: Using the cloud without taking 
advantage of the five characteristics 
can be detrimental and predicts 
decreased organizational performance. 

Organizations may be better off staying 
in the data center if they are not willing 
to radically transform their application 
or service. Of course, to accomplish 
this, it is not simply adopting tools 
or technologies, but often an entire 
new paradigm in designing, building, 
deploying, and running applications. 
Making large-scale changes is easier 
when starting with a small number of 
services, we recommend an iterative 
approach that helps teams and 
organizations to learn and improve as 
they move forward.

Be all-in on cloud or stay in the data center

75
v. 2024.3



Leading transformations

What we’ve seen consistently over the 
last 10 years is that transformation is a 
requirement for success. What many 
organizations misunderstand is that 
transformation isn’t a destination, but  
a journey of continuous improvement.8 
Our research is clear: Companies that are 
not continuously improving are actually 
falling behind. Conversely, companies 
that adopt a mindset of continuous 
improvement see the highest levels  
of success. 

On this journey, be aware that you  
will likely hit a little bit of pain and 
discomfort along the way. Our research 
has shown an initial drop in performance 
followed by big gains (also known as 
the “ j-curve “) with DevOps,9 SRE,10 and 
this year with Platform Engineering. This 
is normal, and if you are continuously 
improving, things will get better and you 
will come out the other end in much 
better shape than when you started. 

The idea of a never-ending journey can 
seem daunting. It’s easy to get stuck 
in planning or designing the perfect 
transformation. The key to success is 
rolling up your sleeves and just getting 
to work. The goal of the organization and 
your teams should be to simply be a little 
better than you were yesterday. The goal 
of our last 10 years of research and into 
the future is to help you get better at 
getting better. 

Summary

1. Dimensions of transformational leadership: Conceptual and empirical extensions - Rafferty, A. E., & Griffin, M. A.
2. The ROI of DevOps Transformation - https://dora.dev/research/2020/
3. 2015 State of DevOps Report https://dora.dev/research/2015/2015-state-of-devops-report.pdf#page=25
4. 2023 Accelerate State of DevOps Report - 

https://dora.dev/research/2023/dora-report/2023-dora-accelerate-state-of-devops-report.pdf#page=17
5. DORA's Four Key Metrics https://dora.dev/guides/dora-metrics-four-keys/
6. DORA's capabilities and processess https://dora.dev/capabilities/
7. NIST defined-5 characteristics of cloud computing https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
8. Journey of continuous improvement  

https://cloud.google.com/transform/moving-shields-into-position-organizing-security-for-digital-transformation
9. 2018 Accelerate State of DevOps Report https://dora.dev/research/2018/dora-report/
10. 2022 State of DevOps Report https://dora.dev/research/2022/dora-report/ 
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A decade 
with DORA
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The DevOps movement was born  
from two topically-related but otherwise 
uncoordinated events in 2009. John 
Allspaw and Paul Hammond gave a talk 
that June at the Velocity conference 
titled, "10 deploys per day: Dev & ops 
cooperation at Flickr".1 Pactrick Debois 
followed a few months later when he  
led a team of volunteer organizers to 
host the first DevOpsDays event in 
Ghent, Belgium.2 

It didn’t take long for the DevOps 
community to want to learn more about 
how it was evolving. Alana Brown, who 
was working at Puppet Labs, ran a survey 
in 2011 to learn more about DevOps. This 
survey helped confirm that, "working in a 
'DevOps' way is emerging as a new way 
to do business in IT."

As the movement continued to expand 
to new industries and organizations, 
Alana built on this success and partnered 
with IT Revolution Press to field another 
survey in 2012, publishing their findings in 
the 2013 State of DevOps Report.3

Dr. Nicole Forsgren joined the research 
team the following year, bringing more 
scientific rigor to the program. The 
2014 State of DevOps Report4 made 
the connection between software 
delivery performance and organizational 
performance, finding that, "publicly 
traded companies that had high-
performing IT teams had 50 percent 

History

A decade with DORA

higher market capitalization growth 
over three years than those with low-
performing IT organizations."

The trend of annual reports was well-
established by 2016, and Forsgren, 
Jez Humble, and Gene Kim founded 
DevOps Research and Assessment 
(DORA). That year, the State of DevOps 
Report included calculations to help 
measure the investments made by teams 
adopting DevOps practices. This work 
was extended in the ROI of DevOps 
Transformation5 whitepaper, published  
in 2020.

Accelerate: The science behind devops: 
Building and scaling high performing 
technology organizations,6 written 
by Forsgren, Humble, and Kim was 
published by IT Revolution Press in  
2017. This book summarized the early 
years of the research program and 
included a focus on the capabilities  
that drive improvement.

DORA, the company, published an 
independent report in 2018, the 
Accelerate State of DevOps: Strategies 
for a New Economy.7 The team at Puppet 
continued their own series of reports,8 
separate from DORA, beginning that 
same year.

In late 2018, DORA was acquired by 
Google Cloud9 where the platform-
agnostic, scientific research continues. 
This year marks the tenth DORA Report,10 
we are happy to share our findings with 
you, thank you for reading!
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Teams do not need to sacrifice speed 
for stability

Technology-driven teams need ways 
to measure performance so that they 
can assess how they’re doing today, 
prioritize improvements, and validate 
their progress. DORA identified and 
has validated four software-delivery 
metrics—the four keys—that provide 
an effective way of measuring the 
outcomes of the software delivery 
process. These measures of software 
delivery performance have become an 
industry standard.

The research has demonstrated that the 
throughput and stability of changes tend 
to move together, we have seen teams 
achieving high levels of both in every 
industry vertical.

Key insights from 
DORA

There are many ways that teams 
measure the four keys including: 

• Through conversations and reflection 
during team meetings

• The DORA Quick Check  
(https://dora.dev/quickcheck)

• Commercial and source-available11 
tools in the Software Engineering 
Intelligence (SEI) category

• Bespoke integrations built for the 
specific tools in use by a team

A decade with DORA

Stability

Throughput
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A decade with DORA

Software delivery and  
operational performance drive 
organizational performance

DORA uses the four keys to measure 
software delivery performance. 
Operational performance was first 
studied by DORA in 2018. It measures  
the ability to make and keep promises 
and assertions about the software 
product or service.

The best results are seen when  
both software delivery and operational 
performance come together to drive 
organizational performance and 
employee well-being.

Practitioners working in technology-
driven teams recognize the importance 
of reducing friction in the delivery 
process while meeting the reliability 
expectations of an application's users.

Performance

Software delivery
Four keys metrics

Reliability
Service Level Objectives (SLOs)

Organizational performance

Well-being

Predicts

Outcomes
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A decade with DORA

Culture is paramount to success

One of the clearest predictors of 
performance is the culture of the 
organization. We've continually seen 
the power of a high-trust culture that 
encourages a climate for learning and 
collaboration. For example, culture was 
shown to be biggest predictor of an 
organization's application-development 
security practices in our 2022 research.12 

Culture impacts every aspect of our 
research, and it’s multifaceted and 
always in flux. We've used many different 
measures over the years with inspiration 
from research such as Westrum's 
Typology of Organizational Culture.13  
Our measures of well-being have 
included burnout, productivity, and  
job satisfaction.

Get better at getting better

We encourage teams to set a goal to 
get better at getting better. Driving 
improvement requires a mindset and a 
practice of continuous improvement. 
This requires a way to assess how you're 
doing today, prioritize improvement 
work, and feedback mechanisms that 
help you measure progress.

An experimental approach to  
improving will involve a mix of victories 
and failures, but in both scenarios  
teams can take meaningful actions as  
a result of lessons learned.
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A decade with DORA

1. Slides - https://www.slideshare.net/jallspaw/10-deploys-per-day-dev-and-ops-cooperation-at-flickr,  
recording - https://www.youtube.com/watch?v=LdOe18KhtT4

2. https://legacy.devopsdays.org/events/2009-ghent/
3. https://www.puppet.com/resources/history-of-devops-reports#2013
4. 2014 State of DevOps Report - https://dora.dev/research/2014/
5.  The ROI of DevOps Transformation - https://dora.dev/research/2020/
6. Forsgren, Nicole, Jez Humble, and Gene Kim. 2018. Accelerate: The Science Behind DevOps : Building and Scaling High Performing 

Technology Organizations. IT Revolution Press.
7. Accelerate State of DevOps: Strategies for a New Economy - https://dora.dev/research/2018/dora-report/
8. https://www.puppet.com/resources/history-of-devops-reports#2018
9. https://dora.dev/news/dora-joins-google-cloud
10. We consider 2014, the year that Dr. Forsgren joined the program, to be the first DORA report, even though DORA was founded a 

few years later. There was no report in 2020, making 2024 the tenth report.
11. https://dora.dev/resources/#source-available-tools
12. 2022 Accelerate State of DevOps Report - https://dora.dev/research/2022/dora-report/
13. Ron Westrum, “A typology of organisation culture”, BMJ Quality & Safety 13, no. 2(2004), doi:10.1136/qshc.2003.009522
14. https://dora.community

Collectively, we've learned a lot from 
each other over the past decade. Thank 
you for engaging in our annual surveys, 
participating in the DORA Community of 
Practice,14 and putting DORA to work in 
your own context.

As the technology landscape  
continues to evolve, DORA will continue 
to research the capabilities and  
practices that help technology-driven 
teams and organizations succeed.  
We will continue to prioritize the  
human aspects of technology and are 
committed to publishing platform-
agnostic research that you can use to 
guide your own journey.

Many of our past insights are durable 
enough to inform your approach to 
emerging technologies and practices 
and we're excited to find new insights 
along with you!

We are committed to the fundamentals 
principles that have always been a part 
of the DevOps movement: culture, 
collaboration, automation, learning, and 
using technology to achieve business 
goals. Our community and research 
benefit from the perspectives of diverse 
roles, including people who might not 
associate with the "DevOps" label. You 
should expect to see the term "DevOps" 
moving out of the spotlight. 

This year's report has a heavy focus 
on the use and impacts of artificial 
intelligence (AI). As you've read, adoption 
is growing and there is a lot of room for 
experimentation in this space. We will 
continue to investigate this and other 
emerging technologies and practices 
into the future. Use our past research, 
together with our new findings, to 
drive adoption and help improve the 
experience of everyone on your team.

The decade ahead
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Final thoughts

Replicate our research

The area of research and the findings 
in this year's report are complex 
and sometimes unclear or even 
contradictory. We encourage you to 
replicate our research. Focusing on a 
single team or organization opens many 
opportunities for deeper understanding.

Run experiments within your 
organization 
DORA's findings can serve as hypotheses 
for your next experiments. Learn more 
about how your team operates and 
identify areas for improvement which 
may be inspired by findings from the 
DORA research program.

Run surveys within your organization 
Take inspiration from this report and 
the questions used in this year's survey1 
to design your own internal survey. 
Your survey can incorporate more 
nuanced questions that are relevant to 
your audience. 2 Read the Methodology 
chapter for more details into how our 
research is conducted. Be sure to focus 
on putting your findings into practice.

DORA has established itself as a trusted source of research, insights, and information 
over the past decade. As the industry continues to adopt new practices and 
technologies like platform engineering and artificial intelligence, DORA will be here 
with you, investigating the ways of working that help teams improve. Thank you for 
having DORA along for the journey.

Final thoughts

Share what you learn 
As you learn from your experiments, 
spread that knowledge throughout 
your organization. Methods for sharing 
can range from formal reports for 
large audiences, through informal 
communities of practice, to casual 
chats among peers. Try a variety of 
approaches and learn what works best in 
your context and culture. This, too, is an 
experimental process.
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1. 2024 Survey https://dora.dev/research/2024/questions/
2. Experiences from Doing DORA Surveys Internally in Software Companies -  

https://www.infoq.com/news/2024/08/dora-surveys-software-company/

Final thoughts

How are you leveraging this research?

Share your experiences, learn from 
others, and get inspiration from other 
travelers on the continuous improvement 
journey by joining the DORA community 
at https://dora.community.
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Demographics and firmographics

Demographics and 
firmographics

Over 90,000 respondents participated 
in the 2023 Stack Overflow Developer 
Survey.1 That survey didn't reach every 
technical practitioner, but is about as 
close as you can get to a census of the 
developer world. 

With a sense of the population provided 
from that survey, we can locate response 
bias in our data and understand how far 
we might want to generalize our findings.  
Further, the demographic and 
firmographic questions asked in this 
Stack Overflow Developer Survey are 
well-crafted and worth borrowing. 

In short, there are no major discrepancies 
between our sample and Stack 
Overflow’s. This means we have every 
reason to believe that our sample is 
reflective of the population.

Who took the survey

The DORA research program has been 
researching the capabilities, practices, 
and measures of high-performing, 
technology-driven organizations for 
over a decade. We've heard from 
roughly 39,000 professionals working in 
organizations of every size and across 
many different industries. Thank you for 
sharing your insights! This year, nearly 
3,000 working professionals from a 
variety of industries around the world 
shared their experiences to help grow 
our understanding of the factors that 
drive high-performing, technology-
driven organizations.

This year's demographic and 
firmographic questions leveraged 
research done by Stack Overflow. 
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Demographics and firmographics

Industry Percentage of 
respondents 

Technology 35.69%

Financial Services 15.66%

Retail/Consumer/E-commerce 9.49%

Other 5.94%

Industrials & Manufacturing 5.49%

Healthcare & Pharmaceuticals 4.60%

Media/Entertainment 4.26%

Government 3.89%

Education 3.66%

Energy 3.03%

Insurance 2.39%

Non-Profit 1%

Industry

We asked survey respondents to  
identify the industry sector in which  
their organization primarily operates, 
across 12 categories. The most common 
sectors in which respondents worked 
were Technology (35.69%), Financial 
Services (15.66%) and Retail/Consumer/ 
E-commerce (9.49%).

Organization Size Percentage

solo 2.0%

2 to 9 3.2%

10 to 19 4.3%

20 to 99 14.5%

100 to 499 18.5%

500 to 999 11.2%

1,000 to 4,999 15.6%

5,000 to 9,999 6.7%

10,000 or more 24.1%

We asked survey respondents to 
identify the number of employees at 
their organization, using nine buckets. 
The organizations in which respondents 
worked most commonly had 10,000  
or more employees (24.10%),  
100 to 499 employees (18.50%) and 
1,000 to 9,999 employees (15.60%).

Number of employees
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We identified disability along six 
dimensions that follow guidance from the 
Washington Group Short Set.2  
This is the fifth year we have asked  
about disability. The percentage of 
respondents reporting disabilities has 
decreased from 11% in 2022 to 6% in 
2023, and 4% in 2024.

Disability

Disability % of 
respondents

None of the disabilities  
applied 

92%

At least one of the disabilities 
applied

4%

Preferred not to say 4%

Demographics and firmographics

We asked survey respondents to report 
their gender. 83% of respondents 
identified as men, 12% as women,  
1% chose to self-describe, and 4% 
declined to answer.

Gender

Gender Percentage

Man 83%

Woman 12%

Used their own words 1% 

Preferred not to answer 4%
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0 5 10 15 20 25 30

We asked survey respondents to report their years of 
experience in their role and team. Respondents had a median 
of 16 years of working experience, five years of experience 
in their current role, and three years of experience on their 
current team.

Experience

Demographics and firmographics

How many years 
have you worked 
on the team you’re 
currently on?

How many years have 
you worked on the 
team in a role similar 
to your current role?

How many years of 
working experience 
do you have?

Question

Years

16

3

5

Box width represents 25th and 75th percentiles. The line dissecting the box represents the median.
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In analyses, some individual roles 
were grouped together, to help us 
meaningfully include roles which 
represented a small proportion of 
respondents in our analyses. Other 
categories were highly represented in 
our data, including: 

Role

Demographics and firmographics

• Developers, representing 29% of the 
respondents.

• Managers, representing 23% of the 
respondents.

• Senior executives, representing 9% of 
the respondents (+33% from 2023).

• Analytic roles, representing about 5% 
of the respondents

Pe
rc

en
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g
e 

of
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p
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d
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Job title
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Demographics and firmographics

Employment status

We asked survey respondents to report 
their current employment status. The 
vast majority (90%) of respondents were 
full-time employees of an organization.

Employment Type Percentage

Full-time contractor 6%

Full-time employee 90%

Part-time contractor 1%

Part-time employee 2%

Year

Time in office

Work location
Despite another year of return-to-office (RTO) pushes, the 
pattern from last year has largely been retained, especially 
toward the tails of the distribution. The 37.5% increase in the 
median values does suggest that hybrid work or at least, some 
regular visits, are becoming more common.

2023

2024

24%

33%

Box width represents 25th and 75th percentiles. The line dissecting the box represents the median.
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We had respondents from 104 different countries. We are always thrilled to see 
people from all over the world participate in the survey. Thank you all! 

Country

Demographics and firmographics

Country

USA Italy Singapore Iceland Luxembourg Guatemala

UK Switzerland Albania Iran Nicaragua Hong Kong (S.A.R.)

Canada Argentina Georgia Jordan Pakistan Malta

Germany Mexico Greece Kenya Peru Mauritius

Japan Portugal Philippines Saudi Arabia South Korea Morocco

India Austria Hungary Slovakia Sri Lanka Nepal

France Romania Serbia Slovenia Tunisia Paraguay

Brazil Finland Afghanistan Thailand Andorra Swaziland

Spain Turkey Algeria Uzbekistan Barbados Syrian Arab Republic

Australia Bulgaria Egypt Angola Belize Taiwan

Netherlands Ireland Indonesia Armenia Benin The former Yugoslav 
Republic of 
Macedonia

China Israel Russian Federation Bosnia and 
Herzegovina

Bolivia Trinidad and Tobago

Sweden Belgium Ukraine Dominican Republic Burkina Faso Uruguay

Norway Chile Viet Nam Ecuador Comoros Venezuela, 
Bolivarian Republic 
of..

New Zealand Colombia Bangladesh Estonia Côte d'Ivoire

Poland Czech Republic Belarus Kazakhstan El Salvador

South Africa Malaysia Costa Rica Latvia Ethiopia

Denmark Nigeria Croatia Lithuania Gambia
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We asked survey respondents to report 
their race and ethnicity. Our largest 
group of respondents were White 
(32.4%), and/or European (22.7%). 

Race and ethnicity

1. https://survey.stackoverflow.co/2023/
2. https://www.washingtongroup-disability.com/question-sets/wg-short-set-on-functioning-wg-ss/

Demographics and firmographics

Race or ethnicity Percentage

White 32.4

European 22.7

Asian 9.9

North American 4.6

Indian 4.1

Prefer not to say 4.1

Hispanic or Latino/a 3.5

South American 3.2

East Asian 2.5

African 1.8

South Asian 1.7

Multiracial 1.5

Or, in your own words: 1.5

Southeast Asian 1.4

Black 1.3

Race or ethnicity Percentage

Middle Eastern 1.3

Biracial 0.4

Central American 0.4

I don't know 0.4

North African 0.4

Caribbean 0.2

Central Asian 0.2

South Asian 1.7

Ethnoreligious group 0.2

Pacific Islander 0.2

Indigenous (such as Native 
American or Indigenous 
Australian)

0.1
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Methodology

A methodology is supposed to be like 
a recipe that will help you replicate our 
work and determine if the way our data 
was generated and analyzed is likely to 
return valuable information. Although 
we don’t have the space to go into the 
exacts, hopefully this is a great starting 
point for those considerations. 
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Question selection

We think about the following aspects 
when considering whether to include  
a question into a survey:

Is this question…

• Established so we can connect our 
work to previous efforts?

• Capturing an outcome the industry 
wants to accomplish (for example, 
high team performance)?

• Capturing a capability the industry  
is considering investing resources 
into (for example, AI)?

• Capturing a capability we believe 
will help people accomplish 
their goals (for example, quality 
documentation)?

• Something that helps us evaluate the 
representativeness of our sample 
(for example, role or gender)?

• Something that helps us block 
biasing pathways (for example, 
coding language or role)?

• Something that is possible to  
answer with at least a decent  
degree of accuracy for the vast 
majority of respondents?

Survey development

We address the literature, engage with 
the DORA community, conduct cognitive 
interviews, run parallel qualitative 
research, work with subject matter 
experts, and hold team workshops to 
inform our decision as to whether to 
include a question into our survey.

Methodology

Survey experience 

We take great care to improve the 
usability of the survey. We conduct 
cognitive interviews and usability tests 
to make sure that the survey hits certain 
specification points:

• Time needed to complete survey 
should, on average, be low

• Comprehension of the questionnaire 
should be high

• Effortfulness should be reasonably 
low, which is a huge challenge given 
the technical nature of the concepts
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Localizations

People around the world have responded 
to our survey every year. This year 
we worked to make the survey more 
accessible to a larger audience by 
localizing the survey into English, 
Español, Français, Português,日本語,  
and 简体中文. 

Data collection

Methodology101
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Collect survey responses

We use multiple channels to recruit. 
These channels fall into two categories: 
organic and panel. 

The organic approach is to use all the 
social means at our disposal to let 
people know that there is a survey that 
we want them to take. We create blog 
posts. We use email campaigns. We post 
on social media, and we ask people in 
the community to do the same (that is, 
snowball sampling). 

We use the panel approach to 
supplement the organic channel. 
Here we try to recruit people who are 
traditionally underrepresented in the 
broader technical community and try 
to get adequate responses from certain 
industries and organization types. 

In short, this is where we get some 
control over our recruitment—control  
we don’t have with the organic approach. 
The panel approach also allows us to 
simply make sure that we get enough 
respondents, because we never know 
if the organic approach is going to yield 
the responses necessary to do the types 
of analyses we do. This year we had 
sufficient organic responses to run our 
analysis and the panel helped round out 
our group of participants.

Methodology

Survey flow

This year we had a lot of questions we 
wanted to ask, but not enough time to 
ask them. Our options were…

• Make an extremely long survey

• Choose a subset of areas  
to focus on

• Randomly assign people  
to different topics

We didn’t want to give up on any of 
our interests, so we chose to randomly 
assign participants to one of three 
separate flows. There was a lot of  
overlap among the three different  
flows, but each flow dove deeply in  
a different space. 

Here are the three different pathways:

• AI

• Workplace

• Platform Engineering 
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Measurement validation

There is a wide variety of concepts that 
we try to capture in the survey. There 
are a lot of different language games we 
could partake in, but one view is that this 
measure of a concept is called a variable. 
These variables are the ingredients of the 
models, which are the elements included 
in our research. There are two broad 
ways to analyze the validity of these 
measures: internally and externally. 

To understand the internal validity  
of the measure, we look at what we think 
indicates the presence of a concept. 
For example, quality documentation 
might be indicated by people using their 
documentation to solve problems. 

A majority of our variables consist 
of multiple indicators because the 
constructs we’re interested in appear  
to be multifaceted. 

To understand the multifaceted nature of 
a variable, we test how well the items we 
use to represent that concept gel. If they 
gel well (that is, they share a high level 
of communal variance), we assume that 
something underlies them—such as the 
concept of interest. 

Think of happiness, for example, 
happiness is multifaceted. We expect 
someone to feel a certain way, act a 
certain way, and think a certain way  

Survey analysis

Methodology

when they’re happy. We assume that 
happiness is underlying a certain pattern 
of feelings, thoughts, and action. 

Therefore, we expect certain types  
of feelings, thoughts, and actions to 
emerge together when happiness is 
present. We would then ask questions 
about these feelings, thoughts, and 
actions. We would use confirmatory 
factor analysis to test whether they 
actually do show up together.

This year we used the lavaan1 R package 
to do this analysis. Lavaan returns  
a variety of fit statistics that help us 
understand whether constructs  
actually represent the way people 
answer the questions. 

If the indicators of a concept don't gel, 
the concepts might need to be revised 
or dropped because it’s clear that we 
haven't found a reliable way to measure 
the concept.

The external validity of a construct is 
all about looking at how the construct 
fits into the world. We might expect a 
construct to have certain relationships to 
other constructs. Sometimes we might 
expect two constructs to have a negative 
relationship, like happiness and sadness.

If our happiness measure comes back 
positively correlated with sadness, we 
might question our measure or our theory. 
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Methodology

Similarly, we might expect two 
constructs to have positive 
relationships, but not strong ones. 
Productivity and job satisfaction are 
likely to be positively correlated, but 
we don’t think they’re identical. If the 
correlation gets too high, we might 
say it looks like we’re measuring the 
same thing. This then means that our 
measures are not calibrated enough 
to pick up on the differences between 
the two concepts, or the difference we 
hypothesized isn’t actually there. 

Model evaluation

Using a set of hypotheses as our guiding 
principle, we build hypothetical models, 
little toys that try to capture some aspect 
about how the world works. We examine 
how well those models fit the data we 
collected. For evaluating a model, we go 
for parsimony. This amounts to starting 
with a very simplistic model2 and adding 
complexity until the complexity is no 
longer justified. 

For example, we predict that 
organizational performance is the 
product of the interaction between 
software delivery performance and 
operational performance. Our simplistic 
model doesn’t include the interaction: 

Our second model adds the interaction:

Based on the recommendations in 
“Regression and other stories”3 and 
“Statistical Rethinking,”4 we use leave-
one-out cross-validation (LOOCV)5 and 
Watanabe–Akaike information criterion6 
to determine whether the additional 
complexity is necessary.

Organizational performance ~ Software delivery performance + Operational performance

Organizational performance ~ Software delivery performance + Operational performance + 

Software delivery performance ✕ Operational performance

104
v. 2024.3



Methodology

Directed Acyclic Graphs for  
Causal Inference

A validated model tells us what we  
need to know to start thinking  
causally. We talk about the challenges  
of thinking causally below. 

Here are some reasons why we’re trying 
to talk causally:

We think your question is fundamentally 
a causal one. You want to know if doing 
something is going to create something. 
You are not going to invest in doing 
something if you just think there is a non-
causal correlation.

The results of our analyses depend on 
our causal understanding of the world. 
The actual numbers we get from the 
regression change based on what we 
include in the regression. What we 
include in the regression should depend 
on how we think the data is generated, 
which is a causal claim. Hence, we should 
be clear.

Causal thinking is where our curiosity 
will take us and where we all spend a lot 
of time. We are often wondering about 
how the various aspects of the world are 
connected and why. We don’t need to 
run experiments on every facet of our 
lives to think causally about them.

Causal thinking is central to action, which 
is what we’re hoping this report helps you 
with, making decisions to act. 

We are able to use the validated model 
to tell us what we need to account for 
to understand an effect. In short, it lets 
us try to get our data in the form of 
an A/B experiment, where one tries to 
create two identical worlds with only 
one difference between them. The logic 
suggests that in doing so any differences 
that emerge between those two worlds 
is attributable to that initial difference. 

In observational data and survey data, 
things are not as clearly divided — many 
things are different between participants, 
which introduces confounds. Our 
method of causal inference tries to 
account for these differences in an 
attempt to mimic an experiment — that 
is, holding everything constant except for 
one thing (for example, AI adoption). 

Let’s take the classic example of ice 
cream “causing” shark attacks. There is 
a problem in that observation, namely 
that people tend to eat ice cream on hot 
days and also go to the beach on hot 
days. The situation where people tend 
to eat ice cream and go to the beach 
is not the same as the situation where 
people tend not to eat ice cream and not 
go to the beach. The data isn’t following 
the logic of an experiment. We’ve got a 
confounding variable, temperature. 
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Methodology

Directed Acyclic Graphs (DAGs) help 
you identify the ways in which the world 
is different and offer approaches to 
remedy the situation, to try to mimic an 
experiment by making everything in the 
world except one thing constant. Let’s 
see how the DAG directs us in the ice 
cream and shark attack example, where 
we want to quantify the impact of ice 
cream consumption on shark attacks:

The image is from https://www.dagitty.net/dags.html.

I draw my model, tell the tool what effect 
I want to understand, and the tool tells 
me what is going to bias my estimate 
of the effect. In this case, the tool says 
that I cannot estimate the effect of ice 
cream consumption on shark attacks 
without adjusting for temperature, 
which is a statistical approach of trying 
to make everything equal besides ice 
cream consumption and then seeing if 
shark attacks continue to fluctuate as a 
function of ice cream consumption. 

We outline our models in the, you 
guessed it, Models chapter.
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Methodology

• We move away from thinking in 
terms of significant or insignificant 
(ask 10 people to explain frequentist 
p-values and you’ll get 10 different 
answers)

• We want to know the probability of 
hypothesis given the data, not the 
probability of the data given our 
hypothesis 

• We like to incorporate our prior 
knowledge into our models, or  
at least be explicit about how much 
we don’t know7

• We are forced to confront the 
underlying assumptions of the 
modeling process

• We can explore the posterior 
distributions to get a sense of the 
magnitude, uncertainty, and overall, 
how and how well the model made 
sense of the data. Ultimately, it gives 
a great sense of what we do and do 
not know given our data

• A flexible framework that addresses 
many statistical problems in a very 
unified manner

The directed acyclic graph tells us  
what to account for in our analyses  
of particular effects.

For example, what do we need to 
account for in our analysis of AI 
adoption's impact on productivity? 

Bayesian statistics

This analysis is done using Bayesian statistics.  
Bayesian statistics offer a lot of benefits:
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What do you mean by “simulation”? 

It isn’t that we made up the data. We 
use Bayesian statistics to calculate a 
posterior, which tries to capture “the 
expected frequency that different 
parameter values will appear.”8 The 
“simulation” part is drawing from this 
posterior more than 1,000 times to 
explore the values that are most credible 
for a parameter (mean, beta weight, 
sigma, intercept, etc.) given our data. 

“Imagine the posterior is a bucket full of 
parameter values, numbers such as 0.1, 
0.7, 0.5, 1, etc. Within the bucket,  
each value exists in proportion to its 
posterior probability, such that values 
near the peak are much more common 
than those in the tails.”9

This all amounts to our using simulations 
to explore possible interpretations of 
the data and get a sense of how much 

uncertainty there is. You can think of 
each simulation as a little AI that knows 
nothing besides our data and a few rules 
trying to fill in a blank (parameter) with an 
informed guess. You do this 4,000 times 
and you get the guesses of 4,000 little 
AIs for a given parameter. 

You can learn a lot from these guesses. 
You can learn what the average guess is, 
between which values do 89%10 of these 
guesses fall, how many guesses are 
above a certain level, how much variation 
is there in these guesses, etc. You can 
even do fun things like combine guesses 
(simulations) across many models. 

When we show a graph with a bunch of 
lines or a distribution of potential values, 
we are trying to show you what is most 
plausible given our data and how much 
uncertainty there is. 
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Synthesize findings with the 
community

Our findings offer a valuable 
perspectives for technology-driven 
teams and organizations, but they are 
best understood through dialogue  
and shared learning. Engaging with 
the DORA community gives us diverse 
insights, challenges our assumptions,  
and helps us discover new ways to 
interpret and apply these findings.

We encourage you to join the DORA 
community (https://dora.community) 
to share your experiences, learn 
from others, and discover diverse 
approaches to implementing these 
recommendations. Together, we can 
explore the best ways to leverage these 
insights and drive meaningful change 
within your organization.

https://dora.community


This year, we supplemented our annual 
survey with in-depth, semi-structured 
interviews to triangulate, contextualize, 
and clarify our quantitative findings.  
The interview guide paralleled the topics 
included in our survey and was designed 
for sessions to last approximately 75 
minutes each, conducted remotely  
via Google Meet.

In total, we interviewed 11 participants 
whose profiles matched the inclusion 
criteria of our survey. All interviews were 
video- and audio-recorded. Sessions 
lasted between 57 minutes and 85 
minutes, totaling 14 hours and 15 minutes 
of data collected across all participants. 
Participants’ data were pseudonymized 
using identifiers in the form of P(N), 
where N corresponds to the order in 
which they were interviewed.

All interviews were transcribed using 
automated software. Transcriptions were 
manually coded using our survey topics 
as a priori codes. Quotations appearing 
in the final publication of this report were 
revisited and transcribed manually prior 
to inclusion. Words added to participant 
quotations by the authors of this report 
are indicated by brackets ([]), words 
removed are indicated by ellipses (..), 
and edits were made only in cases where 
required for clarity.

Our goal is to create a pragmatic 
representation of the world, something 
that we can all leverage to help improve 
the way we work. We know there is 
complexity we’re simplifying. That is kind 
of the point of the model. Jorge Luis 
Borges has a very short story, called  
“On Exactitude in Science”, where he 
talks of an empire that makes maps of 
the empire on a 1:1 scale.11 The absurdity 
is that this renders the map absolutely 
useless (at least that’s my interpretation). 
The simplifications we make are 
supposed to be helpful. 

That said, there are some inferential leaps 
that we want to be clear about. 

Interviews Inferential leaps in 
results
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Causality

According to John Stuart Mill, you 
needed to check three boxes to say  
X causes Y:12

• Correlation: X needs to covary with Y? 

• Temporal precedence: X needs to 
happen before Y?

• Biasing pathways are accounted for (as 
described in the DAG section above)?

We feel confident that we can 
understand correlation — that’s often 
a standard statistical procedure. Our 
survey is capturing a moment in time, so 
temporal precedence is theoretical, not 
part of our data. 

As for biasing pathways, as we mention 
above when talking about structural 
equation models and directed acyclic 

graphs, we do the work to account for 
biasing pathways, but that is a highly 
theoretical exercise, one that, unlike 
temporal precedence, has implications 
that can be explored in the data.

This is all to say that we didn’t do 
longitudinal studies or a proper 
experiment. Despite this, we think causal 
thinking is how we understand the world 
and we try our best to use emerging 
techniques in causal inference to provide 
you with good estimates. Correlation 
does not imply causation, but it does 
imply how you think about causation. 
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Micro-level phenomena  
-> Macro-level phenomena

Often we take capabilities at an individual 
level and see how those connect to 
higher levels. For example, we tied the 
individual adoption of AI to an application 
or service and to team performance. 
This isn’t terribly intuitive at first glance. 
The story of a macro-level phenomenon 
causing an individual level phenomenon 
is usually easier to tell. Inflation (macro) 
impacting whether I buy eggs (micro) 
seems like a more palatable story than 
me not buying eggs causing inflation. 

The same is true for an organization's 
performance (macro) impacting an 
individual’s well-being (micro). As a 
heuristic, it is likely the organization 
exerts more of an influence on  
the individual than the individual  
on the organization. 

So, why do we even bother saying an 
individual action impacts something like 
team or organizational performance? 
We make an inferential leap that we 
think isn’t completely illogical. Namely, 
we assume that at scale, the following 
statement tends to be true:

That is, we believe that the probability 
of an individual doing something (X) is 
higher when they are in an organization 
or a team that also does X. Hence, 
individuals who do something represent 
teams and organizations that also tend to 
do X. Of course the noise here is pretty 
loud, but the pattern should emerge and 
allow this assumption to give us some 
important abilities. 

Let’s back up for an example outside of 
DORA: imagine two different countries 
where the average height differs. In one 
country, people have an average height 
of 5’6”. The other’s average height is 6’2”. 
The standard deviation is identical. If you 
picked a person at random from each 
country, which country do you think the 
taller person would be more likely to be 
drawn from? If you do this thousands 
of times, taller countries would be 
represented by taller people. The 
height of the individuals would loosely 
approximate the heights of the countries. 

Methodology

p(individual does X | organization does X) > p(individual does X | organization doesn’t do X).
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1. Rosseel Y (2012). “lavaan: An R Package for Structural Equation Modeling.” Journal of Statistical Software, 48(2), 1–36.  
https://doi.org/10.18637/jss.v048.i02

2. This would also involve the examination of potential confounds. 
3. Gelman, Andrew, Jennifer Hill, and Aki Vehtari. 2021. Regression and Other Stories. N.p.: Cambridge University Press.
4. McElreath, Richard. 2016. Statistical Rethinking: A Bayesian Course with Examples in R and Stan. N.p.: CRC Press/Taylor & Francis 

Group.
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values avoid conventional 95%, since conventional 95% intervals encourage many readers to conduct unconscious hypothesis 
tests.” The interval we’re providing is simply trying to show a plausible “range of parameter values compatible with the model and 
data”.

11. Borges, J. L. (1999). Collected fictions. Penguin.
12. Duckworth, Angela Lee, Eli Tsukayama, and Henry May. “Establishing causality using longitudinal hierarchical linear modeling: An 
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The results are unsurprising. 97.2%  
of the 1,000 random draws are in  
the correct direction. Of course, it  
would be easy to get fooled with  
non-random draws, smaller differences 
between the countries, and small 
samples. Still, the point stands: 
differences at the macro-level tend  
to be represented in the micro-level. 

#R code

#set seed for reproducibility 
set.seed(10)

#6'2 and 5'6 
height_means = c(6 + 1/6, 5.5)

#constant standard deviation at 1/4 of 
foot 
std_dev =0.25

#random draws 
draws = 1000

#random draws from country A 
country_a <-rnorm(draws, mean = height_
means[1], sd = std_dev)

#random draws from country B 
country_b <-rnorm(draws, mean = height_
means[2], sd = std_dev)

#how of the draws represent the correct 
difference 
represented_difference = sum(country_a > 
country_b) / 1000

#show results as percentage 
represented_difference * 100

Not that it is necessary, but we ran a 
quick simulation to validate this is true:

112
v. 2024.3



Models

Traditionally, we have built one giant 
model that we validated using various 
structural equation modeling techniques 
(partial least squares, covariance-based, 
bayesian). For the 2023 report, we 
switched to focusing on many smaller 
models aimed at helping us understand 
specific processes. 

For example, we made a nuanced model 
to understand the physics of quality 
documentation. There are important 
benefits that come with creating smaller 
models1 tailored to understanding 
specific effects:

• Ease of identifying areas of poor 
model fit

• Everything you add to a model 
exerts a force, has a gravity. As your 
model gets large, it is really difficult 
to understand all the different ways 
the variables are exerting force on 
each other

• Prevents you from conditioning on 
something that creates spurious 
relationships2
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We all have a lot of questions, but many 
vital questions have the following form:

if we do X, what happens to Y? 

X is usually a practice, such as creating 
quality documentation, adopting AI, or 
investing in culture. 

Y is usually something that we care 
about achieving or avoiding, which 
could happen at the individual level 
(for example, productivity) up to the 
organizational level (for example,  
market share).

We construct, evaluate, and use the 
models3 with the goal of addressing 
questions of this form. We work to 
provide an accurate estimate of what 
happens to important outcomes as 
a result of doing X.4 When we report 
effects, we convey two vital features:

1. How much certainty we have in the 
direction of the effect, that is, how 
clear is it that this practice will be 
beneficial or detrimental?

2. How much certainty we have in the 
magnitude of the effect. We will 
provide an estimate a relative sense 
of how impactful certain practices 
are and the degree of uncertainty 
surrounding these estimates. 

How do we use the models?

Models

Here are some of this year's capabilities 
of interest:

• AI adoption

• platform use

• platform age

• transformational leadership

• priority stability

• user centricity

Here are some of this year’s outcomes 
and outcome groups:

• individual performance and  
well-being (for example, burnout)

• team performance

• product performance

• development workflow  
(for example, codebase complexity 
and document quality)

• software delivery performance

• organizational performance
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We developed and explored many 
nuanced hypotheses over the  
past three years, especially about 
moderation and mediation. 

This year, we spent less time focusing 
on those types of hypotheses and more 
time trying to estimate a capability’s 
effect on an outcome. This means that 
the model for each capability is largely 
the same. 

Hence, the model for AI adoption’s 
effects is very similar in design to the 
model for User-centricity’s effects. We 
could copy the model and change the 
name of capability, but that might not  
be terribly useful for you. 

Instead, we are just going to show the 
AI model, but know it is the schematic 
or form behind each of our models. 
Should you be interested in running your 
analysis, constructing this model in a tool 
like DAGitty should allow you to get close 
to replicating the regressions we used in 
our analysis. That said, what is presented 
is slightly simplified for readability. 
Additionally, while the models are very 
similar across each capability, the effects 
are different. For example you'll see 
below that AI adoption generally harms 
software delivery performance but the 
opposite is true for things like internal 
documentation and user-centricity,  
see each chapter for additional details.

A repeated modelWe focus on these outcomes because 
we believe that they are ends in 
themselves. Of course, that is more true 
for some of these outcomes than others. 
If you found out that organizational 
performance and team performance  
had nothing to do with the software 
delivery performance, you would 
probably be okay having low software 
delivery performance. 

We hope, however, that even if 
organizational performance did not 
depend on individual well-being  
you would still want to prioritize the  
well-being of employees.
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Models

1. Gelman et. al’s “Regression and other stories” offers some important tips on page 495 through 496  
that seem illuminating: B.6 Fit many models and B.9 Do causal inference in a targeted way, not as a byproduct of a large regression

2. A great discussion about this can be found in chapter 6 of Statistical Rethinking. I am talking  
particularly about collider bias.

3. See the conversation about how these models are tied with directed acyclic graphs in the methodology chapter
4. We talk about causality briefly in the methods chapter.
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Recommended 
reading

Read the book: Team Topologies: 
Organizing Business and Technology 
Teams for Fast Flow. IT Revolution Press. 
https://teamtopologies.com/

Publications from DORA’s research 
program, including prior DORA Reports. 
https://dora.dev/publications

Frequently asked questions about the 
research and the reports.  
http://dora.dev/faq

Errata - Read and submit changes, 
corrections, and clarifications to this 
report. https://dora.dev/publications/
errata

Check if this is the latest version  
of the 2024 DORA Report:  
https://dora.dev/vc/?v=2024.3

Join the DORA Community to discuss, 
learn, and collaborate on improving 
software delivery and operations 
performance. https://dora.community

Take the DORA Quick Check.  
https://dora.dev/quickcheck

Explore the capabilities that enable a 
climate for learning, fast flow, and fast 
feedback. https://dora.dev/capabilities

Fostering developers’ trust in generative 
artificial intelligence. https://dora.dev/
research/2024/trust-in-ai/

Read the book: Accelerate: The science 
behind devops: Building and scaling high 
performing technology organizations. 
IT Revolution. https://itrevolution.com/
product/accelerate

Recommended reading117
v. 2024.3

https://teamtopologies.com/
https://dora.dev/publications
http://dora.dev/faq
https://dora.dev/publications/errata/
https://dora.dev/publications/errata/
https://dora.dev/vc?v=2024.2
https://dora.dev/vc/?v=2024.3
https://dora.community
https://dora.dev/quickcheck
https://dora.dev/capabilities
https://dora.dev/research/2024/trust-in-ai/
https://dora.dev/research/2024/trust-in-ai/
https://itrevolution.com/product/accelerate
https://itrevolution.com/product/accelerate


“Accelerate State of DevOps 2024”  
by Google LLC is licensed under CC BY-NC-SA 4.0

118
v. 2024.3

https://creativecommons.org/licenses/by-nc-sa/4.0/


119
v. 2024.3




