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In 2025, the central question for 
technology leaders is no longer if 
they should adopt AI, but how to 
realize its value. DORA’s research 
includes more than 100 hours 
of qualitative data and survey 
responses from nearly 5,000 
technology professionals from 
around the world.1 The research 
reveals a critical truth: AI’s primary 
role in software development 
is that of an amplifier. It 
magnifies the strengths of high-
performing organizations and the 
dysfunctions of struggling ones.

Executive summary

The greatest returns on AI 
investment come not from the 
tools themselves, but from a 
strategic focus on the underlying 
organizational system: the quality 
of the internal platform, the clarity 
of workflows, and the alignment 
of teams. Without this foundation, 
AI creates localized pockets of 
productivity that are often lost to 
downstream chaos.

Key takeaway:  
AI is an amplifier

Executive summary3
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Executive summary

Drawing on qualitative data and a global survey conducted between June 13 and July 21, 2025, this report 
uncovers several key findings on the state of AI-assisted software development, including:

AI adoption has become nearly 
universal. The majority of survey 
respondents (95%) now rely 
on AI and believe (more than 
80%) it has increased their 
productivity. Yet a notable 
portion (30%) currently report 
little to no trust in the code 
generated by AI, indicating a 
need for critical validation skills.

Read more in the AI adoption 
and use chapter.

This year’s research identifies 
seven distinct team profiles, 
from “harmonious high-
achievers” to teams caught in 
a “legacy bottleneck,” offering 
a new framework for targeted 
improvement.

Read more in the Understanding 
your software delivery 
performance chapter.

Value stream management 
(VSM), the practice of 
visualizing, analyzing, and 
improving the flow of work 
from idea to customer, acts 
as a force multiplier for AI, 
ensuring that local productivity 
gains translate into measurable 
improvements in team and 
product performance.

Read more in the Value stream 
management chapter.

Successful AI adoption requires 
more than just tools. Our new 
DORA AI Capabilities Model 
identifies seven foundational 
practices—including a clear 
AI policy, a healthy data 
ecosystem, and a user-centric 
focus—that are proven to 
amplify the positive impact of AI 
on organizational performance.

Read more in the DORA AI 
Capabilities Model chapter.

AI adoption now improves 
software delivery throughput, 
a key shift from last year. 
However, it still increases 
delivery instability. This suggests 
that while teams are adapting 
for speed, their underlying 
systems have not yet evolved to 
safely manage AI-accelerated 
development. 

Read more in the Exploring AI’s 
relationship to key outcomes 
chapter.

90% of organizations have 
adopted platform engineering, 
making a high-quality internal 
platform the essential 
foundation for AI success.

Read more in the Platform 
engineering chapter.

Key findings

Friction

Burnout

Team performance

Software delivery throughput

Product performance

Code quality

Valuable work

Organizational performance

Software delivery instability

Individual effectiveness

-0.05 0.00 0.05 0.10 0.15 0.20

Estimated effect (standardized)

Estimated effect of AI adoption on key outcomes, with 89% credible intervals

The landscape of AI's impact

For outcomes in orange (e.g., Burnout), a negative effect is desirable.

Note: An increase here is not a desirable outcome

For outcomes in orange, such as Burnout, 
a negative effect is desirable. 
Figure 1: The landscape of AI’s impact

Estimated effect of AI adoption on key 
outcomes, with 89% credible intervals

The landscape of AI’s impact
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Analysis and advice for 
technology leaders
Successful AI adoption  
is a systems problem,  
not a tools problem

Our new DORA AI Capabilities 
Model reveals that the value 
of AI is unlocked not by the 
tools themselves, but by the 
surrounding technical and cultural 
environment. We’ve identified 
seven foundational capabilities—
including a clear AI policy, a 
healthy data ecosystem, a quality 
internal platform, and a user-
centric focus—that are proven to 
amplify the positive impact of AI 
on performance. 

Treat your AI adoption as an 
organizational transformation. 
The greatest returns will come 
from investing in the foundational 
systems that amplify AI’s benefits: 
your internal platform, your 
data ecosystem, and the core 
engineering disciplines of your 
teams. These elements are the 
essential prerequisites for turning 
AI’s potential into measurable 
organizational performance.

Executive summary

Broad AI adoption with 
healthy skepticism

While most developers use AI 
to increase productivity, there 
is healthy skepticism about the 
quality of its output. This “trust 
but verify” approach is a sign of 
mature adoption.

The conversation must shift from 
adoption to effective use. Your 
training programs should focus on 
teaching teams how to critically 
guide, evaluate, and validate 
AI-generated work, rather than 
simply encouraging usage.

Seven profiles of team 
performance

Simple metrics are not enough. 
We identified seven distinct 
team profiles, each with a unique 
combination of performance, 
stability, and well-being. This 
model provides a nuanced way to 
understand your teams’ specific 
challenges and create tailored 
pathways for improvement.

Use these profiles to diagnose 
team health beyond software 
delivery performance metrics. 
Understand if a team is high-
performing but burning out, 
or stable but stuck on legacy 
systems, and apply the right 
interventions.

Quality platforms unlock  
AI’s value

Platform engineering is now nearly 
universal (94% adoption). Our 
data shows a direct correlation 
between a high-quality internal 
platform and an organization’s 
ability to unlock the value of AI. 
Organizations that treat their 
platform as an internal product 
designed to improve developer 
experience see significantly 
greater returns.

Prioritize and fund your platform 
engineering initiatives. A poor 
developer experience and 
fragmented tooling may hamper 
the impacts of your AI strategy.

A systems view directs AI’s 
potential

This year’s research confirms 
that VSM creates focused 
improvement, driving higher team 
and product performance. 

VSM acts as a force multiplier 
for AI investments. By providing 
a systems-level view, it ensures 
AI is applied to the right 
problems, turning localized 
productivity gains into significant 
organizational advantages 
instead of simply creating more 
downstream chaos.

5
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Executive summary

Using this report

This report details the data behind 
these findings, including our new 
DORA AI Capabilities Model, which 
identifies the key practices that 
amplify the benefits of AI. 

While every organization is 
unique, our findings provide a 
framework to inform your strategy 
and guide your teams. Use this 
research to form hypotheses, run 
experiments, and measure the 
results to discover what drives 
the highest performance in your 
specific context.

1.	 Additional detail about who participated in this year’s research is available in the Demographics and firmographics chapter.
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The DORA community1 provides 
a platform for professionals to 
engage with this research and 
apply it to improve their own 
organizational performance.

There are several reasons why you should be a part of the DORA 
Community:

Learn from experts and peers: The community offers opportunities to 
learn from guest speakers and other members through presentations 
and discussions.

Stay up to date with research: Be the first to know about new 
information and publications from DORA.

Collaborate and discuss: The DORA Community Google Group2 
provides a forum for asynchronous conversations, announcements, and 
event invitations. This allows members to discuss topics and share their 
experiences with others in the field.

Engage in community events: A calendar of events, both virtual and 
in-person, is available on DORA.community.

Contribute to the conversation: Contribute to the conversation by 
listening, talking, and participating in chats. The community values the 
input of its members and provides a space for ongoing discussions 
on topics like leadership, team empowerment, and the evolution of 
technology practices.

DORA community

Why join the DORA community?

1.	 The DORA community. https://dora.community
2.	 The DORA Community Google Group. https://groups.google.com/g/dora-community/about
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In 2013, I had the privilege of 
working with Dr. Nicole Forsgren 
and Jez Humble on the State 
of DevOps research. This work 
became the basis for the DevOps 
Research and Assessment group—
DORA—which became part of 
Google Cloud in 2018.

For many, it’s difficult to believe 
that just over a decade ago, 
software deployments were 
dangerous and complex. They 
required meticulous planning and 
approvals, and often involved 
hundreds of risky, error-prone, 
manual steps. Despite planning 
and care, deployments still caused 
massive chaos and disruption, 
which is why we only dared to do 
them once per year.

Many believe that the goal of science is to explain the 
greatest number of observable phenomena with the fewest 
principles, to confirm deeply-held intuitions, and to reveal 
surprising insights. For more than a decade, this is exactly 
what the DORA research program has done.

I’m so excited by how this year’s research helps us better 
understand how we can use AI to improve software.

In 2013, the State of DevOps 
research showed that doing 
multiple deployments per day was 
not a crazy idea, and that reliability 
seemed to require doing smaller 
deployments far more frequently. 

What was even more exciting:  
you didn’t have to be in a 
startup or in Silicon Valley. You 
only needed great technical 
practices (for example, 
automated builds, automated 
testing, automated deployments, 
proactive production telemetry), 
an architecture that enabled 
independence of action (the 
ability to develop, test, and deploy 
value independently, with little 
or no coordination cost), and a 
culture of learning.

Foreword

Foreword

Gene Kim
Researcher, Vibe Coder, Co-author of 
Vibe Coding, The Phoenix Project, DevOps 
Handbook, Accelerate
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Foreword

Now, 12 years later, as a 
technology community, we are 
again faced with a remarkable 
new technology—AI. And as we 
did a decade ago, we are asking: 
Does this new technology actually 
enable better software delivery 
and organizational performance? 

In 2024, DORA released a 
landmark report measuring the 
effects of AI on software delivery 
performance, one of the first 
systematic studies of its kind. The 
results were startling to some. 
The data suggested that the 
more AI was used, the worse the 
software delivery stability and 
throughput became—the very 
attributes software development 
professionals have been working 
for the last decade to improve

Yes, I’ve seen and experienced 
how using AI can lead to 
problems, everything from silently 
deleted tests, obviously broken 
functionality, and even deleted 
production data. But I’ve also seen 
AI used to massively improve 
outcomes. I started calling last 
year’s report and its findings “the 
DORA 2024 anomaly”—that is, an 
exciting mystery to be solved. 

This belief was informed by 
working for the past year with 
Steve Yegge, famous for his 20 
years at Amazon and Google. He 
chronicled how a memo from 
Amazon founder Jeff Bezos drove 
Amazon’s transformation from a 
software monolith into thousands 
of microservices. This shift helped 
enable 136,000 deployments 
deployments per day in 2015, 
an achievement that for years 
inspired the DORA research.

Together, Steve and I wrote an 
upcoming book, Vibe Coding, 
where we define “vibe coding” 
as any form of coding where you 
don’t type out code by hand. 
Instead, code emerges from an 
iterative conversation with an AI. 

We describe how vibe coding has 
changed our lives—it has enabled 
us to build things we want faster, 
pursue more ambitious projects, 
work more autonomously, have 
more fun, and explore a vastly 
larger option space (FAAFO!).

Steve and I have seen how using 
vibe coding can go wrong, 
resulting in deleted tests, 
outages, and even deleted code 
repositories. But we’ve concluded 
that this was because the 
engineering instincts that served 
us well for decades were now 
proving woefully insufficient.

Suppose the fastest you’ve ever 
traveled is walking at four miles 
per hour, and someone asks you 
to drive a car at 50 miles per hour. 
Without practice and training, you 
will undoubtedly wreck the car. 

We concluded that when AI 
dramatically accelerates software 
development, our control 
systems—that’s us—must also 
speed up.1 In other words, a 
decade of DORA research has 
likely already shown the entire 
software development industry 
practices must evolve.

•	 We need fast feedback loops—
faster than ever—to match AI-
accelerated code generation.

•	 We need to work within 
software architectures that give 
us independence of action—
more than ever, we need to be 
able to develop, test, and deploy 
software independently.

•	 We need a climate for 
learning, especially given the 
idiosyncratic nature of AI and its 
rapid rate of advance. 

In Vibe Coding, Steve and I 
included the following case 
studies that hint at the relevant 
principles and practices—and why 
they matter so much in the AI era.

9
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Fast feedback loops and 
software architecture

Fernando Cornago, global 
vice-president, Digital and 
E-Commerce Technology, Adidas, 
oversees nearly a thousand 
developers. In their generative 
AI (gen AI) pilot, they found that 
teams who worked in loosely 
coupled architectures and had 
fast feedback loops “experienced 
productivity gains of 20% to 
30%, as measured by increases in 
commits, pull requests, and overall 
feature-delivery velocity,” and had 
a “50% increase in ‘Happy Time’”—
more hands-on coding and less 
administrative toil. 

In contrast, teams with slower 
feedback loops due to tight 
coupling with the Enterprise 
Resource Planning (ERP) systems 
saw little or no AI benefits at all.2 

Culture of learning

We also appreciated the case 
study from Bruno Passos, group 
product manager, Developer 
Experience, Booking.com, 
which has a team of more than 
3,000 developers. In their gen 
AI innovation efforts, they found 
that, “developer uptake of vibe 
coding and coding assistant tools 
was uneven ... Bruno’s team soon 
realized the missing ingredient 
was training. When developers 
learned how to give their coding 
assistant more explicit instructions 
and more effective context, they 
found up to 30% increases in 
merge requests and higher job 
satisfaction.”3

Both these case studies point 
to the exciting possibility that 
AI amplifies the strengths and 
weaknesses of our engineering 
practices. Individuals, teams, 
and teams of teams with great 
engineering practices are poised to 
get outstanding benefits from AI.

We believe that those who don’t 
have such practices will likely have 
a very bad time, something the 
“2024 DORA anomaly” hinted at.

I am grateful and honored to have 
collaborated with Google’s DORA 
team, along with our extended 
team of experts and researchers 
whose work and achievements I 
admire, to help inform this year’s 
research. 

What excites me most is the scale 
of the 2025 research: With nearly 
5,000 participants, we’ll be able to 
conduct a survey of practice that 
will hopefully produce “Eureka!” 
moments like those of a decade 
ago. I’m confident we will see 
similar breakthroughs in the 
months ahead.

Some of the findings have already 
made it into the report, but many 
more tantalizing insights are 
emerging, and I’m excited to share 
those findings in the months and 
years to come.

My gratitude goes to the entire 
DORA team and the extended 
contributors who made this 
groundbreaking research possible.

1.	 The Nyquist stability criterion from control theory tells us that any control system must operate at least twice as fast as the system it controls. 
2.	 Kim, Gene, and Steve Yegge. Vibe Coding: Building Production-Grade Software With GenAI, Chat, Agents, and Beyond. Foreword by Dario Amodei 

(IT Revolution, 2025), 57.
3.	 Ibid, 58.
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Understanding your 
software delivery 
performance: A look at 
seven team profiles

Software delivery performance

Nathen Harvey
DORA Lead, Google Cloud
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It’s also the moment where 
we begin to understand how 
the software will perform in a 
production environment, and how 
well it meets the needs of our 
users. There are many things we 
can do in advance of this moment 
to increase our confidence that 
the software will do what we 
expect it to, but the moment of 
release is where the theoretical 
becomes practical—or not.

Launching new software is 
more than just launching new 
applications and services. Once 
an application has been released, 
users’ feedback will encourage (or 
force) you to make improvements. 

Software delivery performance

The moment when new software has been released is worth 
celebrating, because its primary value can be determined 
only once the world can use it. These users may be 
customers, partners, co-workers, strangers, and even other 
technology systems.

Of course, there are many reasons 
why you might want or need to 
change an application, including to 
remediate security vulnerabilities, 
improve performance, reduce 
operating costs, or reduce its 
carbon footprint. At their heart, 
these considerations can help 
both users and the long-term 
success of the application.

We also need to consider the 
long-term health and well-being 
of the teams responsible for the 
building, deploying, operating, 
and ongoing support of the 
application. We need to have the 
right capabilities and conditions 
in place that allow these teams 
to drive successful outcomes in a 
sustainable manner.

These considerations, coupled 
with the business imperatives to 
move faster and drive greater 
success, have led DORA to use 
software delivery performance as 
a focal point for our research.

Software delivery performance
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v. 2025.1



Throughput is a measure of how 
many changes can move through 
the system over a period of time. 
Higher throughput means that the 
system can move more changes 
through to the production 
environment.

DORA uses three factors to measure software delivery throughput:

DORA uses two factors to measure software delivery instability:

Instability is a measure of how 
well the software deployments 
go. When deployments go well, 
teams can confidently push more 
changes into production and users 
are less likely to experience issues 
with the application immediately 
following a deployment.

Software delivery performance

Instability

Throughput

Lead time for changes

The amount of time it takes for a change to go from committed to 
version control to deployed in production.

Change fail rate

The ratio of deployments that require immediate intervention following  
a deployment. Likely resulting in a rollback of the changes or a “hotfix”  
to quickly remediate any issues.

Deployment frequency

The number of deployments over a given period or the time between 
deployments.

Rework rate

The ratio of deployments that are unplanned but happen as a result of  
an incident in production.

Failed deployment recovery time

The time it takes to recover from a deployment that fails and requires 
immediate intervention.

Taken together, these two factors for software delivery performance 
give teams a high-level understanding of their software delivery 
performance. Measuring these over time provides insight into how 
software delivery performance is changing. These factors can be used 
to measure any application or service, regardless of the technology 
stack, the complexity of the deployment processes, or its end users.

DORA’s software delivery performance factors take a high-level 
view of the entire delivery process and focus on two key factors: 
throughput and instability. 

Software delivery 
performance factors
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Software delivery performance

While these five metrics provide 
a vital snapshot of performance, 
they are ultimately outcomes. 
They tell you what is happening, 
but they don’t explain why. A low 
deployment frequency might 
be caused by technical debt, 
bureaucratic processes, or team 
burnout—and the metrics alone 
can’t distinguish between them. 

Look beyond software 
delivery performance

To connect the performance 
data to the human experience 
that drives it, we conducted a 
cluster analysis. This approach 
moves beyond isolated numbers 
to reveal seven common team 
profiles, each telling a deeper 
story about the interplay between 
performance, well-being, and 
environment.

14
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Team performance

This factor measures the 
perceived effectiveness and 
collaborative strength of an 
individual’s immediate team.

Product performance

This factor measures the  
success and quality of the 
products or services the  
team is building based on 
characteristics like helping  
users accomplish important  
tasks and keeping information 
safe, and performance metrics 
such as latency.

Valuable work

This measures the self-assessed 
amount of time an individual 
spends doing work they feel is 
valuable and worthwhile. 

Friction

This measures the extent 
to which friction hinders 
an individual’s work. Lower 
amounts of friction are generally 
considered to be a positive 
outcome.

Burnout

This measures feelings of 
exhaustion and cynicism related 
to one’s work. Lower amounts 
of burnout are generally 
considered to be a positive 
outcome.

Software delivery instability

This captures the quality and 
reliability of the software delivery 
process.

Individual effectiveness

This factor captures an individual’s 
self-assessed effectiveness and 
sense of accomplishment at work.

Software delivery throughput

This represents the speed 
and efficiency of the software 
delivery process.

Organizations, teams, and 
individuals usually strive to 
increase team performance, 
product performance, software 
delivery throughput, individual 
effectiveness, and valuable work 
while reducing software delivery 
instability, friction, and burnout.

Our analysis revealed seven 
distinct team archetypes, ranging 
from those excelling in healthy, 
sustainable environments 
(Harmonious high-achievers) to 
those trapped by technical debt 
(Legacy bottleneck) or inefficient 
processes (Constrained by 
process).

We conducted a cluster analysis to understand the human and systemic 
factors behind software delivery performance and identify common 
patterns. Our statistical clustering approach revealed seven team types 
while considering the following factors:

Finding commonality

Software delivery performance15
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Software delivery performance

Cluster 1: Foundational challenges

These teams are stuck in survival mode, facing significant challenges  
with fundamental gaps in their processes, environment, and outcomes.
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Percentage of respondents: 10% of 
survey respondents are in cluster 1.

Performance indicators: Key 
performance indicators related to team 
output, product delivery, and value 
creation are consistently low.

Team well-being: The data shows high 
reported levels of burnout and significant 
friction.

System stability: There are notable 
challenges with the stability of the 
software and operational environment.

Figure 3: Cluster 1:  
Foundational challenges

The names and descriptions for each of these clusters are an interpretation of the data. Your team may see similar performance levels as a given 
cluster but may not feel the cluster name or description describe your team well. 
Figure 2: Performance levels of seven team archetypes 

Performance levels of seven team archetypes 
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Cluster 2: The legacy bottleneck

Teams in this cluster are in a constant state of reaction, where unstable systems  
dictate their work and undermine their morale.

Cluster 3: Constrained by process

These teams are running on a treadmill. Despite working on stable systems, their effort 
is consumed by inefficient processes, leading to high burnout and low impact.

Cluster 4: High impact, low cadence

These teams produce high-impact work, reflected in strong product performance and 
high individual effectiveness. However, this is coupled with a low-cadence delivery 
model characterized by low software delivery throughput and high instability.
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Cluster 6:
Pragmatic performers

Percentage of respondents: 11% of 
survey respondents are in cluster 2.

Performance indicators: Key metrics for 
product performance are low. While the 
team delivers regular updates, the value 
realized is diminished by ongoing quality 
issues.

Percentage of respondents: 17% of 
survey respondents are in cluster 3.

Performance indicators: Key 
performance indicators show low 
effectiveness and the creation of limited 
customer or business value. 

Percentage of respondents: 7% of 
survey respondents are in cluster 4.

Performance indicators: The team 
consistently achieves top-tier levels of 
productivity. Both effectiveness and 
product performance metrics are strong.

Team well-being: The data indicates 
a demanding work environment. Team 
members report elevated levels of friction 
and burnout.

System stability: There are significant 
and frequent challenges with the stability 
of the software and its operational 
environment, leading to a high volume of 
unplanned, reactive work.

Team well-being: The data shows 
high reported levels of both burnout 
and friction. This suggests that current 
workflows and processes are creating 
a challenging and unsustainable work 
environment for the team.

System stability: The team’s software 
and operational environments are stable 
and reliable. This indicates that technical 
instability is not a primary contributor to 
the challenges in performance and well-
being.

Team well-being: The data indicates a 
low-friction environment, suggesting 
that team processes are efficient and 
collaborative.

System stability: The operational 
environment is characterized by a high 
degree of instability. This level of volatility 
represents a significant risk to service 
reliability and long-term sustainability.

Figure 6: Cluster 4:  
High impact, low cadence

Figure 5: Cluster 3:  
Constrained by process

Figure 4: Cluster 2:  
The legacy bottleneck
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Cluster 5: Stable and methodical

These teams are the steady artisans of the software world, delivering high-quality, 
valuable work at a deliberate and sustainable pace.

Cluster 6: Pragmatic performers

These teams consistently deliver work with impressive speed and stability, even if their 
work environment hasn’t reached a state of peak engagement.

Cluster 7: Harmonious high-achiever

This is what excellence looks like—a virtuous cycle where a stable,  
low-friction environment empowers teams to deliver high-quality work  
sustainably and without burnout.
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Cluster 6:
Pragmatic performers

Percentage of respondents: 15% of 
survey respondents are in cluster 5.

Performance indicators: Key 
performance indicators for product 
quality and value creation are consistently 
positive. However, the team’s software 
delivery throughput is in a lower 
percentile, indicating a more deliberate 
pace of work.

Percentage of respondents: 20% of 
survey respondents are in cluster 6.

Performance indicators: Key 
performance indicators for software 
delivery are strong, with better-than-
average throughput and low instability. 
The team maintains a steady cadence 
of valuable output, reliably meeting 
expectations.

Percentage of respondents:  
20% of survey respondents are  
in cluster 7.

Performance indicators: The team 
shows positive metrics across multiple 
areas, including team well-being, product 
outcomes, and software delivery.

Team well-being: The data shows low 
reported levels of burnout and friction, 
which points to a healthy and sustainable 
team environment.

System stability: The team’s software 
and operational environments are 
characterized by high stability and 
reliability.

Team well-being: Where this cluster 
differs from the absolute top tier is 
in measures of team well-being. The 
data shows average levels of reported 
burnout and friction. This indicates a 
work environment that is functional 
and sustainable but may lack strong 
engagement drivers.

System stability: The team’s software 
and operational environments are stable 
and reliable, providing the solid foundation 
required for their high performance.

Team well-being: The work environment 
is characterized by low reported levels of 
burnout and friction.

System stability: The team operates on a 
stable technical foundation that supports 
both the speed and quality of their work.

Software delivery performance

Figure 9: Cluster 7: 
Harmonious high-achiever

Figure 8: Cluster 6:  
Pragmatic performers

Figure 7: Cluster 5:  
Stable and methodical
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Figure 10 provides powerful 
evidence for a core tenet 
of DORA research, that the 
“speed vs. stability” trade-off 
is a myth. The best performers 
(clusters 6 and 7) excel at both 
dimensions simultaneously. 
Conversely, struggles are evident 
at the other end of the spectrum. 
Some groups, like those facing 
foundational challenges (cluster 1), 

Software delivery 
performance levels

struggle with both throughput and 
stability, while other high-impact, 
low-cadence teams (cluster 4) 
demonstrate that speed without 
stability is a dangerous and 
unsustainable proposition.

Excellence is achievable. Clusters 
6 and 7 represent nearly 40% of 
the total sample. Their existence 
provides an empirical anchor for 
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Size represents total respondents in cluster

Size represents total respondents in cluster 
FIgure 10: Cluster distribution across software delivery performance factors

what is possible—a benchmark 
that organizations can strive for. 
While achieving this state is  
clearly difficult, these groups 
serve as a powerful testament  
to the fact that high-velocity, 
high-quality software delivery 
is not a theoretical ideal but an 
observable reality.

Cluster distribution across software delivery performance factors
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How do you compare?
You may be wondering how your 
team compares to the rest of the 
participants in this year’s research. 
It is important to remember that 
these measurements are taken 
at the application or service 
level. Doing so encourages 
cross-functional ownership and 
accountability for improvement. 

Furthermore, the best, most 
insightful comparisons of software 
delivery performance are for 
the same application or service 
over time. The goal is continuous 
learning and improvement, not 
necessarily achieving top software 
delivery performance.

Lead time for changes

More than six months

Between one month and six months

Between one week and one month

Between one day and one week

Less than one day

Less than one hour

% at
level Top %

2%

13.2%

28.3%

31.9%

15%

9.4%

100%

98%

84.7%

56.4%

24.4%

9.4%

Deployment frequency

Fewer than once per six months

Between once per month and  
once every six moths

Between once per week and once per month

Between once per day and once per week

Between once per hour and once per day

On demand (multiple deploys per day)

% at
level Top %

3.6%

20.3%

31.5%

21.9%

6.5%

16.2%

100%

96.4%

76.1%

44.6%

22.7%

16.2%

Figures 11 through 15 provide 
insight into the distribution of 
responses we received in the  
2025 DORA survey.

Software delivery performance

Figure 11: Distribution of lead time for changes responses from the 2025 DORA Survey

Figure 12: Distribution of deployment frequency responses from the 2025 DORA Survey

Lead time for changes 
distribution

Survey question:

What is your lead time for changes  
(that is, how long does it take to go  
from code committed to code 
successfully running in production)?

Deployment frequency 

Survey question:

How often does your organization  
deploy code to production or release  
it to end users?
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Failed deployment recovery time

More than six months

Between one month and six months

Between one week and one month
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Less than one day

Less than one hour
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1%

4.9%

9.4%

28%
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98.8%
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21.3%
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% at
level Top %

>64%

8.5%

8.1%

19.6%

26%

19.5%

12.5%

8.5%

16.7%
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6.9%
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Software delivery performance

Figure 13: Distribution of failed deployment recovery time responses from the 2025 DORA 
Survey

Figure 14: Distribution of change failure rate responses from the 2025 DORA Survey

Figure 15: Distribution of rework rate responses from the 2025 DORA Survey

Failed deployment recovery 
time distribution

Survey question:

How long does it generally take to restore 
service after a change to production 
or release to users results in degraded 
service (for example, leads to service 
impairment or service outage) and 
subsequently requires remediation (for 
example, requires a hotfix, rollback, fix 
forward, or patch)?

Change failure rate 
distribution

Survey question:

Approximately what percentage of 
changes to production or releases to 
users result in degraded service (for 
example, lead to service impairment or 
service outage) and subsequently require 
remediation (for example, require a hotfix, 
rollback, fix forward or patch), if at all?

Rework rate distribution

Survey question:

Approximately what percentage of 
deployments in the last six months 
were not planned but were performed 
to address a user-facing bug in the 
application?
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Putting software delivery 
performance into practice

The software delivery 
performance metrics provide 
a high-level view of the entire 
delivery process. Changes to 
these metrics over time can 
provide insight into whether  
things are improving or 
deteriorating. Interventions 
required to change the metrics 
will likely vary for each application; 
although some common patterns 
may emerge, such as long review 
and approval cycles.

Let’s walk through a hypothetical 
example. During a regular 
retrospective, a team has a 
discussion about their software 
delivery performance. They notice 
that the lead time for changes for 
the application they work on is 
starting to increase. 

They may have noticed this by 
looking at a dashboard, but it’s 
just as likely that they noticed 
this through simple observations. 
Precision for these metrics isn’t 
always required, and teams will 
generally know how they are 
changing over time.

The team wants to reverse 
this trend, but to do so needs 
to understand what might be 
causing it. This is where additional 
data might be helpful. The team 
may look at data from their 
development systems—like their 
code repository or an analytics 
tool—and find that code reviews 
seem to be taking longer.

The team agrees that this 
is an area that they’d like 
to improve and discusses 
potential interventions, including 
reprioritizing code reviews as part 
of their daily work and striving 
for smaller changes that may 
be easier to review. With these 
concrete steps identified, they 
agree to review change approval 
times and all of the software 
delivery metrics in a month’s time 
to see how they’ve progressed.

Whether your team identifies  
as “Constrained by process”  
or “Stable and methodical,” 
the goal is the same: to foster 
a mindset of continuous 
improvement that moves you 
toward a more harmonious and 
high-achieving state.
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AI adoption and use

AI adoption and use

Kevin M. Storer, Ph.D. 
User Experience Researcher, Google Cloud

Derek DeBellis
Quantitative User Experience Researcher, 
Google Cloud
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Findings
As a whole, our findings regarding 
the adoption and use of AI by 
software developers point to 
a broad adoption of and deep 
reliance on AI across a diverse 
range of tasks. This has yielded 
perceived benefits for both 
individual productivity and code 
quality.

As we continue to explore AI adoption trends by the 
software development industry, the use of AI in software 
development has expanded significantly. In this rapidly 
evolving space, we strive to develop evidence-based 
guidance to help the software development community 
navigate these changes. This year’s “State of AI-assisted 
Software Development” represents our most in-depth 
analysis of AI-assisted development yet.

AI adoption and use

Adoption

Ninety percent of this year’s 
survey respondents report using 
AI at work, a 14.1% increase over 
the same metric in last year’s 
report. This remarkably high 
prevalence of AI use at work 
suggests that AI use in software 
development has now become 
the standard.
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Error bars show the 89% credible interval.Error bars show the 89% credible interval. 
Figure 16: AI user status
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Experience

Our respondents report a range of 
experience using AI tools, with a 
median of 16 months and a mean 
of 16.22 months of experience. 
For reference, ChatGPT was 
released in November of 2022,1 
approximately 31 months before 
the launch of our survey. In our 
data, we have captured both 
early- and late-adopters in this 
timeline, and note an observed 
influx of adoption between late 
2023 and mid 2024.

Time

AI users in our sample also vary 
in terms of how much time they 
spent interacting with AI on their 
most recent workday. Survey 
respondents report spending a 
median of two hours of their most 
recent workday interacting with AI, 
representing about one-quarter of 
an eight-hour workday.

Monthly AI user adoption

Time spent using AI on a recent workday

Number of new users starting each month, with key industry events

Distribution of daily interaction time among AI users

Figure 17: Monthly AI user adoption

Figure 18: Time spent using AI on a recent workday
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“Well, I think over the past year or so, people have realized that generative AI is at the 
point where it actually works for a lot of things. And now that that is kind of a given, 
everyone has applications that could benefit from generative AI in some way. 
And so I think there’s a lot of motivation to enable new features to save costs on 
certain things to cut down on the amount of time it takes to create certain things. So 
I think no one wants to get left behind … I do think that over time it will become more 
and more integrated into everything and, if you’re not using generative AI in some 
way then, yeah, I think it’s going to be difficult to keep up.”
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Reflexive use

Although AI use is nearly 
ubiquitous in our sample, reflexive 
use—the default employment 
of AI when facing a problem—is 
not. Among AI users, only 7% 
report “always” using AI when 
faced with a problem to solve or a 
task to complete, while 39% only 
“sometimes” seek AI for help. 

Still, a full 60% of AI users in our 
survey employ AI “about half the 
time” or more when encountering 
a problem to solve or task to 
complete, suggesting that AI has 
become a frequent part of the 
development process.

Reflexive AI use
How often users turn to AI when encountering a problem or task

AI adoption and use

1%

39%

26%

27%

7%Always

Most of the time

About half the time

Sometimes

Never

0% 10% 20% 30% 40%
Percentage of AI users

How often users turn to AI when encountering a problem or task

Reflexive AI use

Error bars show the 89% credible interval.

Over the past 18 months, Sabre has actively tracked the adoption of gen AI 
assistants through usage analytics and satisfaction surveys. Adoption has 
surged to 74% across developers with varying tenures and experiences, with 
a notable increase in the use of AI for core development tasks. 
 
This increased usage correlates with higher user satisfaction. A remarkable 
86% of users report increased productivity. The steady rise in satisfaction 
and reported time savings over time suggests that the benefits of gen AI 
tools grow as users become more proficient. 
 
Our analytics also revealed a slow uptake of the newest gen AI features, like 
agent mode, with only 25% of users leveraging them. In response, Sabre is 
enhancing training programs and fostering peer-to-peer knowledge sharing 
to increase engagement and ensure our teams are proficient with AI tools. 
 
 
Jacek Ostrowski, VP Platform Engineering, Sabre

Error bars show the 89% credible interval.
Figure 19: Reflexive AI use
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AI adoption and use

Tasks

As in our 2024 DORA Report,2 
the number one use for AI 
tools among this year’s survey 
respondents is writing new code, 
with 71% of respondents who 
write code using AI to assist them 
in doing so. 

Reliance on AI by task
Percentage of task performers who use AI

Less common uses of AI among 
respondents whose jobs involve 
those responsibilities include 
analyzing requirements (49%), 
internal communications (48%), 
and calendar management (25%).

A large majority of respondents 
whose jobs involve those 
responsibilities also use AI for 
literature reviews (68%), modifying 
existing code (66%), proofreading 
(66%), and creating or editing 
images (66%). 

Reliance

In addition to using them 
frequently, we also find 
development professionals are 
heavily reliant on AI tools at work. 

Only 5% of AI users in our sample 
report relying on AI at work “not 
 at all”, while 65% report relying on 
AI a “moderate amount” (37%), “a 
lot” (20%), or a “great deal” (8%).
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Distribution of reliance levels among AI users
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Figure 20: General reliance on AI at work

Error bars show the 89% credible interval.
Parenthetical is the % of all respondents who perform the task. The ‘Other’ category is excluded.
Figure 21: Reliance on AI by task
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How customization 
supports developer 
engagement

When AI gets in the way

While AI coding assistants are designed to save time 
and reduce effort, a study conducted at UC Berkeley 
found that they can also introduce friction in some 
tasks. For example, student developers embraced 
AI when handling mechanical tasks like writing 
boilerplate and installing packages, but when deeper 
understanding was needed, such as interpreting 
complex code, those same student developers 
largely ignored AI suggestions.

Eye-tracking revealed less than 1% visual attention on 
AI chat during interpretive tasks, compared to nearly 
19% during the more mechanical ones. The students 
in this study often chose to complete tasks manually 
to retain control and comprehension, even ignoring 
accurate, time-saving suggestions.

Takeaway for teams

To get the most out of AI coding assistants, 
developers and teams should invest in customization. 
This study showed that AI may disrupt interpretive 
tasks by adding cognitive load, especially when 
developers are trying to make sense of unfamiliar 
code. 

The key is aligning AI support with the nature of the 
task and preferences of the developer. Tuning your 
setup can transform AI from a source of friction 
into a more efficient and satisfying development 
experience.

What we studied

As AI assistants become more common in 
development work, a graduate research team at 
UC Berkeley studied how student developers use 
AI-powered integrated development environments 
(IDEs) in practice. Using eye-tracking data and 
interviews, the team observed how Python 
developers with between one and five years of 
experience tackled two short tasks: one involving 
an unfamiliar library, and another requiring 
interpretation of a cryptic function. 

By applying insights from this study, developers  
of all experience levels may find ways of working  
with AI coding assistants that are more attuned  
to their needs.

Customization as a solution

To reduce friction and better support focused work, 
developers and teams can customize their AI tools. 
Most IDEs now offer features like toggling inline 
suggestions, enabling “on-demand only” modes, or 
adjusting the style and structure of suggestions. 

Repository-level config files and linked 
documentation can help AI assistants follow 
established protocols. Experimenting with these 
settings can align AI behavior with the cognitive 
demands of different tasks, helping to reduce 
disruption and increase the usefulness of AI assistants.

Edward Fraser
Graduate student at UC Berkeley’s School  
of Information
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Mode of AI use

In addition to asking respondents 
where they interact with AI, and 
for what purposes, we asked 
how frequently they interact 
with AI in each of the following 
“modes”: 1) chat, representing 
any type of turn-by-turn text-
based interaction; 2) predictive 
text, like tab-to-complete code 
suggestions; 3) collaborative, 
using AI to make more broad 

Surfaces

Conversational AI chatbots are 
the most common vehicle for 
interacting with AI, followed by  
AI embedded within the IDE.

Respondents report interacting 
less frequently with AI as part  
of automated tool chains and 
other development tools and 
platforms, but this may be a 
feature of those AI tools being  
less visible to their users.

Where people interact with AI

Frequency of AI interaction modes

Percentage of respondents using each interaction surface

Percentage of responses for each interaction mode
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is least common, with a majority 
(61%) of respondents reporting 
“never” interacting with AI tools 
in an agentic mode. This usage 
pattern likely reflects the relative 
maturity of these AI modes; the 
lower adoption of agentic AI is 
consistent with its more recent 
emergence compared to the more 
established chat and predictive 
text functionalities.

changes to a codebase; and  
4) agent, in which AI is allowed  
to operate relatively unsupervised 
and make changes without  
direct oversight. 

Corresponding with chatbots and 
in-IDE interactions being most 
frequent among our respondents, 
textual chat and predictive text 
modes are the most common 
modes for respondents to 
interact with AI. Use of AI agents 

Error bars show the 89% credible interval. The ‘Other’ category is excluded. 
Figure 22: Where people interact with AI

Figure 23: Frequency of AI interaction modes
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Code quality

In addition to perceiving positive 
impacts on their productivity, 
a majority (59%) of survey 
respondents also observe that AI 
has positively impacted their code 
quality. 31% perceive this increase 
to be only “slight” and another 
30% observe neither positive nor 
negative impacts. However, just 
10% of respondents perceive any 
negative impacts on their code 
quality as a result of AI use.

“I feel like AI sometimes writes better code than 
I do for certain things, mainly because I feel like it’s 
been trained really well. I mentioned before: code 
is very binary. It either works or it doesn’t. The code 
that AI writes is usually good enough for my purpose. 
And it often uses code standards that I might have 
accidentally forgotten, or am too lazy to go back and 
refactor. So I feel like it kind of creates things more 
cohesively.”

Individual productivity

More than 80% of this year’s 
survey respondents report a 
perception that AI has increased 
their productivity. Although 
more than 40% report that 
their productivity has increased 
only “slightly,” fewer than 10% 
of respondents perceive AI 
contributing to any decrease in 
their productivity.

Perceived impact on individual productivity
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Figure 24: Perceived impact on individual productivity

Error bars show the 89% credible interval. 
Figure 25: Perceived impact on code quality
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Trust

Similar to the 2024 DORA Report,2 
this year’s findings reveal a 
nuanced landscape of user trust 
in AI-generated output, with a 
clear majority of respondents 
(70%) expressing some degree 
of confidence in its quality. This 
includes nearly a quarter of 
respondents (24%) who report 
having "a great deal" or "a lot" 
of trust. While 30% of those 
surveyed indicate a more reserved 
stance, with "a little" (23%) or "no 
trust at all" (7%) in the quality of 
AI-generated output.

This data highlights a key insight: 
high levels of AI adoption and 
perceived benefits can coexist 
with a measured and nuanced 
approach to trust. Our findings 
suggest that absolute trust is not 
a prerequisite for AI-generated 
outputs to be useful. This pattern 
aligns with established behaviors; 
during our interviews, developers 
compared this to the healthy 
skepticism they apply to other 
widely-used resources, such as 
solutions found on Stack Overflow, 
where information is used, but not 
always implicitly trusted.

The trustworthiness of AI in 
software development remains 
an important topic for debate and 
study, and we have previously 
identified five strategies to help 
foster developers’ trust in AI.3 
However, our data suggests 
developers may also already be 
accounting for this limitation of AI 
in their work.
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Trust in the quality of AI-generated output
Distribution of trust levels among respondents

Error bars show the 89% credible interval. 
Figure 26: Trust in the quality of AI-generated output
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Final thoughts
Taken together, these findings 
suggest that the use of AI in 
software development has 
become virtually ubiquitous. 
AI is used in a wide range of 
development tasks, relied on as 
part of respondents’ workflows, 
and frequently turned to when 
facing a problem. 

While respondents continue 
to report concerns about the 
trustworthiness of AI-generated 
code, they widely recognize AI’s 
positive impacts on their individual 
productivity and observed 
code quality. So despite some 
imperfections, it seems AI use has 
rapidly become standard practice 
for a majority of organizations 
engaged in software development.

Last year, we found that 
competitive pressures were a key 
driver of AI adoption in software 
development.2 Many interviewees 
expressed this as a “fear of 
missing out” or “getting left 
behind” by their peer developers 
and competitor companies. 

But, whether social pressure  
is a logical motivation to adopt 
a new technology is debatable. 
While our data shows many 
positive outcomes of AI adoption, 
we have also documented  
notable drawbacks.

For this reason, we caution against 
interpreting these findings of 
AI’s ubiquity as an indication that 
all organizations should rapidly 
move to adopt AI, regardless of 
their specific needs. Rather, we 
interpret these findings as a strong 
signal that everyone engaged in 
software development—whether 
an individual contributor, team 
manager, or executive leader—
should think deeply about whether, 
where, and how AI can and should 
be applied in their work. 

1.	 Introducing ChatGPT | OpenAI. https://openai.com/index/chatgpt
2.	 Accelerate State of DevOps 2024. https://dora.dev/dora-report-2024
3.	 Fostering developers’ trust in generative artificial intelligence. https://dora.dev/research/ai/trust-in-ai

AI adoption and use

Whether a conservative or 
permissive approach is right  
will depend on the context.  
But, the widespread adoption  
of AI suggests that organizations 
can no longer ignore the impacts 
of its use. 

We understand that decisions 
about the extent to which AI 
should be integrated into software 
development are difficult and 
best made from data. So, in 
our chapter on DORA’s new AI 
Capabilities Model, we explore 
how cultural and technological 
capabilities in organizations affect 
the outcomes of their AI adoption 
efforts, to provide insight into 
ways organizations who choose to 
integrate AI into their processes 
can do so successfully.
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Exploring AI’s 
relationship to 
key outcomes

Exploring AI’s relationship to key outcomes

Derek DeBellis
Quantitative User Experience Researcher, 
Google Cloud
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In just three years, AI adoption and 
use has undergone a remarkable 
shift. A developer using AI may 
have been surprising in 2022, 
but today 90% of technology 
professionals use AI at work. The AI 
adoption and use chapter shows 
near-universal adoption, and the 
trend holds far beyond our data.

The 2025 Stack Overflow 
Developer Survey found that 84% 
of developers are now using or 
planning to use AI tools in their 
development process, a significant 
jump from 76% the previous year.1

Daily use is also common, with 
47% of respondents using AI tools 
every day. Bolstering this trend, 
Atlassian’s 2025 State of DevEx 
Survey reports that nearly all 
developers (99%) now save time 
using AI tools.2 

The individual rush is mirrored 
in corporate strategy. 88% of 
business leaders reported that 
accelerating AI adoption is a 
priority, according to a 2025 
report from LinkedIn Corporate 
Communications.3 A McKinsey 
survey found 78% of respondents 
report that their organizations 
were using AI regularly for at least 
one business function.4 

This priority is reflected in 
spending, too: Stanford’s 2025 
HAI AI Index reports that total 
global corporate investment in 
AI hit $252.3 billion in 2024, a 
26% increase from the previous 
year.5 Perhaps nothing illustrates 
this new reality more starkly than 
the skills companies are hiring 
for: U.S. job postings mentioning 
generative AI skills grew by 323% 
from 2023 alone.6

Exploring AI’s relationship to key outcomes

AI is the new normal in 
software development
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Given this rush to adopt, it’s 
important that organizations 
understand whether there is a 
corresponding rush in benefits. 
Widespread adoption doesn’t 
automatically equal widespread 
value. We need to acknowledge 
that adoption can be messy, 
driven as much by hype and fear 
of missing out (FOMO) as by 
informed strategy. 

Adoption can also be limited and 
constrained by organizational 
systems, as we concluded in our 
2024 DORA Report, which found 
that AI returned a lot of promising 
results but also increased software 
delivery instability and decreased 
software delivery throughput.7 

The same 2024 DORA research 
found an estimated 1.5% reduction 
in software delivery throughput 
and an estimated 7.2% increase 
in software delivery instability for 
every 25% increase in AI adoption.

Our research is not alone in 
highlighting these complexities. 
For instance, a recent study 
from Model Evaluation & Threat 
Research (METR) suggested a 
stark misalignment between 
perception and reality: developers 
who were slowed down by AI 
tools by 19% still believed the 
tools had made them 20% more 
efficient.8 In a similar vein, other 
third-party research has begun to 
indicate potential impacts of AI on 
cognition and well-being, further 
underscoring that as an industry, 
we are still in the early stages of 
understanding the true effects of 
AI adoption.9,10,11

However, when developers were 
asked to evaluate AI on each area 
of the SPACE framework,12 they 
reported mostly positive impacts 
and few negative ones.13 Most 
respondents in our chapter on AI 
adoption and use also said that AI 
has had a positive impact on their 
code and their productivity.

What is the impact of 
AI adoption?

These mixed signals indicate to 
us that more evidence-based 
work should be done to evaluate 
the true impact of AI on product 
development, especially given 
the sheer scale of AI investment 
and adoption. We believe that 
the developer community and 
employers should be setting 
realistic expectations, and 
gaining a clear perspective on 
AI’s actual impact is the first 
step toward managing those 
expectations responsibly.
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In order to understand how key 
outcomes differ as a function of 
AI adoption, we need to be able to 
measure AI adoption. 

This year, we designed our 
measure of AI adoption to follow 
some simple rules:

Inclusive: Our measure shouldn’t 
be biased toward any single 
role (or, indeed, systematically 
producing higher or lower 
scores for anything other than AI 
adoption). For example, a software 
developer shouldn’t automatically 
score higher just because they use 
AI for coding. The measure needs 
to capture a general orientation 
toward AI, independent of a 
person’s specific job function or 
anything else besides meaningful 
AI adoption.

Data-informed: As we do every 
year, we let the data go first—even 
if we have strong hypotheses. 
Part of this process includes 
conducting an exploratory 
factor analysis,14 which is less 
constrained by our prior beliefs.

Theory-driven: Our 
conceptualization and 
measurement of AI adoption 
should connect with commonly 
accepted understandings of AI  
use and our qualitative work. 

The analysis found that these 
three survey items are answered 
in a highly similar manner. 

This provides evidence that there 
is a single, underlying construct 
that is causing these three 
variables to move together.

We believe this factor captures 
three conceptually intertwined 
dimensions: a behavioral 
dimension (use), a reliance 
dimension (how deeply AI 
is woven into an individual’s 
workflow), and a critical attitudinal 
dimension (trust). This aligns with 
the literature and our qualitative 
work.15,16,17,18

The result was a factor that 
was composed of three highly 
interrelated variables:

Reliance: In the last three months, 
how much have you relied on AI at 
work?

A feedback loop likely underlies 
this relationship. Trust is a 
prerequisite for use, but use is the 
mechanism for building trust. This 
creates the powerful feedback 
loop: as users begin to trust a 
system enough to use it, their 
increased usage builds further 
reliance and deeper trust, creating 
a cycle of adoption.

Indeed, that cyclical nature makes 
combining these variables a 
perfect candidate for a factor, 
especially given that our survey 
is a snapshot, not a video of a 
dynamic process.19 Adoption is a 
psychological process involving 
attitudes, intentions, and actions.

Measuring AI adoption

Reliance Trust

Reflexive use

Figure 27: Items that make up 
the AI adoption factor

Trust: In the last three months, 
how much did you trust the quality 
of AI-generated output at work?

Reflexive use: In the last three 
months, when you encountered 
a problem to solve or a task to 
complete at work, how frequently 
did you use AI?

AI adoption

Items that  
make up the  
AI adoption 
factor
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Exploring AI’s relationship to key outcomes

With a measure of AI adoption 
established, we can determine 
whether our outcomes differ 
when comparing different levels of 
AI adoption.20 The basic form is:21

When comparing two people 
who share the same traits, 
environment, and processes, the 
person with higher AI adoption 
will, on average, report {number} 
more or less {outcome}.22 

Of course, almost no individual, 
team, or organization is average, 
but exploring these average 
effects can unearth general 
patterns. These patterns can 
further help set the context for 
more nuanced analyses in the 
DORA AI Capabilities Model 
chapter, where we explore 
the conditions under which AI 
adoption is most (and least) 
beneficial. 

Every year we try to select and 
construct outcomes that we think 
represent the goals of people who 
read the report. In short, we want 
to evaluate practices in the terms 
that we think matter to technology 
professionals. Here are the 
outcomes we studied this year:

Connecting this measure to outcomes
Organizational performance

 This is a high-level measure 
of the overall success of 
the organization based on 
characteristics like profitability, 
market share, and customer 
satisfaction.

Software delivery throughput

This represents the speed 
and efficiency of the software 
delivery process. See the 
Understanding your software 
delivery performance chapter 
for more details.

Friction

This measures the extent 
to which friction hinders 
an individual’s work. Lower 
amounts of friction are generally 
considered to be a positive 
outcome.

Team performance

This factor measures the 
perceived effectiveness and 
collaborative strength of an 
individual’s immediate team.

Software delivery instability

This captures the quality and 
reliability of the software 
delivery process. See the 
Understanding your software 
delivery performance chapter 
for more details.

Product performance 

This factor measures the 
success and quality of the 
products or services the 
team is building based on 
characteristics like helping 
users accomplish important 
tasks, keeping information safe, 
and performance metrics like 
latency.

Individual effectiveness

This factor captures an 
individual’s self-assessed 
effectiveness and sense of 
accomplishment at work.

Valuable work

This measures the self-assessed 
amount of time an individual 
spends doing work they feel is 
valuable and worthwhile. 

Burnout

This measures feelings of 
exhaustion and cynicism related 
to one’s work. Lower amounts 
of burnout are generally 
considered to be a positive 
outcome.

Code quality

This captures an individual’s 
assessment of the quality  
of code underlying the  
primary application or service 
they work on.
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The results this year
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Estimated effect of AI adoption on key outcomes, with 89% credible intervals
The landscape of AI’s impact

Figure 28 visualizes the relationships AI adoption has with these outcomes.23

We estimate that between two 
people who share the same traits, 
environment, and processes, the 
person with higher AI adoption will 
report:24

•	 Higher levels of individual 
effectiveness

•	 Higher levels of software 
delivery instability

•	 Higher levels of organizational 
performance

•	 A higher percentage of time 
doing valuable work

•	 Higher levels of code quality25 

•	 Higher levels of product 
performance

•	 Higher levels of software 
delivery throughput

•	 Higher levels of team 
performance

•	 Similar levels of burnout 

•	 Similar levels of friction

The following sections of this 
chapter are going to be attempts 
to make sense of this pattern of 
results by hypothesizing what 
their underlying causes are. 

To construct these hypotheses, 
we’re going to follow the literature, 
our qualitative work, our subject- 
matter experts, and what 
we’ve learned from the DORA 
community. See the Methodology 
chapter for more details.

For outcomes in orange, such as Burnout, a negative effect is desirable. 
Figure 28: The landscape of AI’s impact
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Since last year’s report, several 
outcomes continue to have 
positive associations with AI 
adoption. Let’s list them:

•	 Higher levels of individual 
effectiveness26

•	 Higher levels of code quality

•	 Higher levels of team 
performance

•	 Higher levels of organizational 
performance

These steady, positive 
relationships are becoming a 
familiar story. We treat them  
here as a baseline, not a headline, 
as they are consistent with 
last year’s findings and align 
with what many practitioners 
are experiencing. There are 
likely innumerable underlying 
mechanisms, many of which may 
be specific to your organization, 
team, context, and circumstances.

AI can help individuals by handling 
boilerplate and other rote 
scaffolding, surfacing plausible 
options quickly, providing 
highly problem-specific output, 
summarizing and synthesizing 
large swaths of disparate 
information, and completing 
higher-order tasks like design, 
planning, and analysis. These 
individual lifts may sum and 
compound—small wins multiplied 
across people and cycles—to 
benefit teams and organizations. 

The positive associations 
holding steady since 2024

Several outcomes continue to 
show patterns that suggest a  
less-than-favorable relationship 
with AI:

•	 No relationship with friction

•	 No relationship with burnout 

•	 AI is associated with an increase 
in software delivery instability

We think the stubbornness of 
these effects has more to do 
with the systems, processes, and 
culture an individual is nested 
in. As of now, AI tends to turn 
up at the keyboard, which can 
help explain why code quality 
and productivity benefit, but 
friction, burnout, and instability 
may not. They may reside beyond 
the individual’s purview and be 
tied more directly to how the 
organization is wired. 

We think of these outcomes 
largely as properties and 
consequences of the 
sociotechnical system (combining 
process and culture). Despite 
all the benefits, friction remains 
unaffected, burnout stays flat, and 
delivery instability rises—unless 
the surrounding system and 
culture changes. 

Stubborn results are reminders 
AI is nested in a larger system
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Friction

While a tool designed to automate 
repetitive duties might seem 
like a clear path to a smoother 
workflow, our data indicates that 
workplace friction is a much larger 
and more complex issue than the 
mere completion of rote tasks. As 
we’ve indicated, some research 
points to friction as a product of 
processes beyond the individual.

 In 2019, Microsoft identified 
process issues that get in the way 
of having a good day:27 

•	 Infrastructure issues such as 
“unstable and slow systems and 
tools”

•	 Outdated documentation

•	 Administrative workload

•	 Time pressure

•	 Repetitive tasks

One of their conclusions is that 
managers should “prioritize 
and target actions that improve 
processes and tools.” 

So, even if AI reduced friction 
for individual work (for example, 
writing code), inefficient 
processes could negate that 
benefit, especially if they’re not 
prepared to handle the increased 
volume of changes and the new 
ways people are trying to work. 

For example, an increase in 
change volume without a 
corresponding set of evolved 
guardrails, roles, and “golden 
paths” could increase verification 
and coordination costs.28  
However, we don’t believe the 
story of friction is purely systemic. 

For an individual, friction doesn’t 
vanish so much as move: It shifts 
from manual grind to deciding and 
verifying, possibly in the form of 
prompt iteration, result vetting, 
and assessing code that looks 
remarkably similar to correct 
code.29 This could net out to 
roughly no change in total friction 
despite being able to produce 
more impactful outputs and 
automate certain rote tasks. 

Burnout

While it’s tempting to assume that 
a tool boosting productivity would 
alleviate burnout, our findings 
suggest burnout is stubbornly 
resistant to technological 
solutions. Burnout is likely heavily 
influenced by the work culture one 
is enveloped in.30

We’ve noted this in our own 
data over the years. Burnout 
is intricately connected with 
leadership, priority stability, 
and generative cultures.31 A 
2017 meta-analysis found some 
recurring burnout antecedents: 
low workplace support, a lack of 
workplace justice, low rewards, 
job insecurity.32 Even if AI reduced 
burnout, the effect would likely 
be masked by culture’s weighty 
influence.

Further, some clear signals are 
emerging from our qualitative 
work which are aligned with 
literature on work intensification,33 
suggesting perceived capacity 
gains from AI-assisted 
development tools have invited 
higher expectations of work 
output in some organizations. In 
these cases, even if AI increases 
individual effectiveness, the 
balance between demands and 
resources remains the same.

“We learned that AI is most effective when it augments the skills of talented 
engineers. By automating the tedious, repetitive tasks, AI freed up our 
developers to focus on strategic problem-solving and innovation.”
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“Software development has definitely changed because of AI, and I definitely have felt it since this year. 
Didn’t really feel it last year. But, I think with the recent innovation of MCPs [Model Context Protocol 
servers], and being able to code with the model, I think that’s really changed a lot [in terms of] 
releasing features, and the timeline of features, and how much work can be done in a certain 
duration of time … Stakeholders are expecting more work to be done within [the product] in a quicker 
manner. So deadlines and projects are on a shorter time crunch, and it’s definitely changing the way 
I work. So, that worries me a little, because I think they were given a pretty hard deadline from leadership, 
and by product leadership, in terms of shipping that product.”

Software delivery instability

If 11 years of DORA have taught 
us anything, it’s that the technical 
practices and processes of an 
organization are intimately tied to 
software delivery performance. 
Lacking these foundational 
capabilities can completely 
neutralize any gains from AI. 

For example, a team that has 
adopted AI might still experience 
instability if it hasn’t established a 
strong software delivery pipeline 
and is highly contingent on other 
teams to deliver software. Yet  
our data shows AI adoption 
not only fails to fix instability, 
it is currently associated with 
increasing instability. 

Perhaps these technical 
capabilities are more vital than 
ever, demanding even stricter 
adherence to their principles. 
However, it may be that even 
this is not enough. Maybe the 
evidence points toward a more 
disruptive conclusion: These 
technical capabilities and 
measurements no longer suffice. 
They must evolve for the AI era, be 
replaced, or be supplemented. 

Some might argue that instability 
is an acceptable trade-off for  
the gains in development 
throughput that AI-assisted 
development enables. 

The reasoning is that the volume 
and speed of AI-assisted delivery 
could blunt the detrimental effects 

of instability, perhaps by enabling 
such rapid bug fixes and updates 
that the negative impact on the 
end-user is minimized. 

However, when we look beyond 
pure software delivery metrics, 
this argument does not hold up. 
To assess this claim, we checked 
whether AI adoption weakens 
the harms of instability on our 
outcomes which have been hurt 
historically by instability. 

We found no evidence of such 
a moderating effect. On the 
contrary, instability still has 
significant detrimental effects 
on crucial outcomes like product 
performance and burnout, 
which can ultimately negate any 
perceived gains in throughput.
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We have observed some shifts 
from our 2024 findings:

•	 AI’s relationship with valuable 
time has reversed from negative 
to positive

•	 AI’s relationship with software 
delivery throughput has turned 
from negative to positive

•	 AI’s relationship with product 
performance has shifted from 
neutral to positive

Each of these suggests that 
people, teams, and tools have 
adapted. People have had another 
year to learn how to use AI, 
organizations and teams have had 
another year to reconfigure, and 
AI companies have had another 
year to develop better models and 
experiences.34 

We can start with the tools 
themselves. Across many 
benchmarks, AI tools are getting 
better.35,36,37 Fine-tuning a pre-
trained model on your own 
data used to be a complex 
task requiring deep machine 
learning expertise, but now, 
many platforms have created 
streamlined workflows. 

Cloud providers have also 
developed robust tools that 
allow you to connect your 
private, proprietary data sources 
(like a customer database, 
internal documents, and code 
repositories) to the fine-tuning 
process without exposing that 
data to the public internet or the 
foundation model provider. 

Meanwhile, the ways that 
organizations use AI have 
continued to evolve, which 
might provide AI with some extra 
capabilities and guardrails for 
important tasks like code review, 
test generation, debugging, code 
refactoring, documentation, and 
error resolution. 

Individuals and teams have likely 
started to understand where, 
when, and how AI is most useful. 
For one, people are likely learning 
to offload mundane, tedious, and 
repetitive tasks to AI and spend 
more time on problem-solving, 
design, and creative work. This 
would explain why AI adoption 
starts to predict, in a reversal of 
last year’s finding, a higher share 
of time in valuable work. 

Indeed, if AI is handling some of 
the grunt work underlying coding 
processes (scaffolding, boilerplate, 
routine transformations), 
developers may have more time to 
focus on deploying code, leading 
to increased software delivery 
throughput and ultimately to 
improved product performance.

We could also be observing 
organizational systems adapting 
into more fruitful environments 
for AI, which could empower 
individuals and teams to get 
more out of their AI use, and also 
help their benefits reach teams, 
products, and organizations. 

We explore some potential system 
constraints that might help explain 
this in the DORA AI Capabilities 
Model and The AI mirror chapters.

It’s reasonable to wonder why 
some of these effects were 
impacted by adaptation and 
others were not (for example, 
software delivery instability). 
The survey data doesn’t put us 
in a good position to answer that 
question. It is likely an admixture 
of where people are focusing their 
efforts, the salience of certain 
constraints, and the challenge 
of certain problems. This would 
likely amount to different learning 
curves.

Changes in last year’s patterns 
suggest adaptation
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“If it helps me, or does something 
in 30 minutes that is going to 
take me two hours or more, it’s 
good, because now I have that 
time and I can do something 
else. I can do something 
different. I can just do more. 
And, so, it also helps you, sort 
of, progress faster in your career 
as well. Right? Because you are 
learning new things faster, too.”

Across different levels, AI is 
having a positive impact on most 
outcomes, with some notable 
exceptions: It has no measurable 
relationship with burnout and 
friction, and it continues its 
detrimental relationship with 
software delivery stability.

Comparing some of 2025’s 
findings to last year’s, we get a 
sense that language models, tools, 
and workflows are evolving along 
with the people and organizational 
systems that interact with them. 
People have found ways to use AI 
to redirect their efforts to work 
they consider more valuable, and 
we’re starting to find ways for 
AI adoption to level up to better 
delivery throughput and product 
performance. 

It’s important to note that AI 
hasn’t made everything better 
for technology professionals. 
The stubborn persistence of 
some issues, including the rise 
in instability, the flat levels of 
friction, and burnout, is not 
entirely a failure of the tool, but 
also a failure of the system to 
adapt around it. The persistence 
of these effects suggests not so 
much a failure of AI, but more the 
burden of carrying the weight of 
the organizational systems one is 
nested in—and possibly a failure of 
some of those systems to adapt to 
the new paradigm. 

Conclusion
We believe that the value of AI 
is not going to be unlocked by 
the technology itself, but by 
reimagining the system of work it 
inhabits. We explore this further 
in the DORA AI Capabilities Model 
and The AI mirror chapters. 
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Exploring AI’s relationship to key outcomes

At its core, DORA’s focus is the 
people who develop software. 
The environment under which 
developers work plays a critical 
role in how they experience their 
work lives. AI is poised to change 
this environment as organizations 
reshape their priorities, leaders 
find new ways to innovate, and AI 
becomes increasingly integrated 
into their workflows. AI has the 
potential to shift the kind of work 
developers engage in and the 
problems they work on. 

The sociocognitive impact of AI 
on professional developers

Points are posterior means; lines are 89% credible intervals
Estimated effect of AI adoption score scaled on key outcomes

Figure 29: Estimated effect of AI adoption score scaled on key outcomes

Daniella Villalba, Ph.D.
User Experience Researcher, Google Cloud

History shows that technological 
advancements can lead to 
substantive changes in people’s 
mental models. Before Uber, the 
idea of paying a stranger for a 
ride in their personal car was 
almost unthinkable. Yet today, 
approximately 31 million people 
in the U.S. and Canada use the 
service at least once a month. 

Professional developers are at 
the forefront of this AI-driven 
transformation, and our goal is to 
capture the resulting shifts in their 
experience as they occur. 

We chose to investigate six 
sociocognitive constructs that 
explore how developers view 
themselves in relation to their 
work:

Authentic pride

Meaning of work 

Need for cognition 

Existential connection

Psychological ownership

Skill reprioritization
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Meaningful work 

Meaningful work refers to people’s 
desire for their work lives to 
be spent doing something that 
matters. Research indicates that 
people who derive a sense of 
meaning through their work have 
higher levels of well-being and job 
satisfaction.2 

We wanted to examine whether AI 
adoption impacted professional 
developers’ perception of 
whether the work they do has 
meaning. We hypothesized that AI 
adoption would either (1) increase 
developers’ sense of meaning in 
their work by allowing them to 
automate laborious tasks, and 
increase the amount of time they 
spend doing valuable work; or 
(2) decrease developers’ sense 
of meaning in their work by 
interfering with their ability to 
engage in tasks core to their role. 

Results indicated no impact from 
AI on developers’ perception of 
their work as being more or less 
meaningful. Again, it’s possible 
that we might be too early in this 
transformation to detect these 
changes. 

Need for cognition

The advent of AI provides people 
with a quick and easy way to ease 
their mental load. Some data  
from academic research has 
shown that student developers 
report using AI when they want  
to “turn off their brain.”3 

While there are people who 
deeply enjoy engaging in mental 
activities,4 it’s possible that AI 
might dampen this enjoyment 
by providing effortless access to 
answers. Complex problems can 
now be solved instantly which may 
lead to a decreased enjoyment of 
mental effort for some. 

But our findings indicate that AI 
adoption did not lead to changes 
in developers’ need to engage in 
mental activities. 

Authentic pride

Pride1 is a basic emotion. We 
feel pride when we attribute 
an accomplishment to internal 
and controllable causes—our 
behavior. For example, the pride 
someone might feel after running 
a marathon because they know 
all the training miles it took to 
get there. We feel good about 
ourselves when we gain mastery 
or accomplish a difficult task. 

Why measure feelings of pride in 
the context of AI? Because two 
countervailing hypotheses exist, 
each with important implications. 
People might heavily rely on AI and 
automate their work, leaving little 
room for effortful achievement. 
Or, AI might free up people to 
do work they find valuable and 
take pride in. We found evidence 
to support the latter hypothesis: 
higher AI adoption is associated 
with greater levels of authentic 
pride (see Figure 29). This dataset 
also suggests a clear mechanism: 
higher levels of AI adoption lead 
to more time doing valuable work, 
and people who spend a higher 
percentage of their time doing 
work they perceive as valuable 
report higher feelings of pride. 

These findings show the 
potential downstream benefits 
of developers learning to offload 
mundane tasks to AI. They gain 
control over the most valuable 
asset—their time—and are free to 
engage in projects and ideas that 
matter to them. 
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Existential connection

Existential connection5 is the 
feeling of bridging the gap 
between your own inner world 
and someone else’s. Philosopher 
William James noted that this 
gap makes it hard to truly know 
another person’s experience. 
This concept captures our ability 
to form a deep, human link with 
others, making us feel less alone in 
our perspectives.

We chose to study developers’ 
existential connections because 
the rise of AI could change how 
we interact at work. AI offers 
instant, personalized answers, 
which might reduce the need for 
developers to ask colleagues for 
help. While efficient, this could 
lead to fewer conversations and 
shared problem-solving sessions. 

We wondered if relying more on 
AI and less on each other could 
weaken workplace relationships 
and leave people feeling more 
isolated. Our research, however, 
found no link between AI adoption 
and a developer’s sense of 
existential connection. 

This could mean it’s simply too 
early to see an impact from 
this new technology. It’s also 
possible that for every human 
interaction AI replaces, it creates 
new opportunities for connection 
by helping us share and build 
upon a wider base of collective 
knowledge.

Psychological ownership

Psychological ownership is the 
feeling that something is “yours,” 
even if it doesn’t actually belong 
to you. We can have feelings of 
ownership about tangible objects 
and intangible constructs, such as 
our ideas.6 Many developers feel 
a sense of ownership about the 
code they write, and we wondered 
whether writing code with AI 
assistance weakens the sense of 
personal ownership over that code. 

Our findings indicate with 78% 
certainty that AI adoption is not 
associated with developers feeling 
a diminished sense of personal 
ownership over their work. To put 
it simply, they did not perceive the 
code as being “less theirs” when 
they write with AI assistance. 
This supports the interpretation 
that today’s AI tools function as 
sophisticated assistants rather 
than autonomous agents. 

The code I write is MY code

Most of my coworkers feel
the code they write is theirs

It is hard for me to think
of the code I write as mine

I sense that the code
I write is MY code

I feel a very high degree of personal 
ownership for the code I write

-0.2 0.0 0.2 0.4

Disagreement:agreement average

It
em

XXX

OwnershipOwnership

Figure 30: Ownership

Because the AI is seen as a tool 
to be wielded rather than a 
collaborator who shares credit, 
developers have psychologically 
integrated it into their workflow, 
much like a compiler or a linter. 

However, there is a small (21%) 
but notable probability that AI 
decreases a sense of personal 
ownership (see Figure 30). When 
developers write code without the 
assistance of AI, it’s clear that they 
are doing the writing. For some, 
the injection of AI into their code-
writing process could ambiguate 
the lines between who is doing the 
writing, reducing their perceived 
investment and personal control, 
two key psychological pathways to 
feeling ownership over an object 
or task.
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Skill reprioritization 

As developers increasingly 
partner with AI, there is a growing 
conversation about how this 
collaboration might shift the 
relative importance of different 
skills. We wanted to examine 
whether AI adoption impacted 
which skills developers think are 
more or less important for them  
to do their job. 

We hypothesized that AI-
specific skills and people-centric 
skills might be viewed as more 
important than skills specific to 
code writing. 

We asked participants to rate the 
following eight skills from most 
important to least important. 

1.	 Creating technical 
documentation

2.	 Problem-solving skills 

3.	 Prompt engineering

4.	 Programming language syntax 
memorization 

5.	 Reading and reviewing code 

6.	 Teamwork and collaboration

7.	 Understanding your team’s 
codebase

8.	 Writing code

Not surprisingly, AI adoption 
impacted the perceived 
importance of prompt 
engineering. AI adoption 
also increased the perceived 
importance of programming 
language syntax memorization. 
This finding is interesting and 
worth further study, as one might 
expect syntax memorization to 
be one of the first development-
related skills to be perceived as 
obsolete in the age of AI. 

The most surprising finding is  
that AI adoption did not impact 
the perceived importance of  
any other skill. 

We are not ready to make 
conclusions from this data as there 
are many potential explanations 
for these findings. These results 
could signify that developers 
are in a period of adaptation to 
new AI-powered workflows, or 
they may simply reflect a belief 
that their unique expertise will 
continue to be indispensable. 

Takeaways 

Together, these findings  
indicate that AI adoption has  
not meaningfully impacted  
how developers experience 
their work lives. We will continue 
proactively monitoring this space 
for any shifts. 

In the meantime, we recommend 
for organizations to give 
developers the freedom to double 
down on work they find valuable. 
Continue to create opportunities 
for developers to learn how to 
leverage AI to their advantage so 
they can offload toilsome tasks 
and carve out space in their days 
to spend more time doing work 
that matters. 

To buffer against potential 
decreases in psychological 
ownership, we recommend 
developers view AI as a tool 
created to work for them. Even as 
this technology becomes more 
autonomous, it is important for 
developers to see themselves as 
the ones in the driver’s seat.

47
v. 2025.1



Exploring AI’s relationship to key outcomes

1.	 2025 Stack Overflow Developer Survey. https://survey.stackoverflow.co/2025
2.	 “Atlassian research: AI adoption is rising, but friction persists.” https://www.atlassian.com/blog/developer/developer-experience-report-2025
3.	 “AI Adoption Starts at the Top: 3x more C-suites on LinkedIn are adding AI literacy skills compared to two years ago.”  

https://news.linkedin.com/2025/ai-adoption-starts-at-the-top--3x-more-c-suites-on-linkedin-are-
4.	 “The state of AI: How organizations are rewiring to capture value.”  

https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai
5.	 The 2025 AI Index Report. https://hai.stanford.edu/ai-index/2025-ai-index-report, 247. Sourcing quid 2024.
6.	 Ibid, 228. Sourced from Lightcast data.
7.	 Accelerate State of DevOps 2024. https://dora.dev/dora-report-2024
8.	 “Measuring the Impact of Early-2025 AI on Experienced Open-Source Developer Productivity.”  

https://metr.org/blog/2025-07-10-early-2025-ai-experienced-os-dev-study
9.	 “ChatGPT May Be Eroding Critical Thinking Skills, According to a New MIT Study.” https://time.com/7295195/ai-chatgpt-google-learning-school
10.	 Gerlich, Michael. “AI Tools in Society: Impacts on Cognitive Offloading and the Future of Critical Thinking.” Societies, 2025, 15, no. 1. Article 6. 

https://www.mdpi.com/2075-4698/15/1/6
11.	 “The Impact of Generative AI on Critical Thinking: Self-Reported Reductions in Cognitive Effort and Confidence Effects From a Survey of 

Knowledge Workers.” https://www.microsoft.com/en-us/research/wp-content/uploads/2025/01/lee_2025_ai_critical_thinking_survey.pdf
12.	 Forsgren, Nicole, Margaret-Anne Storey and Chandra Maddila. “The SPACE of Developer Productivity: There’s more to it than you think.”  

https://queue.acm.org/detail.cfm?id=3454124
13.	 “The SPACE of AI: Real-World Lessons on AI’s Impact on Developers.” https://arxiv.org/pdf/2508.00178
14.	 Quantitative Developmental Systems Methodology Core, Penn State. “Intro - Basic Exploratory Factor Analysis.”  

https://quantdev.ssri.psu.edu/tutorials/intro-basic-exploratory-factor-analysis
15.	 Lee, John D., and Katrina A. See. "Trust in automation: Designing for appropriate reliance." Human factors 46, no. 1 (2004): 50-80. 
16.	 Cody-Allen, Erin, and Rajiv Kishore. "An extension of the UTAUT model with e-quality, trust, and satisfaction constructs." In Proceedings of the 2006 

ACM SIGMIS CPR conference on computer personnel research: Forty four years of computer personnel research: achievements, challenges & the 
future, pp. 82-89. 2006.

17.	 Reliance is often considered a behavioral manifestation of trust: “Trust in Automation: Integrating Empirical Evidence on Factors that Influence 
Trust”.

18.	 J. J. Po-An Hsieh and Wei Wang, “Explaining Employees’ Extended Use of Complex Information Systems,” European Journal of Information Systems 
16, no. 3 (2007): 216–27.

19.	 Adoption is dynamic, but given we have a snapshot, we’re treating these highly co-determinant phenomena as unidimensional. If we had panel 
data, we could be more explicit about the cycle.

20.	 Last year, we spoke in terms of “effects”. This year, however, we will speak in terms of comparisons. Although we try to do the work to create the 
conditions to speak causally, we don’t want to give false assurances that we understand the underlying causal structure. Occasionally we will speak 
in causal terms, but ultimately, we’re doing comparisons. This reasoning is summed up in Regression and Other Stories: “Strictly speaking, though, it 
is inappropriate to label these as ‘“effects’” — at least, not without a lot of assumptions … what is observed is an observational pattern … These data 
allow between-people comparisons … The safest interpretation of a regression is as a comparison … regression is a mathematical tool for making 
predictions. Regression coefficients can sometimes be interpreted as effects, but they can always be interpreted as average comparisons.” Vehtari, 
Aki, Andrew Gelman and Jennifer Hill, Regression and Other Stories (Cambridge University Press, 2020), 84-85.

21.	 Following the form suggested in Regression and Other Stories, 85.
22.	 Technically a standardized beta weight.
23.	 Technically, these are standardized beta weights, which equates to the estimated standard deviation difference in the outcome associated with a 

standard deviation increase in AI adoption.
24.	 Our dataset is limited, so they’re not strictly identical, but they’re identical in aspects we consider important to blocking biasing pathways. 
25.	 Bauer, Jared. “Does GitHub Copilot Improve Code Quality? Here’s What the Data Says.” The GitHub Blog. November 18, 2024. Updated February 6, 

2025. https://github.blog/news-insights/research/does-github-copilot-improve-code-quality-heres-what-the-data-says/ 
26.	 This was called “productivity” last year. The measure differs slightly and “individual effectiveness” is a more accurate label.
27.	 Meyer, André N., Earl T. Barr, Christian Bird, and Thomas Zimmermann. “Today was a good day: The daily life of software developers.” IEEE 

Transactions on Software Engineering, 2019, 47, no. 5. (2019): 863–-880.
28.	 Focus time effectiveness of computer assisted protected time for well-being and work engagement of information workers.
29.	 “Ironies of automation.” https://www.sciencedirect.com/science/article/abs/pii/0005109883900468 
30.	 Arnold B. Bakker, Evangelia Demerouti, and Ana I. Sanz-Vergel, “Job Demands–Resources Theory: Ten Years Later,” Annual Review of Organizational 

Psychology and Organizational Behavior 10 (2023): 25–53.
31.	 Accelerate State of DevOps 2024. https://dora.dev/dora-report-2024
32.	 Aronsson, Gunnar, Töres Theorell, Tom Grape, Anne Hammarström, Christer Hogstedt, Ina Marteinsdottir, Ingmar Skoog, Lil Träskman-Bendz, and 

Charlotte Hall. “A systematic review including meta-analysis of work environment and burnout symptoms.” BMC Public Health, 2017, 17, no. 1. 264.
33.	 Work intensification: A systematic review of studies from 1989 to 2022.
34.	 “Technical Performance | The 2025 AI Index Report | Stanford HAI.” https://hai.stanford.edu/ai-index/2025-ai-index-report/technical-performance
35.	 The 2025 AI index Report by Stanford HAI has a lot of benchmark examples from 2023 to 2024. Nature pushes against AI benchmarks:  

https://www.nature.com/articles/d41586-025-02462-5
36.	 “Technical Performance | The 2025 AI Index Report | Stanford HAI.” https://hai.stanford.edu/ai-index/2025-ai-index-report/technical-performance
37.	 The Imarena Overview Leaderboard (https://lmarena.ai/leaderboard) shows newer models at the top.

48
v. 2025.1

https://news.linkedin.com/2025/ai-adoption-starts-at-the-top--3x-more-c-suites-on-linkedin-are-
https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai
https://metr.org/blog/2025-07-10-early-2025-ai-experienced-os-dev-study
http://queue.acm.org/detail.cfm?id=3454124
https://quantdev.ssri.psu.edu/tutorials/intro-basic-exploratory-factor-analysis
https://www.nature.com/articles/d41586-025-02462-5


DORA AI 
Capabilities Model

DORA AI Capabilities Model

Kevin M. Storer, Ph.D. 
User Experience Researcher, Google Cloud

Derek DeBellis
Quantitative User Experience Researcher, 
Google Cloud

Nathen Harvey
DORA Lead, Google Cloud

49
v. 2025.1



To develop this model, we 
hypothesized a wide range of 
capabilities that might contribute 
to better outcomes for AI-assisted 
development teams, based on 
78 in-depth interviews, informed 
opinions from leading subject-
matter experts, and previous 
DORA research. 

Through an extensive debate and 
prioritization process, we selected 
an initial set of 15 candidate 
capabilities to include in this year’s 
survey. Of these, a set of seven 
AI capabilities showed substantial 
evidence of an interaction with 
AI use. That is, when teams 
paired these capabilities with AI 
adoption, the difference AI made 
across important outcomes was 
amplified. 

These seven capabilities form the 
core of our new model:

DORA AI Capabilities Model

AI capabilities

DORA has long strived not just to describe the state of software delivery, but to help 
organizations make data-backed decisions about how to navigate an ever-changing 
landscape of development tools, techniques, and technologies. AI is significantly changing 
software development. While rapid advancements have brought many exciting possibilities, 
they also bring new questions about how software development might evolve to best meet 
this moment. 

So, this year, we went beyond questions of who is adopting AI and how they’re using it, 
to investigate the conditions in which AI-assisted software developers observe the best 
outcomes.

We present these findings as our first DORA AI Capabilities Model. The seven AI capabilities 
in this inaugural model are shown to amplify the benefits of AI adoption. Encompassing both 
technical and cultural aspects of an organization, our research suggests that investing in 
developing these areas can help unlock the potential of AI tools. 

As with the DORA Core Model,1 we will continue validating, revising, and refining the DORA 
AI Capabilities Model with further research. We are eager to share future iterations with the 
DORA Community.

Clear and 
communicated  
AI stance

Working in small 
batches

AI-accessible 
internal data 

Quality internal 
platforms

Healthy data 
ecosystems

User-centric focus

Strong version 
control practices 
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Clear and communicated AI 
stance

A “clear and communicated 
AI stance” refers to the 
comprehensibility and awareness 
of an organization’s official 
position on how its developers 
are expected and permitted to 
use AI-assisted development 
tools. Our measure of a clear 
and communicated AI stance is a 

single factor, comprised of four 
individual indicators, measuring 
respondents’ perceptions of: 

1.	 the extent to which AI use feels 
expected of them at work;

2.	 the extent to which their 
organization supports 
developers experimenting  
with AI; 

3.	 the extent to which it is clear 
which AI tools are permitted  
at work; and

4.	 the extent to which their 
organization’s AI policy directly 
applies to them.

In this way, an organization with 
a clear and communicated AI 
stance is one that encourages and 
expects AI use by its developers, 
supports its developers’ 
experimentation with AI at work, 
and makes explicit which AI tools 
are permitted and the applicability 
of their AI policy for their staff. 

DORA AI Capabilities Model

A clear and communicated AI stance moderates AI’s impact on individual effectiveness

A clear and communicated AI stance determines AI’s impact on organizational performance

Unsubstantiated Small increase Medium increase Large increase

extremely low low average high extremely high

AI policy moderates AI's impact on individual effectiveness

Clear and communicated AI stance

Unsubstantiated Small increase Medium increase

extremely low low average high extremely high

AI Policy determines AI's Impact on organizational performance

Clear and communicated AI stance
Figure 32: A clear and communicated AI stance determines AI’s impact on organizational performanc

Figure 31: A clear and communicated AI stance moderates AI’s impact on individual effectiveness
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With a high degree of certainty, we 
found that AI adoption’s positive 
benefits depend on organizations 
having a clear and communicated 
AI stance, such that, when they do:

1.	 AI’s positive influence on 
individual effectiveness is 
amplified; 

2.	 AI’s positive influence on 
reported organizational 
performance is amplified; and

3.	 AI’s neutral effect on friction is 
made beneficial and shown to 
decrease friction. 

DORA AI Capabilities Model

A clear and communicated AI stance moderates AI’s impact on friction

A clear and communicated AI stance moderates AI’s impact on throughput using AI on a recent workday

Unsubstantiated Small decrease Medium decrease

extremely low low average high extremely high

Clear and communicated AI stance

AI Policy moderates AI's impact on friction

Unsubstantiated Small increase Medium increase

extremely low low average high extremely high

AI Policy moderates AI's impact on throughput

Clear and communicated AI stance

Figure 34: A clear and communicated AI stance moderates AI’s impact on throughput using AI on a recent workday

Figure 33: A clear and communicated AI stance moderates AI’s impact on friction

With a lesser degree of 
certainty, we also found that, 
in the presence of a clear and 
communicated AI stance:

1.	 AI’s positive influence on 
software delivery throughput  
is amplified.
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Throughout the in-depth 
interviews we conducted this 
year, developers routinely and 
consistently expressed a lack 
of clarity and awareness of 
their organization’s stance on AI 
use in software development. 
Importantly, this lack of clarity and 
awareness is likely to manifest in 
the form of 1) developers who are 
acting too conservatively, using 
AI less than they could because 
they are afraid of overstepping 
the organization’s parameters of 
acceptable use; and 2) developers 
who are acting too permissively, 
using AI in ways that they should 
not, which do overstep the 
organization’s parameters of 
acceptable use. 

Neither of these cases is optimal.

For this reason, we have previously 
shared these qualitative insights, 
concluding that organizations 
having a clear and communicated 
stance about the expectations 
and acceptability of AI in software 
development can help foster 
developers’ trust in AI,2 assuage 
developers’ concerns about 
data privacy in cases where they 
are unwarranted or resultant 
from misunderstanding,3 and 
scale adoption of AI-assisted 
development tools across the 
organization.4 

These new survey findings affirm 
our recommendation to invest in 
making an organization’s stance 
on AI-assisted development clear 
and communicated to its software 
developers, and demonstrate 
measurable positive outcomes of 

“Why didn’t [I] explore [AI] 
earlier? Some of it’s maybe the 
stigma of ‘I don’t know how this 
is going to be looked upon by 
the other members of my team 
and management’ … Nobody was 
talking about it. So, I don’t think 
there was any concern about, 
‘man, I’m going to get in trouble 
for this.’ 

But, it was also, ‘I’m not sure how 
encouraged this is going to be, 
and if this is something they’ll 
want us to continue doing.’ So, I 
didn’t want to necessarily do it in 
secret either. We do have an AI 
policy, but it’s more about what 
information we can feed to it in 
terms of client confidentiality. 
Those sorts of things. But I think 
if it were to be encouraged, I 
might use it more for some more 
mundane tasks, too.” 

doing so for each individual, team, 
and organization.

Significantly, this AI capability 
measures the clarity and 
awareness—not the specific 
content—of an organization’s 
stance on AI use in software 
development. This means that 
organizations and teams can make 
their own determinations about 
what AI stance is appropriate for 
them, given their unique needs, 
based on their industry, role, and 
data infrastructure. 

As long as that stance is 
clearly articulated and widely 
communicated to their 
developers, organizations can 
yield greater positive outcomes 
from their adoption of AI in their 
software development processes.
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Healthy data ecosystems

“Healthy data ecosystems” 
refers to the overall quality 
of an organization’s internal 
data systems. In our analysis, 
healthiness of data ecosystems 
is measured as a single 
factor, comprised of three 
individual indicators, measuring 
respondents’ perceptions of: 

1.	 the overall quality of the 
internal data sources;

2.	 the accessibility of internal data 
sources; and 

3.	 the degree to which internal 
data sources are siloed or 
divided from one another. 

In this way, an organization with a 
healthy data ecosystem may be 
understood as an environment in 
which internal data is high-quality, 
easily accessible, and unified.

With a high degree of certainty, 
we found that AI adoption’s 
positive benefits depend on 
organizations having healthy data 
ecosystems, such that, when 
they do, AI’s positive influence 
on organizational performance is 
amplified.

It is often said that AI models 
are only as good as the data 
they train on. 

In this case, it appears that this 
conventional wisdom applies at a 
local, organizational level. 

When organizations invest in 
creating and maintaining high-
quality, accessible, unified data 
ecosystems, they can yield 
even higher benefits for their 
organization’s performance than 
with AI adoption alone. 

Data ecosystem health moderates AI’s impact on organizational performance

Unsubstantiated Small increase Medium increase Large increase

extremely low low average high extremely high

Data ecosystem health

Data ecosystem health moderates AI's impact on organizational performance

Figure 35: Data ecosystem health moderates AI’s impact on organizational performance
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AI-accessible internal data

“AI-accessible internal data” 
refers to the degree to which AI 
tools are connected to internal 
organizational data sources 
and systems. AI-accessible 
internal data is measured as a 
single factor, comprised of four 
individual indicators, measuring 
respondents’: 

1.	 perceptions that AI tools used 
at work have access to internal 
company information; 

2.	 perceptions that responses 
from AI tools used internal 
company information as 
context; 

3.	 frequency of inputting internal 
company information in 
prompts to AI tools; and 

4.	 frequency of using AI tools 
to retrieve internal company 
information. 

In this way, an organization with 
AI-accessible internal data may  
be understood as one where 
workers observe that internal  
data is available to their AI systems 
and use AI tools to access and 
process it.

With a high degree of certainty, we 
found that AI adoption’s positive 
benefits depend on organizations 
having AI-accessible internal data, 
such that, when they do:

1.	 AI’s positive influence on 
individual effectiveness is 
amplified; and

2.	 AI’s positive influence on code 
quality is amplified.

While AI tools trained on a general 
set of knowledge help developers 
feel more effective and produce 
higher-quality code, this finding 
suggests that AI can be even more 
impactful toward those goals 
when given access to internal data 
sources that allow developers 
to provide their AI tools with 
company-specific context. 

This also suggests that 
organizations who invest time 
in connecting their AI tools 
to their internal systems may 
observe better outcomes than 
organizations who rely on the less 
specialized knowledge provided 
by generic foundational models. 

Put differently, maximizing the 
individual-effectiveness and code-
quality benefits of AI may require 
a deeper investment than simply 
procuring AI licenses. In some 
ways, this finding is unsurprising—
if AI can’t access internal company 
data, how useful can it really be?

DORA AI Capabilities Model

AI-accessible internal data moderates AI’s impact on individual effectiveness

Unsubstantiated Small increase Medium increase Large increase

extremely low low average high extremely high

AI-accessible internal data

AI-accessible internal data moderates AI's impact on individual effectiveness

Figure 36: AI-accessible internal data moderates AI’s impact on individual effectiveness
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AI-accessible internal data moderates AI’s impact on code quality

Unsubstantiated Small increase Medium increase Large increase

extremely low low average high extremely high

AI-accessible internal data

AI-accessible internal data moderates AI's impact on code quality

“I don’t think many of my current clients are at a stage where they can actually effectively 
have any AI system … they aren’t even at a stage where they have their data properly 
organized … it’s, like, spread out all across the company, and there is no standard system 
to actually store data, or have it in a standard format. And then, if they want to use AI, 
there is also a bit—actually not a bit, a lot—of data engineering work actually needed to 
bring it in a way which can be actually consumed by the gen AI system. I feel many of the 
companies are not even at that stage where they can actually effectively use that.”

Strong version control 
practices

Strong version control practices 
have long been foundational 
to high-performing software 
development teams. These tools 
provide a systematic way to 
manage changes to code and 
other digital assets over time. 

In the age of generative AI, where 
the volume and velocity of code 
generation are dramatically 
increasing, the importance of 
these practices is amplified. Our 
research indicates a powerful 
synergy between mature 

version control habits and the 
adoption of AI, highlighting that 
these practices are crucial for 
maximizing AI’s benefits while 
mitigating its risks.

With a high degree of certainty, we 
found that AI adoption’s positive 
benefits depend on respondents’ 
frequency of version control 
commits. Specifically, in the 
presence of frequent commits, 
AI’s positive influence on individual 
effectiveness is amplified. 

Additionally, we found that AI 
adoption’s positive benefits 
depend on respondents’ 
frequency of use of their version 
control systems’ “rollback” 
features to undo or revert 

changes. Specifically, in the 
presence of more frequent 
rollbacks, AI’s positive influence on 
team performance is amplified.

A key aspect of mature version 
control is its function as a 
“psychological safety net.” This 
safety net allows development 
teams to experiment and innovate 
with confidence, knowing 
that they can easily revert to a 
stable state if something goes 
wrong. One of the most tangible 
examples of this is the reliance 
on rollback or revert features. The 
ability to undo changes swiftly 
and without fuss is not just a 
convenience; it’s a critical enabler 
of speed and resilience.

Figure 37: AI-accessible internal data moderates AI’s impact on code quality
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Version control commit frequency moderates AI’s impact on individual effect

Ability to rollback moderates AI’s impact on team performance

Medium increase Large increase

extremely low low average high extremely high

Version control commit frequency

Version control commit frequency moderates AI’s impact on individual effect

Unsubstantiated Small increase Medium increase

extremely low low average high extremely high

Rollback capability

Ability to rollback moderates AI's impact on team performance

The rate at which code can 
be produced by AI may help 
developers feel more productive. 
But, as discussed in our chapter 
Exploring AI’s relationship to 
key outcomes, AI use is also 
associated with a higher degree  
of software instability. 

We have hypothesized that this is 
likely, in part, because it is harder 
to review larger batches of code.

So, although rollback reliance does 
not directly reduce instability, 
we suspect that its positive 
effect on team performance for 
AI-assisted teams may relate to 
the importance of being able 
to rapidly undo changes when 
working with larger batches of 
code and the instability that they 
can produce.

Figure 38: Version control commit frequency moderates AI’s impact on individual effect

Figure 39: Ability to rollback moderates AI’s impact on team performance
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Working in small batches

“Working in small batches”6 is a 
long-time DORA Capability, which 
refers to the degree to which 
teams break down their changes 
into manageable units that can 
be quickly tested and evaluated. 
Working in small batches is 
measured as a single factor, 
comprised of three individual 
indicators, measuring: 

1.	 the approximate number 
of lines of code committed 
in the most recent change 
for respondents’ primary 
application or service; 

2.	 the number of changes 
typically combined into a single 
release or deployment; and

3.	 how long it takes a developer to 
complete the work assigned in 
a single task. 

A team that scores more highly in 
terms of working in small batches 
is one that commits fewer lines of 
code per change, fewer changes 
per release, and assigns work that 
can be completed in a shorter 
amount of time.

With a high degree of certainty, 
we found that AI adoption’s 
positive benefits depend on teams 
working in small batches, such 
that, when they do:

1.	 AI’s positive influence on 
product performance is 
amplified; and

2.	 AI’s neutral effect on friction is 
made beneficial and shown to 
decrease friction. 

Conversely, we also found that AI 
adoption’s benefits for individual 
effectiveness are slightly reduced 
in teams that are working in small 
batches.

Although these results are mixed, 
we believe that, overall, they 
point to a net-positive impact 
of working in small batches for 
AI-assisted teams. The observed 
reduction in reported increases 
in individual effectiveness from 
AI use when working in small 
batches supports our underlying 
theory that AI predominantly 
increases perceptions of 
individual effectiveness by helping 
developers to quickly generate a 
large amount of code. 

For teams who prioritize working 
in small batches, it seems natural 
that observed gains in individual 
effectiveness would be somewhat 
less. 

More importantly, we argue that 
individual effectiveness should not 
necessarily be pursued as a goal 
in and of itself. Rather, individual 
effectiveness is a means to realize 
greater organizational, team, 
and product performance, and 
improved developer well-being. 

In this case, working in small 
batches increases reported 
product performance, while also 
decreasing perceived friction for 
AI-assisted teams. We think these 
benefits outweigh any potential 
harm to individual effectiveness 
from working in small batches—
in addition to those benefits of 
working in small batches that have 
been long-proven as part of our 
DORA Core Model.7
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Batch size moderates AI’s impact on individual effectiveness

Batch size moderates AI’s impact on friction

Large increase Medium increase

Small increase

Unsubstantiated

very large large average small very small

Batch size

Batch size moderates AI's impact on individual effectiveness

Unsubstantiated Small decrease Medium decrease

very large large average small very small

Batch size

Batch size moderates AI's impact on friction

Figure 41: Batch size moderates AI’s impact on individual effectiveness

Figure 42: Batch size moderates AI’s impact on friction

Batch size moderates AI’s impact on product performance

Unsubstantiated Small increase Medium increase

very large large average small very small

Batch size

Batch size moderates AI's impact on product performance

Figure 40: Batch size moderates AI’s impact on product performance
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User-centric focus

A “user-centric focus” is also a 
measure that has been included 
in past iterations of our annual 
survey. A user-centric focus refers 
to the degree to which teams 
think about the experiences of 
the end users of their primary 
application or service. 

The extent of a respondent’s user-
centric focus is measured as a 
single factor, comprised of three 
seven-point Likert scale indicators, 
measuring the degree to which 
respondents agree that:

1.	 creating value for users is their 
focus; 

2.	 users’ experience is their top 
priority; and 

3.	 focusing on the user is key to 
the success of the business. 

In this way, a team that has a user-
centric focus is one that prioritizes 
user experience and understands 
its connection to business 
success.

With a high degree of certainty, 
we found that AI adoption’s 
impacts depend on teams having 
a user-centric focus. Specifically, 
when used on teams that adopt 
a user-centric focus, AI’s positive 
influence on reported team 
performance is amplified. 

Importantly, we also found that, 
in the absence of a user-centric 
focus, AI adoption has a negative 
impact on team performance. 

Together, these findings show 
that investing in developing a 
user-centric focus can result 
in important benefits for 
performance on AI-assisted 
teams—and failing to do so can 
be detrimental. Without a user-
centric focus, AI adoption is 
unlikely to help teams. It may even 
harm them.

We have long held that a user-
centric focus can help teams 
to clarify their goals and orient 
toward a shared strategy, where 
user experience serves as a North 
Star. This appears to be especially 
true for AI-assisted development 
teams; they receive an even 
greater benefit from AI when they 
center their users, and experience 
negative impacts from AI adoption 
when they do not. 

These findings suggest that 
organizations that encourage 
AI adoption will benefit from 
incorporating a rich understanding 
of their end users, their goals, and 
their feedback into their product 
roadmaps and strategies. They 
also offer an important warning: 
In the absence of a user-centric 
focus that prioritizes meeting the 
needs of end users, AI adoption 
can hurt your team’s performance.

“100% that’s why I have been here for five years—I feel that I am doing 
something meaningful and helping a regular person. So, even if I’m doing 
it for one person, that’s huge for me. But, here, I’m doing it for many millions 
of users … When there are some bad days, like I’m not in the greatest mood, 
[if] I know whatever I’m doing is for this purpose, then that thought makes my 
day much much better and motivates me to work, basically, that I’m going 
to help 100,000 users this year by just developing this small feature.” 
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“A key ‘a-ha’ moment was realizing that clinicians don’t need more tools—they 
need less noise. The initial assumption was that value would come from giving 
clinicians more advanced capabilities. What we uncovered was the opposite: 
simplicity and invisibility of technology were the real innovations. An AI–human 
hybrid model delivered superior accuracy, empathy, and trust compared to 
standalone automation.”

User-centric focus moderates AI’s impact on team performance

Large decrease
Medium decrease

Small decrease Unsubstantiated Small increase

extremely low low average high extremely high

User-centric focus

User-centric focus moderates AI's impact on team performance

Figure 43: User-centric focus moderates AI’s impact on team performance
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Quality internal platforms

Understanding the benefits of 
quality internal platforms has been 
part of our survey in the past. In 
our survey, “platforms” refer to a 
set of capabilities that is shared 
across multiple applications or 
services, directed at making these 
capabilities widely available across 
the organization. 

The quality of these platforms 
is measured as a single score, 
indicating how many of 12 
characteristics a respondent 
indicates their internal platforms 
have. Please refer to the 
Appendix for a complete list of 
characteristics defining a quality 
internal platform in our survey.

With a high degree of certainty, 
we found that AI adoption’s 
impacts depend on organizations 
having quality internal platforms. 
Specifically, in organizations 

with quality internal platforms, 
AI’s positive influence on 
organizational performance is 
amplified. 

Conversely, we found that AI’s 
neutral effect on respondents’ 
reported experiences of 
friction is made harmful. That is, 
respondents experience more 
friction in organizations with 
quality internal platforms.

Despite these mixed results, 
we believe that, overall, these 
findings point to a net-positive 
impact of quality internal 
platforms for AI-assisted teams. 
While quality internal platforms 
increase individual effectiveness 
by providing a uniform set of 
capabilities on which development 
teams can easily build, the 
standards set by internal platforms 
may also dictate boundaries 
around how development tools 
can be used, for instance, by 
defining internal-only APIs with 
higher security controls than their 
external counterparts. 

In this way, quality internal 
platforms can serve their function 
both by increasing access to 
desired capabilities and by limiting 
access to undesired capabilities. 

Because we have not yet 
arrived at a standardized set 
of best practices for using AI-
assisted development tools, we 
hypothesize that quality internal 
platforms may predominantly have 
the latter effect in this space—
preventing inappropriate use. This 
could explain increases in friction 
for heavy AI adopters, which may 
not necessarily be a negative 
consequence for the organization.

For this reason, and due to 
their benefits for organizational 
performance, we believe 
designing and maintaining  
quality internal development 
platforms is an important 
capability for organizations to 
successfully develop software in 
an AI-assisted environment.

Internal platforms moderate AI’s impact on organization performance

Unsubstantiated Small increase
Medium increase

Large increase

extremely low low average high extremely high

Platform score scaled

Internal platforms moderate AI's impact on organization performance

Figure 44: Internal platforms moderate AI’s impact on organization performance
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Putting the DORA AI Capabilities 
Model into practice

Team Performance

Code Quality

Product Performance

Individual Effectiveness

Friction

Throughput

Organizational Performance

User-centric Focus

Strong Version Control Practices

Working in Small BatchesAI Adoption ×

AI-accessible Internal Data

Clear + Communicated AI Stance

Quality Internal Platform

Healthy Data Ecosystems

Figure 45: DORA AI Capabilities Model

The findings from this chapter 
suggest that successfully 
leveraging AI in software 
development is not as simple as 
just adopting new tools. Rather, 
organizations must cultivate a 
specific technical and cultural 
environment to reap the greatest 
rewards. 
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Here is some practical advice based on the seven DORA AI Capabilities:

1.	 "DORA’s Research Program." https://dora.dev/research
2.	 "Fostering developers’ trust in generative artificial intelligence." https://dora.dev/research/ai/trust-in-ai
3.	 "Concerns beyond the accuracy of AI output." https://dora.dev/research/ai/concerns-beyond-accuracy-of-ai-output
4.	 "Helping developers adopt generative AI: Four practical strategies for organizations." https://dora.dev/research/ai/adopt-gen-ai
5.	 “Working in small batches.” https://dora.dev/capabilities/working-in-small-batches
6.	 "DORA’s Research Program." https://dora.dev/research

Clarify and socialize your AI policies

Ambiguity around AI stifles adoption and creates risk. 
Establish and socialize a clear policy on permitted 
tools and usage to build developer trust. This 
clarity provides the psychological safety needed 
for effective experimentation, reducing friction 
and amplifying AI’s positive impact on individual 
effectiveness and organizational performance.

Treat your data as a strategic asset

The benefits of AI on organizational performance are 
significantly amplified by a healthy data ecosystem. 
Invest in the quality, accessibility, and unification of 
your internal data sources. When your AI tools can 
learn from high-quality internal data, their value to 
your organization increases.

Connect AI to your internal context

Connect your AI tools to your internal systems to 
move beyond generic assistance and unlock boosts 
in individual effectiveness and code quality. This 
means going beyond simply procuring licenses, 
and investing the engineering effort to give your 
AI tools secure access to internal documentation, 
codebases, and other data sources. This provides the 
company-specific context necessary for the tools to 
be maximally effective.

Center users’ needs in product strategy

Individuals can experience large increases in  
their personal effectiveness when they adopt AI. 
But, if their users’ needs aren’t their focus, they 
may be moving quickly in the wrong direction.  
We found that adopting AI-assisted development 
tools can harm teams that don’t have a  
user-centric focus. Conversely, keeping the  
users’ needs as a product’s North Star can guide  
AI-assisted developers toward appropriate  
goals and has an exceptionally strong positive 
effect on the performance of teams using AI.

Embrace and fortify your safety nets

AI-assisted coding can increase the volume and 
velocity of changes, which can also lead to more 
instability. Your version control system is a critical 
safety net. Encourage teams to become highly 
proficient in using rollback and revert features, as this 
practice is associated with better team performance 
in an AI-assisted environment.

Reduce the size of work items

While AI can increase perceptions of individual 
effectiveness by generating large amounts of code, 
our findings show this isn’t necessarily the most 
important metric. Instead, focus on outcomes. 
Enforce the discipline of working in small batches, 
which improves product performance and reduces 
friction for AI-assisted teams. 

Invest in your internal platform

A quality internal platform is a key enabler 
for magnifying the positive effects of AI on 
organizational performance. These platforms provide 
the necessary guardrails and shared capabilities that 
allow AI benefits to scale effectively and securely 
across the organization.
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Our key findings

Our 2024 report began our exploration into the effects of internal platforms on software 
delivery performance.1 We found that platforms have positive impacts on organizational 
performance and productivity. However, the benefits came with a trade-off: an increase in 
software delivery instability and a decrease in throughput. 

This year’s research moves beyond confirming the value of platform engineering to explore 
how successful platforms operate and deliver value. The data reveals that platforms are not 
just a collection of tools, but a holistic experience that directly impacts performance, well-
being, and an organization’s ability to capitalize on transformative technologies. We found 
that users perceive their platform as a single entity; its overall effectiveness matters more 
than the quality of any individual feature in the platform.

This chapter unpacks the key patterns defining the state of platform engineering from 
ubiquitous adoption and team structures to its crucial role as a strategic foundation for 
innovation and risk management. 

Platform adoption is nearly universal: 90%.
High-quality platforms are a force multiplier, 
improving organizational performance, 
productivity, and team well-being.

A platform functions as an engine for 
managing risk, enabling speed and 
experimentation that corresponds to a small 
but credible increase in software delivery 
instability: a manageable tradeoff for higher 
performance overall. 

Dedicated platform teams are the dominant 
organizational model, making up 76%. This 
shifts the leadership challenge from adoption to 
effective governance of a multi-team landscape. 

A platform should be seen as a holistic entity 
that enables a great developer experience. 

A high-quality platform amplifies the effects 
of AI adoption on organizational performance. 
The positive impact of AI on organizational 
performance is strong when platform quality  
is high. 
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Extremely Very much Moderately Slightly Not at all

Percentage of respondents

Perceptions of platform capabilities

Presence of each platform characteristic

0% 25% 50% 75% 100%

Helps me follow required processes

Works as expected

Helps me build and run  
secure applications

Helps me build and run
reliable applications

Provides the tools and info
I need to work independently

User interface (UI) is  
clean and straightforward

Hides underlying infrastructure complexity

Team is responsive to feedback

Is easy to use

Provides clear feedback on my tasks

Automates the tasks I perform

Most organizations now have 
an internal platform, showing 
the conversation has shifted 
from if a platform is needed to 
how should a platform be built. 
Our data shows that 90% of 
organizations have adopted at 
least one platform, with 29% of 
organizations now using a multi-
platform environment. 

Appropriately, 76% of 
organizations have at least 
one dedicated platform team, 
and more than a quarter of 

We asked respondents to rate 
their platforms based on how well 
their platform(s) perform certain 
capabilities. For example, “The 
platform helps me build and run 
secure applications and services.” 

We found an experience gap. Core 
technical capabilities, such as, “the 
platform aids with reliability and 
security,” are perceived as well-
provided, while user experience 
features, including “acting on 
feedback” and “how well tasks are 
automated,” lag slightly behind. 

all respondents (29%) work in 
an organization with multiple 
platform teams. The prevalence 
of multi-platform use and multiple 
dedicated platform teams is 
less a sign of redundant tooling, 
and more a reflection that 
organizations are moving past a 
one-size-fits-all model. Instead 
they are creating federated and 
specialized platforms and teams 
to serve distinct domains and 
technology stacks. 

The challenge for leaders has 
shifted from simply “having 
a platform” to “governing a 
complex platform of platforms.” 
Like applications, platforms 
will benefit from adopting the 
DORA capability of loosely 
coupled teams,2 to help manage 
complexity. Doing so requires 
establishing clear charters 
and interfaces between teams 
to ensure their ecosystem 
collectively improves developer 
experience rather than creating 
new organizational silos. 

Overall experience is what matters

The platform landscape: ubiquitous, 
complex, and team-driven

Perceptions of platform capabilities

Platform engineering

Figure 46: Perceptions of platform capabilities
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A developer’s overall impression of 
the platform, as a helpful partner 
or as a source of friction, heavily 
colors their rating of every specific 
feature. The relatively tight 
grouping of capabilities shows 
that respondents don’t perceive 
the platform as a checklist of 
discrete parts; they experience it 
as a single entity. 

The experience gap likely  
reflects platforms where technical 
foundations are built first. 

This data shows that until  
the user experience is addressed, 
the platform’s full value remains 
unrealized. 

Embracing the mindset of the 
platform as a product, meaning 
you think of your internal 
development tooling as products 
and your developers as your 
customers, helps ensure the user 
remains the focus—a key finding in 
the 2024 report. 

Platform engineering

•	 Build it and they will come: A 
team builds a platform based 
on what they think developers 
need, without doing any 
user research, interviews, or 
validation. They focus entirely on 
the technology and engineering, 
assuming its value will be self-
evident.

•	 Why it fails: The platform 
ends up being a ghost town 
because it doesn’t solve real, 
painful problems for developers 
or it doesn’t fit their existing 
workflows.

•	 A product approach starts 
with developer empathy and 
discovery. The platform team 
continuously engages with 
its users to understand their 
biggest challenges, ensuring 
they build something people 
actually want and will use.

•	 The ticket-ops trap: The 
platform team operates 
like a vending machine for 
infrastructure. They don’t have a 
vision or a roadmap; their work 
is entirely reactive and driven 
by an endless queue of tickets 
from developers (such as, 
“Provision me a database,” “Set 
up a CI/CD pipeline.”)

•	 Why it fails: This creates a 
bottleneck and adds toil for 
both the platform team and the 
developers. The team spends 
all its time on one-off requests, 
and never has capacity to 
build cohesive, self-service 
capabilities.

•	 A product approach focuses on 
building a self-service platform 
with a clear roadmap. The goal 
is to eliminate ticket queues 
by empowering developers to 
provision resources themselves 
through automated, reusable 
tools and golden paths.

•	 The ivory tower platform: 
Here, a central team dictates 
the platform’s architecture and 
tools from on high, enforcing 
rigid standards without 
collaboration or a feedback 
loop. They act as gatekeepers of 
technology rather than enablers 
of developers.

•	 Why it fails: This approach 
can leave developers feeling 
disempowered and often 
create shadow IT or unofficial 
workarounds to bypass the 
platform’s constraints, defeating 
its purpose.

•	 A product manager for the 
platform actively seeks 
feedback and treats developers 
as customers. The platform 
is designed to be enabling, 
not just restrictive, offering 
paved roads that are easy 
and desirable to use, but not 
necessarily mandatory.

User-centricity is how you avoid some of the common pitfalls when building internal 
developer platforms, such as:
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Correlation Matrix of Platform Capabilities
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Correlation matrix of platform capabilities

When considering the capabilities 
and how they relate to each other, 
all capabilities are more or less 
evenly correlated. However, there 
are two capabilities that stand out 
from the others. 

First, the capability most 
correlated with a positive user 
experience is providing clear 
feedback to tasks. 

When the platform provides clear 
feedback when a task succeeds or 
fails, users feel empowered to act, 
troubleshoot, and take the next 
action, instead of having to sift 
through things and figure it out on 
their own. 

Platform engineering

Second, the “UI is straightforward 
and clean” has a lower correlation: 
while having a clean UI might 
improve perceptions, it doesn’t 
necessarily translate to having an 
effective platform.

Even though providing clear 
feedback and UI are tightly 
correlated to other capabilities, 
they are still rated among the 
lowest in terms of perception. 
What this means is that focusing 
on improving a single capability in 
isolation is a flawed strategy. 

To improve the perceived quality 
of the platform, teams must treat 
it as a holistic internal product 
and focus on improving the entire 
developer journey. If a platform 
is technically excellent but not 
user-centric (see the 2024 DORA 
report),3 it cannot be considered a 
success. 

Figure 47: Correlation matrix of platform capabilities

69
v. 2025.1

https://dora.dev/dora-report-2024/
https://dora.dev/dora-report-2024/


Estimated effect of quality internal platforms on key outcomes

A great platform acts as a force 
multiplier, which translates directly 
into better performance and 
productivity. The corresponding 
increase in instability may be 
representative of a healthy 
high-velocity system, where the 
additional instability is acceptable 
as long as it doesn’t impact 
product performance. 

A high-quality platform, as defined 
by our capabilities, has a broad, 
statistically positive impact across 
the board. It’s linked to higher 
organizational performance, 
product performance, and 
productivity. 

Consistent with past research, 
we found that a better platform 
is associated with a small but 
credible increase in software 
delivery instability, meaning a 
higher change failure rate and 
increased rework. 

A force multiplier for performance, 
well-being, and risk

Platform engineering

Burnout

Software delivery throughput

Software delivery instability

Team performance

Code quality

Product performance

Organizational performance

Individual effectiveness

0.0 0.2 0.4
Estimated effect (standardized)

Estimated effect of quality internal platforms on key outcomes

For outcomes in orange (e.g., Burnout), a negative effect is desirable.
89% credible intervals

Note: An increase here is not a desirable outcome

“In general, the idea was to try to do continuous delivery as much as possible, if you 
get it into the main line, ship it out, try to have some tests in, you know, to try to catch 
problems, but just deploy it. And for the most part, that was fine because even if 
something failed during deployment, there were a lot of little things to keep the site 
from going down. So, a deployment might fail, and we might need to go quickly fix that. 
But, the site’s still running.”

The increase in performance 
in spite of the increase in 
stability, suggests a form of risk 
compensation where the platform 
makes it fast and cheap to 
recover from failure and teams are 
empowered to experiment more 
and accept a higher rate of minor 
failures in pursuit of speed. 

The slight increase in instability 
should be seen as a manageable 
trade-off for the significant gains 
in performance that the platform 
enables. The improvements in 
product performance are likely 
more impactful than the modest 
gains in delivery throughput and 
reduction in delivery stability.

Investing in a high-quality platform 
is a powerful strategic lever with 
widespread returns.

For outcomes in orange, such as Burnout, a negative effect is desirable.
89% credible intervals 
Figure 48: Estimated effect of quality internal platforms on key outcomes
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Platform engineering

The positive effect of AI 
adoption on organizational 
performance depends on the 
quality of the internal platform. 
AI adoption has a negligible effect 
on organizational performance 
when platform quality is low, but 
when platform quality is high, the 
effect is strong and positive. This 
is a critical finding for any leader 
investing in AI. 

The strategic imperative: Your 
platform is the key to unlocking AI

Internal platforms moderate AI’s impact on organization performance

Unsubstantiated Small increase
Medium increase

Large increase

extremely low low average high extremely high

Platform score scaled

Internal platforms moderate AI's impact on organization performance

“Wayfair learned that the biggest gains came not just from detecting failures 
faster, but from reducing the effort required to fix them. Embedding AI 
into the CI/CD loop showed that developers engage most with targeted, 
explainable suggestions and auto-generated fixes when these are delivered 
seamlessly in the tools they already use.”

Figure 49: Internal platforms moderate AI’s impact on organization performance
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1.	 Accelerate State of DevOps 2024. https://dora.dev/dora-report-2024
2.	 “Loosely coupled teams.” https://dora.dev/capabilities/loosely-coupled-teams
3.	 Accelerate State of DevOps 2024. https://dora.dev/dora-report-2024

A high-quality platform serves  
two purposes when amplifying  
the impacts of AI on organizational 
performance. First, it acts as the 
distribution and governance layer 
required to scale the benefits  
of AI from individual productivity 
gains to systemic organizational 
improvements. 

Without this foundation, AI 
adoption remains a series of 
disconnected local optimizations. 
The platform provides the 
centralized context and abstracts 
away the difficult or tedious parts 
of making AI usable and effective 
at scale. That said, AI is changing 
at a rapid pace. Be cautious not 

Three imperatives for the platform era
Embrace the holistic 
experience 

You can’t fix a bad platform  
by improving one feature. 

Treat your platform as a whole 
product, focusing on the  
entire developer journey from 
feedback loops to automation. 

Make your platform the 
foundation for AI 

Your platform is the strategic 
prerequisite for unlocking the 
organizational value of AI. 

It is the engine that will turn  
your AI investments into a  
true competitive advantage. 

Use your platform to calibrate 
your risk appetite

A great platform changes your 
organization’s relationship with 
risk by making failure cheap and 
easily reversed. 

Understand and manage the 
trade-off between the velocity 
this enables and the resulting 
instability, recognizing that the 
platform does not eliminate the 
local impacts of that risk.

to overly standardize AI practices, 
tools and methods, as that will 
likely limit the positive impacts and 
ability to adapt as AI changes. 

Second, as the platform serves 
as a risk mitigator when not 
considering AI, its risk mitigation 
effects are similarly useful for 
AI. The platform should be 
used to create a safe space, 
allowing individuals to learn and 
experiment. The safe space for 
experimentation will help the 
platform and platform teams 
to grow and adapt to better 
support new models, interaction 
modes and ways of developing 
applications. 

Additionally, whether code is 
created by hand or by AI, the 
same automated testing and 
deployment processes are 
applied, essentially helping  
to make sure the changes 
introduced into applications 
and services are safe. 

An investment in AI without a 
corresponding investment in 
high-quality platforms is unlikely 
to yield significant returns at 
the organizational level. To truly 
leverage AI for competitive 
advantage, leaders must view 
platform engineering as a 
foundational strategic enabler. 
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Value stream 
management

Value stream management

Rob Edwards
Application Delivery Lead, Google Cloud
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Every organization is under pressure to innovate faster. We’re all adopting AI, automating 
processes, building platforms, and shipping features at a breakneck pace. But are we 
actually getting better? Or are we just getting faster at creating features that don’t deliver 
value, faster at burning out our teams, and faster at introducing complexity? The greatest 
risk today isn’t falling behind, it’s pouring massive investment into chaotic activity that 
doesn’t move the needle.

For over a decade, DORA’s research has been guided by a core belief: The highest-
performing organizations don’t just adopt new tools, they become experts in the system 
of delivering value. They have a proven capability for “getting better at getting better.” They 
can understand their workflow, identify their true constraints, and apply their resources with 
intention and focus.

This year, we’ve confirmed that the capability to elaborate on and manage your value 
stream is what truly separates disorganized activity from focused improvement. In our 2025 
research, we found that teams who focus on understanding their value streams dedicate 
significantly more of their time to valuable work. 

More importantly, we’ve discovered that value stream management (VSM) is the force 
multiplier that turns AI investment into a competitive advantage, ensuring that this powerful 
new technology solves the right problems instead of just creating more chaos.

Value stream management

How to achieve focused 
improvement: The principles 
of value stream management
Value stream management (VSM) 
is the practice of visualizing, 
analyzing, and improving the flow 
of work from idea to customer.  
It is not a heavyweight process, 
but a set of four principles for 
achieving the clarity needed to 
focus on improvements where 
they count most. 

For a detailed, step-by-step guide 
on how to conduct a value stream 
mapping exercise, see the DORA 
Value Stream Management guide.1
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Value stream management

From mental mess  
to shared map

Trying to get your head around 
a complex system is tough. It’s 
a huge mental drain for anyone 
to remember all the intricate 
details, which gets in the way of 
understanding the bigger picture. 

When a team collectively maps 
out a system, it gets all those 
details out of their heads and 
into a shared space. Suddenly, 
the system’s structure—and 
any hidden patterns—become 
obvious. This visibility makes 
it much easier to have a real 
conversation about what’s working 
and what isn’t. At its core, this is 
exactly what VSM is all about.

The practice itself is about charting 
the entire software delivery 
lifecycle, from initial concept all the 
way to the customer. 

This map covers everything: 
product discovery, design, 
development, testing, deployment, 
and operations. Creating this 
shared representation allows 
teams to develop a collective 
understanding of the workflow, 
making it much easier to spot the 
real bottlenecks and inefficiencies 
that hold things up.

Mapping the entire system from 
concept to customer is the goal, 
but you don’t have to tackle it all at 
once. The key is to start where you 
can have the most impact. 

Before diving in, take a high-level 
look at your workflow to identify 
the primary constraint so that you 
don’t optimize part of the process 
that isn’t the real bottleneck. If 
your team’s biggest challenges lie 
in product discovery, for instance, 
that may be a more effective place 
to begin.

Figure 50: An example value stream map showing the flow of a backlog item to production

Still, a powerful and proven 
starting point, one DORA has  
used for years, is the scope from 
code commit to production.  
We start there because this  
part of the process can be  
most readily standardized and 
tuned for efficiency. 

More importantly, it’s the phase 
where teams typically have 
the most agency, so they can 
make immediate, impactful 
improvements. It stands in 
contrast to discovery work,  
where the primary goal is 
optimizing for effectiveness. 

Successfully completing this 
core process creates quick wins, 
building the momentum and 
credibility needed to influence 
the broader system of product 
discovery and customer feedback.
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Value stream management

Focus on flow, not just speed

Once you’ve mapped your value 
stream, the real goal is to get work 
flowing smoothly and predictably. 
Doing so requires a shift from 
focusing on local efficiencies to 
optimizing the system as a whole. 

You should start by measuring 
what matters. Track key metrics 
like lead time, process time, and 
the ratio of value-add to wait time.
These numbers give you data  
on your true constraints and 
provide a clear baseline, so you’ll 
know if your improvements are 
actually working.

This systems-level view is 
crucial for identifying the best 
places to apply new solutions or 
technologies. For example, a team 
may discover, through mapping, 
that code reviews are a significant 
bottleneck. With this insight, 
they can decide to apply AI to 
improve the code review process, 
rather than using AI to simply 
generate more code that will only 
exacerbate the bottleneck. 

The real win is using AI to improve 
the code review process itself, 
clearing the actual blockage  
in the system. That’s what focusing 
on flow is all about: You want  
to solve the whole system’s 
biggest problem, not just speed 
up a single step.

Create a culture of 
continuous improvement

VSM is not a one-time 
exercise, but an ongoing cycle 
of improvement. Revisit the 
value stream map your team 
created regularly and treat it 
as the starting point for every 
improvement discussion. 

It’s essential to foster a culture 
where teams are empowered to 
experiment, learn, and adapt.2 
This means stating clear goals, 
but also providing teams with the 
autonomy to figure out how to 
achieve them. 

They need the freedom to 
experiment, learn, and adapt 
without a fear of reprisals. It’s also 
crucial to encourage teams to 
share what they learn with the rest 
of the organization.

By approaching VSM this way and 
keeping a record of each iterative 
improvement, you create a living 
history of your progress. Over 
time, you can reflect and establish 
a clear story of how each change 
sharpened your ability to deliver 
value to customers.

Build on a foundation of 
technical excellence

A fast, smooth flow is impossible 
without a foundation of technical 
excellence, and that foundation is 
typically a well-designed internal 
platform. By giving developers 
“paved roads” for capabilities 
like testing and delivery, a strong 
platform abstracts complexity and 
makes high-performance work 
scalable. 

The relationship between a 
strong technical foundation and 
organizational performance is 
explored in detail in the Platform 
Engineering chapter.

“Then there’s, kind of, the 
complexity of it like, ‘How 
much work is it going to 
take?’ and like, ‘How long will 
it end up taking?’ ‘How do 
you estimate that?’ It’s always 
uncertain and then there’s, like, 
a lack of control. Are we going 
to be able to make changes 
that we need on the fly and get 
things done? 

Or, are we going to have to  
go through a two- or three-
week process every time 
we want, like, a firewall rule 
change? Something like that. 
There’s just so many different 
ways that [the process] would 
have dragged down our work. 
I think [especially] the more 
senior people were very 
familiar with that from working 
in other big companies.”
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How this appears in our 2025 findings

For years, DORA has advocated 
for using practices like VSM to 
create a fast flow of work.3,4 But 
does that advice still hold up, 
especially with the widespread 
adoption of AI? 

This year, we wanted to validate 
our long-standing hypotheses 
about the benefits of VSM. 
Our findings confirm that 
organizations that embrace the 
principles of VSM see significant, 
measurable benefits.

First, our research confirms  
that VSM practices have a 
direct and powerful impact on 
performance. We found strong 
evidence for the following:

•	 VSM drives team 
performance. Teams that 
consistently review and improve 
their value stream report 
markedly higher performance.

•	 VSM leads to more valuable 
work. These teams spend 
significantly more of their time 
on work that matters to the 
organization and its customers.

•	 VSM improves product 
performance. Ultimately, this 
focus on the value stream 
translates into better product 
outcomes, which is arguably the 
most important result.

This data tells a simple, human 
story: Teams that work together 
to understand their value stream 
spend more time on work that 
matters. When teams share a 
clear understanding of their entire 
value stream, they can focus 
their efforts on what matters 
most, translating that clarity into 
meaningful impact. 

This clarity is the key to unlocking 
new technologies like AI.  
Instead of just throwing tools at 
a problem, it allows teams to be 
strategic. You’re no longer just 
optimizing a small step; you’re 
removing friction from the 
system’s biggest constraint.

This belief led us to formulate  
a key hypothesis for this  
year’s research:

•	 VSM turns AI into an 
organizational advantage: 
We hypothesize that VSM 
moderates the relationship 
between AI adoption and 
organizational performance. 
Teams with mature VSM 
practices can channel the 
productivity gains from AI 
toward solving system-level 
problems, ensuring that 
individual improvements 
translate into broader 
organizational success.  
Without VSM, AI risks creating 
localized efficiencies that 
are simply absorbed by 
downstream bottlenecks, 
delivering no real value to the 
organization as a whole. 
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Value stream mapping

VSM moderates AI’s impact on organisational performance

Medium increase

Value stream management

VSM moderates AI’s impact on organizational performance

This research is not just an 
observation; it is a challenge. The 
first step to escaping the cycle 
of chaotic activity is simple, but 
not easy: Ask your team, “Can we 
draw our software delivery value 
stream on a whiteboard?” 

If the answer is no, or if the 
drawing reveals more questions 
than answers, you have found 
your starting point. That single 
conversation is the beginning of 
getting better at getting better.

Our analysis validates this 
hypothesis. While AI adoption  
on its own shows a modest 
impact, the effect is dramatically 
amplified in organizations with 
strong VSM practices.

This confirms that VSM is a critical 
enabler for getting the most out of 
your AI investments. By ensuring 
that team-level and individual 
productivity gains are focused 
on the most important system-
level constraints, VSM helps 
translate local improvements into 
meaningful organizational impact.

Conclusion

1.	 “How to use value stream mapping to improve software delivery: A guide to value stream mapping.”  
https://dora.dev/guides/value-stream-management

2.	 “How to transform your organization.” https://dora.dev/guides/how-to-transform
3.	 “Visibility of work in the value stream.” https://dora.dev/capabilities/work-visibility-in-value-stream
4.	 “Visual Management.” https://dora.dev/capabilities/visual-management

Figure 51: VSM moderates AI’s impact on organizational performance
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The AI mirror:  
How AI reflects  
and amplifies your 
organization’s true 
capabilities

The AI mirror

Eirini Kalliamvakou, Ph.D.
Office of the CEO Research Advisor, GitHub
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The AI mirror:  
How AI reflects  
and amplifies your 
organization’s true 
capabilities

The AI mirror

Last year’s DORA report found that teams using AI reported 
lower throughput and more instability in their software 
delivery. The unexpected findings sparked a lively debate—
how could a technology built to accelerate work be linked to 
slower, shakier outcomes? 

This year, the picture has shifted a bit. AI adoption has 
now helped throughput tick upward, but instability still 
lingers. That mix of progress and friction has led us to dig 
deeper and look beyond simple binary AI comparisons to 
understand what really determines its impact. 

What we found points to something bigger than tools and 
skills: More than anything, the environment that AI is nested 
in shapes its impact.

Looking beyond the tools 
to drive AI impact

One of the most exciting 
outcomes from this year’s 
research is the DORA AI 
capabilities model. The effect of AI 
use on outcomes like throughput, 
code quality, and team and 
organizational performance was 
consistently amplified by seven 
capabilities:

1.	 A clear and communicated AI 
stance

2.	 A healthy data ecosystem

3.	 AI-accessible internal data

4.	 Strong version control practices

5.	 Working in small batches

6.	 User-centric focus

7.	 A quality internal platform

These systemic conditions reflect 
how an organization structures 
its work, supports its teams, and 
aligns its environment to modern 
development practices. These 
capabilities can help determine 
whether using AI tools translates 
into meaningful results, and 
that makes them amplifiers. The 
fact that they are all team- and 
organization-level reinforces a 
critical shift we need to make in 
how we think about AI’s role in 
software delivery.

We are seeing that AI’s effects  
on performance depend on  
the system in which the work 
takes place. For example, a  
healthy data ecosystem 
integrated with AI tools can 
help create conditions that can 
boost AI benefits from individual 
productivity improvements to 
organizational leaps. Without 
those foundational efforts to 
set up AI users for success, its 
benefits may stall, plateau, or  
stay unevenly distributed.

To take advantage of this insight, 
we should move the spotlight 
from how individuals use AI to how 
organizations design the systems 
around them. 
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The AI mirror

Organizations are systems, not 
sums of individuals
To understand what is needed 
to scale AI impact from 
individual productivity gains to 
organizational-level benefits, we 
need to think about systems. 
Organizations are less like 
collections of individuals and 
tools, and more like networks 
of interdependent parts. Work 
flows through teams, processes, 
policies, infrastructure, and  
shared norms. While individual 
capabilities play a crucial role 
in shaping outcomes, overall 
performance emerges from  
how all these parts interact.

This idea is central to systems 
thinking, a perspective that has 
shaped how high-performing 
organizations evolve. W. Edwards 
Deming,1 one of the founding 
figures of modern quality 
management, argued that most 
performance issues stem not from 
people, but from systems. As he 
famously put it, “A bad system will 
beat a good person every time.”

In a system, improving one 
part does not guarantee better 
outcomes overall. In fact, local 
improvements can be blocked, 
diluted, or even reversed if  
the rest of the system isn’t  
able to adapt. 

This is also the core insight of 
the Theory of Constraints.2 Every 
system has a limiting factor—a 
constraint—that governs how 

much value it can deliver. Focusing 
on anything other than the 
constraint might feel productive, 
but it won’t meaningfully improve 
value flow.

This has implications for AI 
adoption. When developers use 
AI tools and write code faster, the 
code still needs to go through 
testing and review queues, 
followed by integration and 
deployment processes. 

The overall pace of delivery is 
unlikely to change significantly 
unless the surrounding workflows 
are updated for developers’ new 
tools and increased speed. The 
system isn’t designed to carry the 
gains, let alone amplify them. 

We have seen this story before. 
During the shift to cloud, 
companies that simply moved 
infrastructure without rethinking 
architecture and delivery practices 
saw limited returns. 

However, organizations that 
restructured their applications, 
teams, and operations for cloud-
native workflows were able to 
unlock real value. The same was 
true for Agile and DevOps: Both 
delivered on their promises only 
when they were paired with deep 
changes to roles, feedback loops, 
and team boundaries.

New, powerful technologies and 
tools produce corresponding 
transformative results only when 
the system around them evolves.

That’s why AI adoption needs to 
be treated as a transformation 
effort. If the organization wants 
to move faster, experiment more, 
and shift how developers spend 
their time, it will need to revisit 
how work itself flows. 

Are downstream systems—like 
integration, testing, deployment, 
and compliance—flexible and 
responsive enough to harness 
AI’s speed? Are decision-making 
structures keeping up with 
the tempo of work? Are teams 
incentivized to delegate tasks, 
verify AI output at scale, and share 
knowledge in new ways?

Without intentional changes to 
workflows, roles, governance, 
and cultural expectations, AI 
tools are likely to remain isolated 
boosts in an otherwise unchanged 
system—a missed opportunity. To 
scale AI’s impact, organizations 
should invest in redesigning their 
systems. That means identifying 
constraints, streamlining flow, 
and enabling the conditions 
where local acceleration becomes 
organizational momentum. 

What might that transformation 
look like?
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Transformation in two ways: 
Augmenting and evolving

As organizations pursue the 
full value of AI, we can think 
about transformation along 
two complementary paths. One 
focuses on augmenting existing 
systems to remove friction and 
support the velocity introduced by 
AI tools. The other imagines how 
AI opens the door to new ways of 
working altogether.

Augmenting: Preparing 
systems to carry the gains

When developers begin using  
AI tools and experience 
productivity improvements, but 
teams don’t see a corresponding 
boost in throughput or delivery 
speed, the system itself may be 
the limiting factor. 

Code reviews and handoffs: Consider where AI can 
accelerate and clarify existing steps. For example, 
AI-generated first-pass reviews can reveal issues 
quickly and reduce time spent on routine feedback. 
Structuring AI input to highlight risks or summarize 
diffs can also make reviews easier and faster for 
humans.

Integration and deployment pipelines: AI-
generated code moves fast—can your systems keep 
up? Continuous integration and deployment pipelines 
may need to evolve to reduce wait states and 
allow for higher-frequency delivery. Quality checks 
powered by AI can be layered in without adding 
manual gates, improving flow without sacrificing 
assurance.

Security and privacy protocols: With AI now 
participating in development and operations 
workflows, security practices must evolve. This 
includes ensuring secure tool usage, updating 
policies, and introducing AI-aware monitoring 
systems that maintain trust without introducing 
bottlenecks. Automating parts of these processes 
can help teams maintain speed.

Change management and cultural alignment: 
Like any organizational transformation, AI adoption 
needs vision, support, and communication—all traits 
of transformational leadership.5 Leaders should 
articulate the long-term goals of AI transformation—
whether innovation, velocity, or quality—and support 
the transition with training, shared practices, and 
realistic expectations. 

Culture matters, too. Teams need permission to 
experiment, make mistakes, build fluency, and share 
what they learn. Rewarding behaviors like verification, 
delegation, prompt curation, and agent orchestration 
sends the right signals about what success looks like 
in an AI-accelerated environment.

Data infrastructure: The AI capabilities model 
points to the value of investing in updating data 
infrastructure. First, AI’s benefits for productivity and 
code quality are amplified when AI models and tools 
are connected to internal data.3 Think repos, work 
tracking tools, documentation, and even decision 
logs and communication tools. Adding this valuable 
context improves the output of AI tools. Related to 
how critical context is, the second finding was that 
the benefits of AI for organizational performance are 
larger when the data ecosystem is healthy, that is, 
when data is AI-accessible, accurate, and complete.4

Augmentation means identifying 
and resolving those friction points 
so that individual acceleration can 
flow downstream.
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Evolving: Designing for what 
AI makes possible

Beyond augmenting existing 
systems, AI offers a chance 
to design new workflows—
approaches that are native to how 
AI operates.

Emerging trends like Continuous 
AI6 illustrate how AI-native 
workflows can be sustained over 
the long term. Continuous AI treats 
the AI system as a living part of 
the development pipeline and a 
participant in team processes. 

Continuous AI perceives events 
happening in the project context 
on an ongoing basis and, by 
operating autonomously yet 
collaboratively, facilitates team 
interactions and adjusts direction 
along with the team. The key is 
for the AI system or agents to be 
constantly updated with relevant 
context and constantly measured 
for accuracy, usefulness, and cost. 

AI-native delivery pipelines: AI can continuously analyze code for 
bugs, security vulnerabilities, and violations of team standards. It can 
suggest tests and even generate them dynamically. With the right data 
and integrations, AI can also forecast deployment risks and performance 
regressions before they occur.

AI-native data systems: AI can help maintain its own environment 
by organizing, tagging, cleaning, and analyzing data. This enables 
more robust insight generation and faster iteration on data-informed 
decisions. It also surfaces patterns in how teams work, offering new 
levers for operational improvement.

AI-native collaboration models: Emerging practices like agentic 
workflows and swarming are beginning to reshape how humans and 
AI work together. Agentic workflows assign tasks to autonomous AI 
agents, while swarming enables teams and AI to converge dynamically 
on complex problems. Though still early, these patterns hint at new, more 
adaptive modes of collaboration. 

AI-native security: AI can expand the capacity of security teams by 
detecting threats earlier, identifying anomalous behavior, and even 
automating parts of the incident response process. For security teams 
that are often under-resourced, AI’s role can be to ease pressure while 
improving response times.

This keeps AI aligned with 
the organization’s evolving 
architecture, practices, and 
priorities, ensuring that its outputs 
remain relevant and high-quality 
as the environment changes.

In both augmentation and 
evolution, the common thread is 
intention. Deploying AI tools alone 
will not produce transformation, 
but paired with both pragmatic 
and visionary system-level 
changes, adopting AI can be 
a catalyst for reshaping how 
software is built, delivered, and 
secured.

83
v. 2025.1

https://githubnext.com/projects/continuous-ai/
https://githubnext.com/projects/continuous-ai/


The AI mirror

Where to begin: Practical steps 
for AI transformation

The earlier an organization 
begins treating AI adoption as a 
transformation effort, the more 
control it will have over how 
that transformation unfolds. The 
technology is evolving quickly, but 
the real differentiator lies in how 
effectively organizations respond. 
Starting before old processes 
solidify around new tools means 
organizations can shape the future 
of their systems, rather than 
inherit them by default.

A natural first step is to examine 
how work actually flows today. 
In practice, that means creating 
shared visibility into how ideas 
move from inception to delivery. 
This process, commonly known 
as value stream management, can 
help teams visualize each stage 
of delivery, from coding and code 
review to testing, deployment, and 
production. 

When done well, mapping the 
flow of work exposes where 
coordination costs accumulate, 
where delays and rework are 
common, and where the system 
absorbs or stalls acceleration 
introduced by AI tools. It can help 
zoom in on the factors that the 
Theory of Constraints says will 
enable value the most. 
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To get started mapping the flow 
of work, organizations can form 
small, cross-functional working 
groups composed of practitioners 
embedded in daily software 
delivery operations, including 
engineers, product managers, 
data engineers, operations, and 
security. These groups are best 
positioned to map the system 
from the inside and surface 
coordination breakdowns 
and bottlenecks, as well as 
identify where AI could play a 
transformative role.

These efforts are most effective 
when they carry executive 
sponsorship. That endorsement 
signals strategic importance, 
ensures the work is resourced, 
and creates a clear path from 
discovery to action. The mandate 
of these working groups is to 
make strategic recommendations: 
Where should the system adapt to 
accommodate AI? Where can AI 
augment processes or roles? What 
capabilities need to be developed 

to unlock long-term value?

In some cases, an external 
facilitator or advisor can 
help guide the process, offer 
benchmarks, and keep the 
conversation focused on systemic 
opportunities that can unlock 
broader improvements. 

For change to take root, insight 
must come from those inside the 
system. When practitioners drive 
the discovery and leadership 
commits to enabling the 
outcomes, the conditions for 
meaningful transformation start to 
take shape.

Critically, this work must be 
approached with systems 
thinking. As discussed earlier, 
organizations are complex 
systems and improving one node, 
like accelerating code generation, 
will not improve performance 
unless the adjacent components 
evolve in parallel. The DORA 
AI Capabilities Model provides 

insight into what organization-
level interventions will amplify AI 
benefits.

For example, a working group 
might discover that while AI tools 
are capable of providing valuable 
suggestions, they frequently 
generate responses that miss 
critical context, such as team 
conventions, architectural history, 
or past incidents. 

That’s probably unsurprising for 
many organizations, since such 
information is often buried in 
disparate systems and informal 
knowledge channels. 

In response, the group might 
recommend exposing internal 
documentation, decision records, 
and historical tickets to AI models 
in a structured, secure way. They 
could propose building workflows 
that automatically tag and surface 
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“Cultural transformation is just as critical as tooling. Success required not 
only introducing automation and metrics, but also aligning teams around 
shared goals and ownership.”

this context during development 
or review, reducing the time 
developers spend searching and 
improving the quality of AI output. 

Alternatively, the working group 
might explore how AI could 
be used to identify outdated 
documentation, summarize long 
project discussions, and detect 
inconsistencies between what 
systems are doing and what 
documentation claims they do.

Doing so can help turn fragmented 
knowledge into a structured, 
actionable asset.

Beyond process changes, these 
working groups can also surface 
the need for new skills and roles. 
As developers delegate more work 
to AI tools, tasks like verification, 
orchestration, and workflow 
design become more central. 

Organizations will need to define 
what those roles look like, how 
to support them, and how to 
align incentives accordingly. 

This includes providing targeted 
training beyond tools on how 
AI can change the nature of 
development work.

None of these changes happen 
automatically, or all at once. They 
require intention, ownership, and 
sustained support. However, what 
they don’t require is perfection 
from the outset. 

When organizations start small, 
invest with purpose, and create 
shared accountability across roles, 
they can build momentum. Step 
by step, capability by capability, 
transformation takes root.
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AI as mirror and multiplier
AI has the potential to reshape 
how software is built, but it does 
not change organizational systems 
on its own. What it does do, often 
very quickly, is reflect how those 
systems actually operate.

In well-aligned organizations, 
AI amplifies flow. In fragmented 
ones, it exposes pain points. 
Teams that have strong practices, 
flexible workflows, and shared 
context often see immediate 
benefits. 

Teams that rely on brittle 
processes and implicit knowledge 
may find those gaps more visible 
than ever.

This is why AI functions both 
as a mirror and a multiplier. It 
shines a light on what’s working, 
accelerating what’s already in 
motion, but it also surfaces what 
needs to change. 

For organizations ready to look, 
the reflection AI offers becomes 
a roadmap. As we have seen with 
other transformations in the past, 
organizations willing to treat AI 
adoption as an opportunity to 
evolve how work gets done will 
be the ones that benefit most—
both from the tools, and from 
the transformation they make 
possible.

1.	 The W. Edwards Deming Institute. https://deming.org
2.	 “Theory of constraints.” https://en.wikipedia.org/wiki/Theory_of_constraints
3.	 DORA AI Capabilities Model
4.	 Ibid.
5.	 “Transformational leadership.” https://dora.dev/capabilities/transformational-leadership
6.	 “Continuous AI.” https://githubnext.com/projects/continuous-ai
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AI: A skill development 
threat—and opportunity

When it comes to skill development, software is 
similar to other occupations. Expertise should 
flow from senior staff to juniors, and ideally fresh 
perspectives and skills should bubble up. 

Senior developers do more than review pull requests; 
they teach juniors how to think architecturally. Pair 
programming isn’t just about catching bugs; it’s 
about transmitting tacit knowledge that’s hard to 
document. At its best, the three-generation model—
junior, mid-level, senior—helps developers gain skills 
from joint problem-solving, not formal training.

We need to investigate the effects of AI deployment 
on this taken-for-granted process. I have spent 
my career studying intelligent automation and skill, 
and have shown across more than 31 occupations 
that default use of intelligent automation changes 
traditional apprenticeship models, leaving fewer 
opportunities for novices to engage in the hands-on 
work essential for their development.

Experts can self-serve, so they do. A few juniors 
manage to learn despite this participation barrier, 
but most struggle. I’ve studied nothing but AI use in 
complex task performance since 2023, most recently 
in software engineering, and this pattern is likewise 
evident in my early findings.

But there are interesting exceptions, and far more 
understanding is needed. Like other groundbreaking 
technologies in the past, from the printing press 

and personal computer to the Internet, AI is being 
developed and deployed at unprecedented speed. 
And we don’t know how human capabilities will adapt 
to these changes. 

Instead, many are focused on measuring AI-related 
productivity. We track adoption rates, lines of code 
generated, pull requests merged. Not metrics 
indicative of skill development like linguistic or 
stylistic diversity over time.

The best organizations will jointly optimize  
for productivity and skills development  
among their employees. In fact, in some of my 
research, great productivity was only achieved 
by insisting on simultaneous skill development. 
Measuring and driving for both is the path to 
sustainable performance.

AI is an integral part of the future of software 
development—and that includes skill development. 
For example, we can use AI to parse developer–AI 
interactions, link this to version control interactions, 
and then to skill and key work outcomes. 

That wasn’t cost-effective before, but API costs 
for labeling are falling rapidly. With AI we can get 
the insight we need to refactor the work and offer 
guidance to developers on how they can keep their 
learning edge—and help others do the same. 

Default AI usage patterns are delivering 
breakthrough productivity and blocking skill 
development for most devs. To keep our innovative 
edge—both individually and collectively—we need 
to use AI itself to measure skill development and 
productivity simultaneously. 

The AI mirror
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Measuring software development 
can help drive impactful change. 
However, it’s a complex task, and 
getting started can be daunting as 
it involves understanding what you 
should measure, and determining 
what you can measure. 

The most important part is 
that you want to drive change 
in your organization through 
measurement. To do so, we 
recommend that you use 
frameworks to guide your 
measurement strategy. 

A framework breaks down a broad 
topic (for example, developer 
experience) into distinct concepts 
that can be measured (such as 
speed or satisfaction). 

When industry and academia 
talk about measuring aspects 
of software development, they 
often reference frameworks 
such as SPACE,1 DevEx,2 HEART,3 
and DORA’s software delivery 
metrics.4 Choosing a framework 
to measure software development 
can be a difficult and confusing 
step, but it doesn’t have to be.

Choosing measurement frameworks 
to fit your organizational goals

The first step is to define what 
goals and decisions measurement 
will inform, because frameworks 
differ in their overarching goals. 
For example, common frameworks 
in software development 
focus on measuring developer 
experience, product excellence, 
and organizational effectiveness. 
Each of these overarching 
goals take a slightly different 
lens to understanding software 
development (see Figure 52). 

Metrics frameworks

Figure 52: Types of frameworks typically applied to measuring software development

Types of frameworks typically applied to measuring software development
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To determine which framework is 
the best fit for your organization’s 
goals, it can be helpful to think 
of frameworks as the “why” 
behind measurement. They help 
you define why you’re trying to 
measure and guide the actions 
you take based on your findings. 

Frameworks provide a lens 
through which to view your 
data, ensuring your efforts are 
aligned with your organizational 
goals. To decide on a framework, 
you can consider: Why now? 
Did something change that is 
motivating a desire to measure? 
How will you act on your 
insights? Are there decisions or 
improvements you can enable 
with measurement? 

Now, the “what” you’ll measure 
is the actual metrics, the key 
concepts that contribute to the 
overarching framework, such as 
a velocity or adoption metric. 
Generally, there are two different 
approaches to data collection you 
can take. This is the “how” of your 
data collection which will help you 
arrive at your metrics. 

Self-reported data involves 
collecting information directly 
from developers about their 
experiences. This can be achieved 
through approaches such as:

•	 Surveys use questions to gather 
opinions, satisfaction levels, and 
perceptions on various aspects 
of work.

•	 Interviews and focus groups 
use one-on-one and group 
discussions to go deeper into 
specific experiences and topics.

•	 Diary studies collect in situ  
data about activities, thoughts, 
and experiences.

The strength of self-reported data 
is in its ability to capture subjective 
experiences and concepts that 
are difficult to quantify through 
automated means, such as 
satisfaction, well-being, or 
perceived effectiveness. A key 
advantage of self-reported data 
is that it doesn’t typically require 
extensive instrumentation or deep 
observability into developers’ 
toolchains. 

However, self-reported data does 
present challenges in terms of 
standardization, comparability 
across teams, and scalability 
for large organizations. Its 
inherent subjectivity means that 
interpretations can vary, and it 
may be more susceptible to biases 
(including recall bias and social 
desirability bias).

Logs-based measures are 
collected automatically from the 
tools and systems developers use. 
These can include metric types 
such as:

•	 Quantity, to count specific 
artifacts. For example, the 
number of commits or number 
of users.

•	 Time-based, to record how 
much time is spent on a given 
activity. For example, the time 
spent coding or reviewing. 

•	 Frequency, measuring the 
rate over a specific window 
of time. For example, monthly 
deployments, or weekly  
PRs per developer.

The primary benefit of logs-based 
measures is their ability to provide 
continuously measured and 
standardized data at scale. They 
offer a detailed view of activities 
and outputs. 

However, they require sufficient 
observability into the developer 
toolchain, meaning the necessary 
integrations and data collection 
mechanisms must be in place, 
which can create a higher barrier 
to entry. 

It is also a common misconception 
that logs-based metrics are 
objective. Instrumentation 
approaches vary, errors can create 
inaccuracies, and interpretation is 
subject to bias.

A framework will provide you 
with the concepts you want to 
measure, but ultimately what 
you implement depends on your 
resourcing, and what data you 
have access to. Do you have 
the visibility into your toolchain 
for logs-based approaches, 
or a research team to enable 
self-reported data collection? 
It’s important to recognize that 
not all organizations have the 
same resourcing and ability to 
implement metrics in the ways 
that might be recommended by a 
particular framework. 
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Even with organizational 
limitations, frameworks are a 
guide, a lens to help you better 
understand complex behavior—
but they can not fully capture it. 
They’re intended to get you closer 
to the truth, but you shouldn’t 
expect to measure everything. 

When considering how 
frameworks and metrics relate, 
it’s helpful to think of metrics as 
ingredients, and frameworks as 
the recipe that is made with the 
ingredients. Some core ingredients 
can be rearranged in different 
ways to make different recipes 
(the frameworks), while others are 
unique to a specific recipe.

 The meals will all taste different 
but some of the underlying 
ingredients are shared, and in 
many cases you don’t need to 
have all of the ingredients to make 
a meal that tastes good. 

While frameworks differ because 
they are intended to drive 
different outcomes, some of their 
underlying metrics overlap. The 
diagram below illustrates some 
of the metrics that comprise 
frameworks and how they often 
overlap. For example, productivity 
metrics (such as code commits or 
pull requests) may be measured 
by all three frameworks. 

An organization might use these 
metrics to gauge the impact of a 
new team structure (organizational 
effectiveness), evaluate the 
effectiveness of a developer 
tool (product excellence), and 
understand developer workload 
(developer experience). 

In contrast, some metrics are 
more specialized. Developer well-
being, often a key component of 
developer experience frameworks, 
is not typically a primary metric 
within organizational effectiveness 
or product excellence frameworks.

Choosing to use a single 
framework can help provide focus 
to the actions you take, and it is a 
good way to start. However, you’re 
not limited to one framework. 

As goals and abilities to 
measure change, using multiple 
frameworks can help create 
complementary analytical results,5 
resulting in a stronger whole than 
its parts. What matters is that 
you’re measuring as a way to hold 
yourself and your organization 
accountable to your goals, and 
that you are positioned to act on 
what you measure. 

Figure 53: Examples of metrics that apply to different frameworks

Metrics frameworks

Examples of metrics that apply to different frameworks
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You might be wondering, does 
the introduction of AI into 
development workflows change 
everything? Do the same 
frameworks apply or do we need 
new frameworks? When there is 
a technological disruption, it may 
seem necessary to completely 
overhaul your metrics collection 
strategy. We recommend careful 
consideration of what actually 
needs to be changed, especially 
when considering the impact of AI. 

Adapting your goals to better 
understand how AI is impacting 
developer experience may 
require updating only a few 
metrics, allowing you to retain 
consistent measures overall. 
Instead of throwing out the 
entire framework, you can 
use existing measures as a 
baseline to help identify how 
a paradigm shift is changing 
the developer experience. For 
example, you may need to add 
metrics on the acceptance 
rates of AI suggestions, model 
quality, or trust, while keeping 
existing measures of developer 
experience, such as perceived 
productivity and time spent 
reviewing code. 

As we see more substantial 
advances in AI, who is doing 
development tasks—and what 
those are—will change. So, 
measurement may have to adapt 
to include different user profiles 
and capture changing workflows, 
but the core goals behind why 
you are measuring developer 
experience likely haven’t changed. 
The point here is that if your 
overarching goal is the same, 
you don’t need to change your 
framework; you can expand 
your measurements to adapt to 
changes in technology. 

Even if your goals do change, 
it does not necessarily result in 
starting a measurement program 
from scratch. Since metrics 
can contribute to different 
frameworks, you often can react 
quickly and rearrange the metrics 
in the service of new or additional 
frameworks. For example, 
understanding the impact of AI-
powered developer tools on the 
code that is being produced is 
likely a new goal that organizations 
have not faced before. This is 
particularly challenging because 
we are trying to measure 
something as it is changing. 

A common question organizations 
are facing is the impact of AI on 
code quality.6 As we see AI used to 
increase developer velocity, there 
is a particular concern that we are 
compromising quality for speed. 
These increases in developer 
velocity in the short term can 
seem positive; however, they may 
have negative impacts on velocity 
in the long term if quality is low. 

To address these concerns, your 
goal might be to ensure the 
code quality at your organization 
remains high while you drive 
adoption of AI-powered tooling. 
This goal involves aspects from 
each of the types of frameworks 
discussed and likely includes 
metrics you are already capturing 
(such as code quality, tool 
adoption, or perceived velocity). 

So, you can continue to use your 
existing metrics while introducing 
new ones. For example, combining 
DORA’s software delivery metrics 
with a product excellence 
framework such as HEART. can be 
an effective way to understand 
how developers are experiencing 
new AI-powered tools and the 
impact on software delivery.7

Applying measurement frameworks 
in the age of AI
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Measuring software development 
is a complex and ongoing 
process. While many frameworks 
and measurement approaches 
are available, you must be 
positioned to act on what you 
measure. A critical aspect of 
ensuring effective action can 
be taken is aligning with your 
organization’s goals and getting 
leadership sponsorship for your 
measurement efforts. 

Being intentional about the 
framework and measurements 
you choose can help set you up 
for long-term success. In the spirit 
of adopting a framework to meet 
a specific goal, you can consider 
how you might act on this 
information following the PDCA 
framework:

•	 Plan: figure out your goals, 
choose a framework, and get 
leadership support

•	 Do: get some baseline 
measures, do something 
differently

•	 Check: measure again to see 
how you’re progressing towards 
your goals

•	 Adjust: use your findings to 
change the approach moving 
forward

We are not here to recommend 
one framework over others. 
Determining the appropriate 
framework based on your goals 
can help guide what you measure 
and how you take action. Choose 
the framework that resonates with 
your organization. If it speaks to 
you and spurs your organization 
into action, it’s the right framework 
for right now. 

While the frameworks provide a 
guiding structure, many of the 
underlying measures are the 
same. This means that measures 
you implement today can often be 
adapted and utilized as your needs 
and goals evolve, or change.

Metrics frameworks

1.	 “The SPACE of Developer Productivity: There’s more to it than you think.” https://queue.acm.org/detail.cfm?id=3454124
2.	 “DevEx: What Actually Drives Productivity: The developer-centric approach to measuring and improving productivity.”  

https://queue.acm.org/detail.cfm?id=3595878
3.	 “Measuring the User Experience on a Large Scale: User-Centered Metrics for Web Applications.”  

https://research.google/pubs/measuring-the-user-experience-on-a-large-scale-user-centered-metrics-for-web-applications
4.	 “DORA’s software delivery metrics: the four keys.” https://dora.dev/guides/dora-metrics-four-keys
5.	 “Unlocking product success by combining DORA and H.E.A.R.T.”  

https://cloud.google.com/transform/unlocking-product-success-by-combining-dora-and-heart
6.	 “Measuring AI code assistants and agents.” https://getdx.com/research/measuring-ai-code-assistants-and-agents
7.	 “Unlocking product success by combining DORA and H.E.A.R.T.”  

https://cloud.google.com/transform/unlocking-product-success-by-combining-dora-and-heart
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Final thoughts:  
From insight to action

Final thoughts

This year, we introduced the 
inaugural DORA AI Capabilities 
Model, a significant evolution of 
our research. As organizations 
navigate the complexities of AI 
adoption, this model provides a 
data-backed framework to guide 
their journey. It highlights seven 
critical capabilities that, when 
cultivated, amplify the positive 
impacts of AI on important 
organizational outcomes.

These capabilities are:

•	 A clear and communicated AI 
stance

•	 Healthy data ecosystems

•	 AI-accessible internal data

•	 Strong version control practices

For over a decade, DORA has been a trusted partner in the software 
development community, providing research and insights to help 
teams improve. As the industry rapidly evolves with the adoption of 
new technologies like AI and platform engineering, our commitment 
remains the same: to investigate and share the practices that foster 
high-performing teams.

•	 Working in small batches

•	 A user-centric focus

•	 Quality internal platforms

This model is our first iteration, 
and we consider it a starting 
point for an ongoing conversation 
with the DORA community and 
organizations embracing AI-
assisted software development. 
We are eager to learn from your 
experiences as you apply these 
insights and look forward to 
validating and refining the model 
in our future research.

This year’s research reveals a 
critical insight: We’re still in the 
nascent stages of AI-assisted 
software development, a 
period of rapid technological 
and practical evolution where 
early standardization would 
be premature. Our findings 
show that simply deploying 
AI tools is not a panacea for 
transformation. In fact, AI’s impact 
on team performance is strikingly 
dependent on a crucial factor: a 
user-centric focus.

We found with a high degree 
of certainty that when teams 
adopt a user-centric focus, 
the positive influence of AI on 
their performance is amplified. 
Conversely, in the absence of a 
user-centric focus, AI adoption 
can have a negative impact on 
team performance. 

This finding underscores a vital 
message for all organizations: 
Investing in and cultivating a 
deep understanding of your end 
users is not just beneficial, it’s 
a prerequisite for success with 
AI. Without a user at the center 
of your strategy, AI adoption is 
unlikely to help, and may even 
hinder, your team’s performance.

DORA AI Capabilities 
Model

Focus on 
the user

Nathen Harvey
DORA Lead, Google Cloud
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Final thoughts

The findings in this year’s report 
are complex, and at times may 
even appear contradictory. This 
reflects the reality of a field in flux. 
We encourage you to treat our 
findings not as rigid prescriptions, 
but as hypotheses for your own 
experiments.

Here are some ways you can put 
this research into practice:

•	 Run experiments in your 
organization: Use DORA’s 
findings to formulate 
hypotheses and test them on 
your teams. This will allow you to 
learn more about your specific 
operational context and identify 
the most impactful areas for 
improvement.

Thank you for engaging with 
our research. We invite you to 
continue the journey with us. 
Share your experiences, learn from 
your peers, and find inspiration by 
joining the DORA community at 
https://dora.community.

•	 Conduct internal surveys: Take 
inspiration from the questions 
used in this year’s survey1 to 
design your own. Tailor them 
with more nuanced questions 
that are directly relevant to your 
teams and projects.

•	 Embrace the holistic 
experience: Remember that 
improving a single feature won’t 
fix a flawed platform. Treat your 
internal platforms as products, 
focusing on the entire developer 
journey from feedback loops to 
automation.

•	 Share what you learn: As you 
conduct your own experiments 
and gather insights, disseminate 
that knowledge throughout 
your organization. This can be 
through formal reports, informal 
communities of practice, or 
casual conversations. The goal is 
to foster a culture of continuous 
learning.

The greatest risk in this evolving 
landscape isn’t falling behind, 
but rather investing heavily in 
chaotic activity that fails to deliver 
meaningful results. Choose the 
frameworks and approaches that 
resonate with your organization 
and spur you to action.

Putting research into practice: Your 
turn to experiment

Join the conversation

1.	 “DORA Research: 2025 Survey questions.” https://dora.dev/research/2024/questions
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Demographics and 
firmographics

The DORA research program has been researching the 
capabilities, practices, and measures of high-performing, 
technology-driven organizations for over a decade. In 
that time, we’ve heard from roughly 45,000 professionals 
working in organizations of every size and across many 
different industries. 

This year, nearly 5,000 working professionals from a variety 
of industries around the world shared their experiences 
to help grow our understanding of how AI is changing the 
field of software development and the conditions in which 
organizations can continue to thrive in this new paradigm. 
In this chapter, we share a bit more about our respondents, 
their identities, their geographies, and their role in software 
development. 

We thank each of you for sharing your insights with us! 

Survey respondent 
demographics

This year, a total of 4,867 
respondents answered our 
survey,1 across a range of 
demographics, locations, and 
industries.
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Individual

Distribution of respondents age

Distribution of respondents gender

Age

We asked respondents their 
age, as an open-text response. 
Our sample had a median age 
of 41.

Gender

We asked survey respondents 
to report their gender. 62.8% of 
respondents identified as men, 
19.2% as women, 1.1% identified 
as non-binary, 0.5% chose to 
self-describe, and 2.1% declined 
to answer.

Demographics and firmographics
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Figure 54: Distribution of respondents age

Figure 55: Distribution of respondents gender
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Distribution of self-reported disabilities

Distribution of respondents role

Disability

We identified disability along six 
dimensions that follow guidance 
from the Washington Group 
Short Set.2 This is the sixth year 
we have asked about disability. 

Roles

We include a large number of 
roles in our survey to capture 
the numerous ways that 
someone might be involved 
in software development. 
The most highly represented 
roles in our data are full-stack 
developers, engineering 
managers, and back-end 
developers. 

Demographics and firmographics
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Figure 56: Distribution of self-reported disabilities

Figure 57: Distribution of respondents role
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Distribution of respondents role experience

Distribution of respondents team tenure

Role experience

We asked survey respondents 
to report their years of 
experience in their role or 
similar positions. Respondents 
had a median of six years of 
experience working in their role.

Team experience

We asked survey respondents 
to report their years of 
experience in their current team. 
Respondents had a median 
of three years of experience 
working on their team.
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Distribution of time spent in office

Programming language usage

Where they work

We asked respondents 
approximately what percentage 
of their last five days were spent 
working in an office. Despite 
broader initiatives to return 
workers to physical office 
spaces, 800 of our respondents 
worked their most recent five 
days fully remotely. The median 
time spent in an office over 
the last five days was 50%, 
suggesting a hybrid model is 
most common.

Coding language

We asked respondents which 
programming languages 
they used most frequently at 
work, supporting up to three 
top choices. Almost half of 
respondents are using Python  
at work, while about one-third 
are using each of JavaScript  
and SQL.
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Figure 60: Distribution of time spent in office

Figure 61: Programming language usage
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Distribution of respondent industries

Distribution of organization sizes

Industry

We asked survey respondents 
to identify the industry sector 
in which their organization 
primarily operates, across 12 
categories. Excluding “Other” 
responses, the most common 
sectors in which respondents 
worked were Technology, 
Financial Services, and Retail/
Consumer/E-commerce. This 
matched our top three 2024 
industry demographics.

Size

We asked survey respondents 
to identify the number of 
employees at their organization, 
using nine buckets. The 
organizations in which 
respondents worked most 
commonly had 10,001 or more 
employees (22.4%), 51 to 200 
employees (16.2%), and 1,001 to 
5,000 employees (14.5%).

Organization
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Figure 62: Distribution of respondents industries

Figure 63: Distribution of organization sizes
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Active integration of AI into end-user service

Impact of primary service unavailablity

AI-infused services and 
applications 

We asked respondents to 
indicate whether they agreed 
that their application or service 
was actively adding AI-powered 
experiences across the last 
three months. A roughly equal 
number of respondents agreed 
and disagreed, with more than 
a quarter strongly disagreeing 
that their application was 
adding AI-powered experiences 
in this timeline.

Application criticality 

We asked respondents to 
indicate the criticality of their 
application to their employer 
by indicating what level of 
impact the unavailability of 
that application would have 
for the organization’s ability 
to achieve its goals and serve 
its customers. More than half 
of our respondents felt the 
unavailability of their application 
would have “a great deal” of 
impact on the company.

Service
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Figure 64: Active integration of AI into end-user service

Figure 65: Impact of primary service unavailablity
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Distribution of primary service or application age

Primary service end-user characteristics

Service age

We asked participants to 
indicate approximately how 
many years the primary 
application or service they work 
on has existed. Our respondents’ 
applications had a median age 
of eight years.

Service users

We asked participants to 
indicate characteristics of their 
applications’ primary end users. 
A majority of respondents 
were developing business 
applications, with a roughly 
even number developing for 
internal and external audiences.
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Figure 67: Primary service end-user characteristics
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This year, we had respondents from more than 100 countries. Our largest number 
of respondents were located in the U.S., followed by the UK, and India.

Country

Country

USA Japan Malaysia Peru Uruguay Madagascar

UK New Zealand Romania Serbia Viet Nam Morocco

India Switzerland Estonia Slovakia Andorra Nicaragua

Germany Hungary Slovenia Thailand Armenia Panama

Canada Belgium Indonesia Ukraine Bahamas Paraguay

Netherlands Denmark United Arab 
Emirates

Afghanistan Bahrain Republic of Moldova

Australia Norway Bulgaria Ecuador Belarus Somalia

France Ireland Croatia El Salvador Bolivia Sri Lanka

Portugal Chile Costa Rica Jordan Burkina Faso The former Yugoslav 
Republic of 
Macedonia

Poland Philippines Nigeria Kenya Democratic 
Republic of the 
Congo

Tunisia

Mexico Greece Russian Federation Lithuania Ethiopia Uganda

Sweden Israel Turkey Malta Grenada Yemen

Spain Singapore Bangladesh South Korea Hong Kong (S.A.R.) Zambia

NA Finland China Algeria Iceland

Georgia Austria Costa Rica Cyprus Iran

Italy Czech Republic Egypt Côte d’Ivoire Kazakhstan

South Africa Argentina Latvia Dominican Republic Lebanon

Brazil Colombia Pakistan Guatemala Luxembourg

Demographics and firmographics

Color intensity indicates the number of survey respondents from each country, with darker shades representing a higher volume of participants.

29% U.S.

6% Canada

2% Mexico

14% UK

1% Ireland
2% France

7% India

1% Japan

3% Australia

2% Sweden

6% Germany

4% Netherlands

1% Italy

2% Poland

1% Georgia
2% Portugal

2% Spain

1% South Africa

1% Brazil
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The sole inclusion criterion 
for our interviews is that 
participants are involved in some 
way in professional software 
development. Our screener 
collects no information about 
participants’ demographics 
outside of those required to 
confirm their job, location, and 
language eligibility. In total, we 
interviewed 78 participants who 
met these criteria.

When asked about their 
responsibilities, 70 interview 
participants indicated that 
they personally write or modify 
source code, 37 indicated that 
they manage software delivery 
pipelines and/or development 
infrastructure, 15 indicated that 
they make purchasing decisions 
about development products and 
services, 12 indicated that they 
define and update organizational 
policies about technology use, 
and two indicated that their work 
related to software development 
only in some other way. 

Although these responsibilities 
suggest their roles were 
typically multifaceted, we asked 
participants how they would best 
describe their work from the 
following options: “I am a software 
developer”, “I administrate 
software development 
infrastructures”, “I manage 
people who develop software”, 
“I set policies about software 
development for my organization”, 
“I make purchasing decisions 
about products and services 
used in software development”, 
“My work is not at all related to 
software development”, “My work 
is related to software development 
in a way that is not listed here”. 

Interview participant demographics

1.	 Not every respondent was part of each analysis because of survey conditionality or missingness. 
2.	 “WG Short Set on Functioning (WG-SS).” https://www.washingtongroup-disability.com/question-sets/wg-short-set-on-functioning-wg-ss/

67 interviewees described 
themselves as primarily software 
developers, seven described 
themselves as primarily managers 
of software developers, one 
indicated being primarily an 
administrator of software 
development infrastructures, 
and three indicated their work 
primarily relates to software 
development in some other way. 

76 interviewees were located 
in the U.S., one was located in 
Mexico, and one was located in 
Trinidad and Tobago. That the 
vast majority of participants 
were located in the U.S. was not 
surprising, given the interviewer’s 
language fluency and scheduling 
limitations.
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Methodology

Question selection

We think about the following aspects when considering whether to 
include a question in a survey:

Is this question…

•	 Established so we can connect our work to previous efforts? 

•	 Capturing an outcome the industry wants to accomplish (for 
example, high team performance)?

•	 Capturing a capability the industry is considering investing 
resources into (for example, AI)?

•	 Capturing a capability we believe will help people accomplish 
their goals (for example, quality documentation)?

•	 Something that helps us evaluate the representativeness of our 
sample (for example, role or gender)?

•	 Something that helps us block biasing pathways (for example, 
coding language or role)? 

•	 Something that is possible to answer with at least a decent 
degree of accuracy for the vast majority of respondents?

We address the literature, engage with the DORA community, conduct 
cognitive interviews, run parallel qualitative research, work with subject 
matter experts, and hold team workshops to inform our decision as to 
whether to include a question in our survey.

A methodology is supposed to be like a recipe that will 
help you replicate our work and determine if the way 
our data was generated and analyzed is likely to return 
valuable information. Although we don’t have the space 
to go into the exact details, hopefully this is a great 
starting point for those considerations. 

Survey experience 

We take great care to improve the 
usability of the survey. We conduct 
cognitive interviews and usability 
tests to make sure that the survey 
hits certain specification points:

•	 Time needed to complete 
survey should, on average, be 
low

•	 Comprehension of the 
questionnaire should be high

•	 Effortfulness should be 
reasonably low, which is a 
huge challenge given the 
technical nature of the 
concepts

Survey development

Methodology

Derek DeBellis
Quantitative User Experience Researcher, 
Google Cloud 

Kevin M. Storer, Ph.D.
User Experience Researcher, Google Cloud
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Localizations

People around the world have responded to our survey every year. 
This year we worked to make the survey more accessible to a larger 
audience by localizing the survey into English, Español, Français, 
Português,日本語, and 简体中文. 

Data collection

Collect survey responses

We use multiple channels to recruit. These channels fall into two 
categories: organic and panel. 

The organic approach is to use all the social means at our disposal to 
let people know that there is a survey that we want them to take. We 
create blog posts. We use email campaigns. We post on social media, 
and we ask people in the community to do the same (that is, snowball 
sampling). 

We use the panel approach to supplement the organic channel. Here 
we try to recruit people who are traditionally underrepresented in the 
broader technical community and try to get adequate responses from 
certain industries and organization types. 

In short, this is where we get some control over our recruitment—
control we don’t have with the organic approach. The panel approach 
also allows us to simply make sure that we get enough respondents, 
because we never know if the organic approach is going to yield the 
responses necessary to do the types of analyses we do. This year we 
had sufficient organic responses to run our analysis and the panel 
helped round out our group of participants.

Survey flow

This year we had a lot of questions 
we wanted to ask, but not enough 
time to ask them. Our options 
were…

•	 Make an extremely long 
survey

•	 Choose a subset of areas  
to focus on

•	 Randomly assign people  
to different topics

We didn’t want to give up on any 
of our interests, so we chose to 
randomly assign participants to 
one of four separate flows. There 
was a lot of overlap among the 
four different flows, but each flow 
dove deeply in a different space.

Here are the four different 
pathways:

•	 AI

•	 Platform engineering 

•	 Sociocognitive aspects

•	 AI capabilities
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Last year we introduced the use 
of in-depth, semi-structured 
interviews to supplement our 
annual survey with qualitative  
data that can triangulate, 
contextualize, and clarify our 
quantitative findings. 

This year, we significantly 
expanded the role of qualitative 
data in our research design 
by interviewing development 
professionals on a continuous 
basis from July 2024–July 2025. 
In addition to using these insights 
to clarify findings from our survey 
design, we also used qualitative 
data to generate new hypotheses 
to test as part of our survey, 

This section outlines our analytical 
method, which is heavily steeped 
in the works of Statistical 
Rethinking and Regression and 
Other Stories.1,2 We could attach 
a footnote from one of those to 
each sentence. We walk through 
our entire workflow with a 
simplified example so you can 
determine the appropriate level 
of trust to put into our results 
and replicate our approach. The 
2024 DORA Report explored the 
theoretical principles behind 
our analysis in the Methodology 
section. This year, we focus on 
the practical application: how we 
conducted our analysis. 

Interviews

Statistical analysis

especially as related to emerging 
practices in AI-assisted and AI-
driven development paradigms. 

The interview guides used 
throughout this process were 
designed to touch on a range  
of foundational topics in the 
domain of AI use in software 
development, while affording 
flexibility to probe topics of 
interest raised by participants 
as they emerged. Interview 
sessions were designed to last 
approximately 90 minutes each, 
and were conducted remotely. 

To do so, we are going to go 
through a simulated, simplified, 
and idealized example. We’re 
going to smooth over or even 
skip some of the complexity. This 
guide is a high-level overview; 
some aspects of a full analysis 
are discussed lightly or not at 
all to maintain focus on the core 
workflow. Here are the core 
variables in this toy analysis:

1.	individual_experience 
= how much experience 
someone has in this type of role 
(manifest variable)

2.	resources = resources (for 
example, tools) available to do 
work (manifest variable)

In total, we interviewed 78 
participants who were confirmed 
to be professionally involved in 
software development through 
a screener survey and phone 
screen. All interviews were video- 
and audio-recorded. All interviews 
were transcribed using automated 
software. Quotations appearing in 
the final publication of this report 
were revisited and transcribed 
manually prior to inclusion. Words 
added or altered in participant 
quotations by the authors of this 
report are indicated by brackets 
([]) and words removed are 
indicated by ellipses (...). Edits 
were made only in cases where 
required for clarity or anonymity.

3.	stability = does the 
organization have stable 
priorities (manifest variable)

4.	individual_effectiveness_
score = a factor made up of 
four indicators 

5.	ai_adoption = does the 
organization have stable 
priorities 

If you finish this little section, 
hopefully you have a better sense 
of whether to trust us, a desire to 
replicate this work, and a couple 
of new statistics tricks.
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All statistical models contain 
causal assumptions; our 
approach is to make them 
explicit. Correlation may not imply 
causation, but how you think 
about causation will impact your 
correlations. We codify our theory 
about how the world works in a 
directed acyclic graph (DAG).3 

This DAG is our map of  
the causal landscape, built 
from prior research, qualitative 
work, and domain expertise. 
By visualizing our assumptions, 
we make them transparent and 
debatable, which is a cornerstone 
of rigorous science.4

For this example, our extremely 
simplified DAG hypothesizes 
that individual_experience, 
resources,5 and stability 
are common causes of both 
ai_adoption and individual_
effectiveness.

Step 1: Defining our causal theory (the DAG)

# Load necessary libraries

library(dagitty)

library(ggdag)

library(lavaan)

library(tidyverse)

library(brms)

library(tidybayes)

library(ggplot2)

library(emmeans)

library(performance)

library(semPlot)

# Define the causal relationships in our simplified DAG

simple_dag <- dagitty('dag {

 ai_adoption [exposure]

 individual_effectiveness [outcome]

 individual_experience [adjusted]

 resources [adjusted]

 stability [adjusted]

 individual_experience -> ai_adoption; resources -> ai_adoption; 
stability -> ai_adoption

 ai_adoption -> individual_effectiveness

 individual_experience -> individual_effectiveness; resources -> 
individual_effectiveness; stability -> individual_effectiveness

}')

# Plot the DAG to visualize our theory

ggdag(simple_dag, text = FALSE, use_labels = "name") + theme_dag_
blank()
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Generating fake data from 
our causal theory

Let’s use the causal structure 
defined in our DAG to simulate a 
dataset for this example. This is 
fake data.

Creating data from a known  
causal structure gives us a  
perfect “ground truth.” This is 
incredibly helpful because it allows 
us to stress-test our methods. 
If our analysis can’t recover the 
correct answer from this clean, 
perfectly known data, it certainly 
can’t be trusted with messy,  
real-world data. 

However, this is also a 
simplification. Real data contains 
complexities like non-linear 
relationships, measurement error, 
unknown causal structures, and 
missing values that we exclude 
from this simplified example.

# Define the model with specific path coefficients to generate data

model_specification <- "

 # -- Measurement Model --

 ai_adoption_factor =~ 0.8*use + 0.7*reliance + 0.6*trust

 individual_effectiveness_factor =~ 0.8*effective + 
0.7*productivity + 0.7*impactful + 0.6*flow

 # -- Structural Model (Paths based on the DAG) --

 ai_adoption_factor ~ 0.4*individual_experience + 0.3*resources + 
0.2*stability

 individual_effectiveness_factor ~ 0.3*ai_adoption_factor + 
0.3*individual_experience + 0.2*resources + 0.15*stability"

set.seed(2025)

simulated_data <- simulateData(model_specification, sample.nobs = 
500)

#get a sense of the data

summary(simulated_data)

glimpse(simulated_data)

This output diagram visualizes 
our theory. Our focus is 
ai_adoption’s impact on 
individual_effectiveness, 
but to properly estimate that, we 
need to understand the broader 
context. The DAG identifies 
several key confounders—factors 
that influence both our cause and 
our effect. These are:

individual_experience (with 
role)

resources (required to do role  
are available)

stability (priority stability)

We’ll let the DAG explicitly identify 
them later. 

Methodology

resources

individual_effectiveness

individual_experience

ai_adoption

stability
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Before testing our causal or 
structural theory, we must ensure 
our measurement tools are sound 
using a confirmatory factor 
analysis (CFA).6 This step validates 
that our survey items reliably 
measure their intended latent 
constructs (Kline, 2015).  
We evaluate the model by 
checking for good global fit, 
strong local factor loadings,  
and no major points of strain  
via modification indices.

Step 2: Evaluating the measurement model (CFA)

# Define the measurement-only portion of our model

measurement_model <- "

 ai_adoption_factor =~ use + reliance + trust

 individual_effectiveness_factor =~ effective + productivity + 
impactful + flow

"

# Fit the CFA model to our simulated data

cfa_fit <- cfa(measurement_model, data = simulated_data)

# Review the fit indices, loadings, and modification indices

summary(cfa_fit, fit.measures = TRUE, standardized = TRUE)

modificationindices(cfa_fit, sort = TRUE, minimum.value = 10)

Methodology

This is some of the output for that model.

> summary(cfa_fit, fit.measures = TRUE, 
standardized = TRUE)

lavaan 0.6-19 ended normally after 34 iterations

 Estimator                     ML

 Optimization method              NLMINB

 Number of model parameters            15

 Number of observations              500

Model Test User Model:

                           

 Test statistic                 7.579

 Degrees of freedom                13

 P-value (Chi-square)              0.870

Model Test Baseline Model:

 Test statistic                651.579

 Degrees of freedom                21

 P-value                    0.000

User Model versus Baseline Model:

 Comparative Fit Index (CFI)          1.000

 Tucker-Lewis Index (TLI)            1.014

Loglikelihood and Information Criteria:

 Loglikelihood user model (H0)       -5515.401

 Loglikelihood unrestricted model (H1)   
-5511.612

 Akaike (AIC)                11060.803

 Bayesian (BIC)               11124.022

 Sample-size adjusted Bayesian (SABIC)   
11076.411

Root Mean Square Error of Approximation:

 RMSEA                     0.000

 90 Percent confidence interval - lower     0.000

 90 Percent confidence interval - upper     0.023

 P-value H_0: RMSEA <= 0.050          0.999

 P-value H_0: RMSEA >= 0.080          0.000

Standardized Root Mean Square Residual:

 SRMR                      0.017
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How to interpret the CFA 
output

The lavaan7 output provides a rich 
set of diagnostics. Here’s how to 
interpret the key sections using 
your results.

1. The chi-square test (χ2). This is 
the test of perfect fit. It tests the 
null hypothesis that the model fits 
the data exactly.

Your result: Test statistic = 7.579, 
df = 13, P-value = 0.870

Guideline: We hope for a  
non-significant result (p > .05).

Interpretation: The p-value  
is very high (0.870), meaning  
we cannot reject the null 
hypothesis. The test indicates 
that our model’s structure is 
statistically indistinguishable  
from a perfect fit.8

Warning: This is the traditional, 
formal statistical test of model 
fit. However, with very large 
samples like DORA’s, this test is 
overly sensitive and almost always 
indicates a “poor fit” even when 
the model is excellent. Because of 
this, we use it as a reference but 
rely more heavily on the practical 
indices below.

2. Incremental fit indices (CFI 
& TLI). These indices compare 
our model’s fit to a “worst-case” 
baseline model where no variables 
are related.

Your result: 
CFI = 1.000, TLI = 1.014

Guideline: We check for values 
> 0.90 (acceptable) and > 0.95 
(excellent).

Interpretation: The values are at 
or above the theoretical maximum 
of 1.0. This signals a perfect fit 
relative to the baseline model. 
(Note: TLI can sometimes exceed 
1.0 in well-fitting models.)

3. Absolute error indices 
(RMSEA & SRMR). These indices 
measure the “badness-of-fit”  
or the average error between  
the model’s predictions and the 
actual data.

Your RMSEA result:  
RMSEA = 0.000 with a 90% CI  
of [0.000, 0.023]

Guideline: We check for a point 
estimate < 0.08 (acceptable)  
and < 0.06 (excellent).

Interpretation:  
Your RMSEA is zero, with the entire 
confidence interval falling well 
below the threshold for excellent 
fit. This suggests there is virtually 
no error of approximation.

Your SRMR result:  
SRMR = 0.017

Guideline:  
We check for a value < 0.08.

Interpretation: The value is 
extremely low, indicating that the 
average standardized difference 
between the observed and 
predicted correlations is tiny.

4. Factor loadings and 
modification indices (output 
not shown). Use the standardized 
factor loadings to inspect if the 
loadings are substantial and similar 
from within the factor.9 Use the 
modification indices to locate 
areas of local strain in your model. 
High modification indices indicate 
areas of potential misspecification. 

In this example, across the board, 
every single fit index points to 
a model that fits the data near-
perfectly. This is exactly what 
we hope to see in this specific 
scenario. Because we generated 
the data directly from this 
model’s specifications, a perfect 
fit confirms that our analytical 
method is working correctly and 
can recover a known structure. 
However, it’s crucial to note that 
seeing results this flawless with 
real-world survey data would 
be highly unusual and almost 
worrisome. Such a perfect fit 
in a real analysis might suggest 
that the model is too simple 
for the data’s complexity or, in 
some cases, that the model has 
been “overfit” through extensive 
tweaking.
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With validated measures, we use structural  
equation modeling (SEM) to perform a holistic  
fit test of our entire causal theory. The purpose  
of SEM is to compare the covariance structure 
implied by our DAG to the covariance structure 
observed in our data. 

A good model is one where the theory’s predictions 
closely match reality. We are evaluating how well our 
theoretical model aligns with the observations. 

Step 3: Testing and evaluating the model structure (SEM)

#Define our theoretical model 

# Define the model with specific path 
coefficients to generate data

structural_model <- "

 # -- Measurement Model --

 ai_adoption_factor =~ use + reliance + trust

 individual_effectiveness_factor =~ effective + 
productivity + impactful + flow

 # -- Structural Model (Paths based on the DAG) 
--

 ai_adoption_factor ~ individual_experience + 
resources + stability

 individual_effectiveness_factor ~ ai_adoption_
factor + individual_experience + resources + 
stability

"

# Fit the full SEM to the data to estimate the 
path coefficients

sem_fit <- sem(model_specification, data = 
simulated_data)

# Run a full summary to get fit measures, 
loadings, and path coefficients

sem_summary <- summary(sem_fit, standardized = 
TRUE, rsquare = TRUE)

sem_summary

Methodology

# Inspect specific areas of local fit

residuals(sem_fit, type = "standardized")

modificationindices(sem_fit, sort. = TRUE, 
minimum.value = 10)

# --- Generate a Minimal, Monochrome SEM Path 
Diagram ---

semPaths(sem_fit,

     # --- Core Content ---

     what = "std",      # IMPORTANT: Show 
standardized coefficients on paths

     whatLabels = "est",   # Show the estimate 
value (the coefficient)

     # --- Layout & Sizing ---

     layout = "tree2",    # A clean hierarchical 
layout

     rotation = 2,      # Rotates the layout for 
better viewing (often top-to-bottom)

     sizeMan = 8,      # Size of manifest 
variables (squares)

     sizeLat = 10,      # Size of latent 
variables (circles)

     edge.label.cex = 0.8,  # Font size for the 
path coefficients

     nCharNodes = 0,     # Ensures full variable 
names are displayed

     # --- Minimalist Aesthetics ---

     style = "ram",     # A clean drawing style 
from the RAM specification

     residuals = FALSE,   # HIDE residual 
variances to reduce clutter

     intercepts = FALSE,   # HIDE intercepts for 
simplicity

     # --- Monochrome Theme ---

     color = "white",    # Fill color for all 
shapes

     edge.color = "black",  # Color for all 
arrows

     border.color = "black", # Border color for 
shapes

     border.width = 1.5,   # Thickness of the 
borders

     label.color = "black"  # Color of the text 
on the arrows

)
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How we evaluate the SEM

Judging if the model is “good” 
requires a holistic check of several 
indicators. We group these into 
two categories:

1. Global fit: The 30,000-foot 
view.9 These indices tell you 
how well the model as a whole 
reproduces the data.

The chi-square test (χ2): This is 
the test of perfect fit. It tests the 
null hypothesis that the model fits 
the data exactly.

CFI & TLI: The comparative fit 
index and Tucker-Lewis index 
measure how much better our 
model is than a “worst-case” 
model. We check for values > 0.90 
(acceptable) or > 0.95 (excellent).

RMSEA: The root mean square 
error of approximation is a 
“badness-of-fit” index measuring 
the average model error. We check 
for values < 0.08 (acceptable) or < 
0.06 (excellent).

2. Local fit: Checking under the 
hood. These diagnostics help us 
find specific points of strain within 
the model.

Factor loadings: In the 
standardized output, we check 
for high, significant loadings 
(ideally > 0.50) for the items on 
their respective latent factors. This 
confirms our measurement model 
is strong.

Standardized residuals: These 
show the error for each individual 
relationship in the model. We 

check for an absence of large 
values (for example, no absolute 
values > 2.58), which would indicate 
a specific relationship is poorly 
predicted by our theory.

Modification indices: These 
“what-if” statistics tell us where the 
model is under the most strain. We 
check for large values to diagnose 
problems (like a survey item 
measuring two concepts at once), 
but we avoid blindly modifying 
our model based on them without 
strong theoretical justification.

A good model is one that has 
acceptable global fit, strong factor 
loadings, and no major signs of 
local strain. It’s this constellation of 
evidence that gives us confidence 
in the model’s structure. 
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Methodology

Testing the theoretical model’s implications

 Our DAG also generates a set of testable predictions 
known as “implied conditional independencies.” 
These are focused on the circumstances in which 
these variables are not related. Think of this as 
testing a theoretical model’s alibis. If they hold up, 
you have more reason to believe it. 

When we run 
`impliedConditionalIndependencies(simple_dag)’,  
we notice:

These statements are a core prediction of our causal 
model, stating that a person’s individual experience, 
their available resources, and their team’s stability 
are all independent of one another. In other words, 
knowing the level of available resources for a 
team provides no information about an individual’s 
experience on that team or the team’s overall 
stability. 

We first check this informally by examining the 
covariances in the original model. They’re all near 0, 
so we have some pretty good evidence. 

We can also try a more formal test, where we build 
these implications in our structural equation model. 
We would do this by constraining those parameters 
to 0. In our last model, we asked the model to 
estimate those parameters, as we believed they were 
free to be whatever they wanted to be. Now, we’re 
saying they’re zero. 

The key result comes from the anova() function, 
which performs a formal Chi-squared difference test. 
This provides a formal comparison between your 
original model (sem_fit) and the more restrictive 
model (constrained_fit) where you forced the 
covariances to be zero. The key question is: “Did 
forcing those relationships to be zero significantly 
harm the model’s fit?”

# check in the "Covariances" section of this 
output

summary(sem_fit, standardized = TRUE)

# --- Formally Test the Implied Conditional 
Independencies ---

#get the implied conditional independencies 

impliedConditionalIndependencies(simple_dag)

#we can just inspect the covariances

sem_summary$pe %>% filter(op == "~~",

             lhs %in% c("individual_experience",

                   "resources",

                   "stability"))

# 1. Define a new, constrained model string

constrained_model_string <- "

 # -- Measurement Model --

 ai_adoption_factor =~ use + reliance + trust

 individual_effectiveness_factor =~ effective + 
productivity + impactful + flow

 # -- Structural Model (Paths based on the DAG) 
--

 ai_adoption_factor ~ individual_experience + 
resources + stability

 individual_effectiveness_factor ~ ai_adoption_
factor + individual_experience + resources + 
stability

 # --- NEW CONSTRAINTS ---

 # We now explicitly force the covariances to 
zero based on the DAG's implication

 individual_experience ~~ 0*resources

 individual_experience ~~ 0*stability

 resources ~~ 0*stability

"

# 2. Fit the constrained model

constrained_fit <- sem(constrained_model_string, 
data = simulated_data)

# 3. Compare the original model (sem_fit) to the 
constrained model

# A non-significant p-value means the constraints 
are supported by the data.

anova(sem_fit, constrained_fit)

ind_ _||_ rsrc

ind_ _||_ stbl

rsrc _||_ stbl
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         Df  AIC  BIC Chisq Chisq diff RMSEA Df diff Pr(>Chisq)

sem_fit     28 10952 11040 21.454                  

constrained_fit 31 15319 15420 24.980   3.5267 0.018739    3   0.3173

The results suggest that 
restricting or constraining those 
three covariances to zero did not 
significantly hurt the model.

Chisq diff (Chi-squared 
difference):  
This is the raw measure of how 
much worse the fit got when you 
added the constraints.

Your result:  
3.5267. By itself, this number is 
hard to interpret.

Df diff (Difference in degrees  
of freedom):  
This shows how many constraints 
you added.

Your result:  
3. This is correct, as you forced 
three covariances to zero.

Pr(>Chisq) (The P-value):  
This is the most important number. 
It tells you the probability of 
seeing a Chisq diff of 3.5267 or 
larger if the constraints were 
actually true in the population.

After gaining confidence in our 
DAG’s structure, we turn to our 
main question. We use our DAG 
to identify the correct adjustment 
set and then fit a Bayesian model. 
While our framework is causal, we 
interpret our results as principled 
comparisons, acknowledging the 
limitations of observational data 
(Gelman et al., 2020).

Step 4: Estimating comparisons with a Bayesian model

Setting priors

Our approach of testing a 
predictor across numerous 
outcomes creates a multiple 
comparisons challenge. To 
address this, we implement a 
consistent, skeptical Bayesian 
prior for our predictor in every 
model.10 This acts as a principled 
defense against being fooled by 
randomness. By setting a skeptical 
prior (student_t(3, 0, 0.5)),11 we 
formally build in the belief that the 
true effect is likely small, which 
tames the false positive rate.12 

Determining the adjustment 
set

DAG will let you know what 
variables to include, and perhaps 
more importantly, what variables 
not to include, in your model. If 
your DAG is correct, the inclusion 
of these variables should prevent 
biasing pathways from biasing 
your estimate of AI adoptions 
(exposure) impact on individual 
effectiveness (outcome). 

Methodology

Your result:  
0.3173.

In short, the implications held up 
and the constrained model is the 
more parsimonious approach. 
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# Identify adjustment set

adjustmentSets(simple_dag, exposure = "ai_
adoption", outcome = "individual_effectiveness")

# Prepare data

model_data <- simulated_data %>%

 mutate(

  ai_adoption_score = rowMeans(select(., use, 
reliance, trust)),

  individual_effectiveness_score = 
rowMeans(select(., effective, productivity, 
impactful, flow))

 ) %>%

 mutate(across(c(ai_adoption_score, individual_
experience, resources, stability), scale))

# Define priors

priors <- c(prior(student_t(3, 0, 0.5), class 
= "b"), prior(student_t(3, 0, 2.5), class = 
"Intercept"), prior(exponential(1), class = 
"sigma"))

Methodology

# Fit models

baseline_model <- brm(formula = individual_
effectiveness_score ~ individual_experience + 
resources + stability, data = model_data, family 
= gaussian(), prior = priors, chains = 4, iter 
= 4000, warmup = 2000, seed = 2025, silent = 2, 
refresh = 0)

full_model <- brm(formula = individual_
effectiveness_score ~ ai_adoption_score + 
individual_experience + resources + stability, 
data = model_data, family = gaussian(), prior = 
priors, chains = 4, iter = 4000, warmup = 2000, 
seed = 2025, silent = 2, refresh = 0)

# Compare models with LOO

# loo_compare <- loo(baseline_model, full_model)

# print(loo_compare)

#coefficient summaries with 89% credibility 
intervals

posterior_summary(full_model, probs = c(1-
.11/2,.11/2))

#type s error (approximately a pvalue) 

1 - mean(as.matrix(full_model)[,"b_ai_adoption_
score"] >0)

         Estimate Est.Error  Q94.5   Q5.5

b_ai_adoption_score  0.199   0.041  0.265   0.134

We believe a single metric is 
never enough to understand a 
model. Instead, we evaluate the 
evidence through four key lenses, 
embracing the uncertainty in our 
data as a source of knowledge.

1. Does predictive accuracy 
improve? (The LOO result)

Yes. The LOO comparison shows a 
clear preference for the full_model 
(elpd_diff = 10.7, se_diff = 5.2).13 
This is our first piece of evidence: 
including ai_adoption_score 
creates a model that is expected 
to make better predictions on new 
data. It’s not just statistical noise; 
it’s a predictively useful variable.

2. Is the effect consistently on one side of zero? (Type S error)

Yes. Checking at the posterior summary for b_ai_adoption_score:

The 89% credible interval (from Q5.5 to Q94.5) for the AI adoption 
coefficient is [0.13, 0.26]. The entire interval is well above zero. This 
means there is a very low probability of a Type S (Sign) error. We can be 
highly confident that the relationship is positive.
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3. Do we have a good sense of the 
effect’s size? (Type M Error)

Yes. The model provides a clear 
sense of the magnitude. Our 
best estimate is a 0.20 standard 
deviation increase in effectiveness 
for every one standard deviation 
increase in AI adoption. The 
credible interval [0.13, 0.26] 
gives us a plausible range for 
this effect. It’s not a huge effect, 
but it’s not trivial either, and the 
estimate is reasonably precise. 
This clarity helps us avoid a Type 
M (Magnitude) error by preventing 
us from overstating the effect’s 
importance.

4. Does this align with our 
theory?

Yes. Our initial DAG hypothesized 
a direct, positive causal path 
from AI adoption to individual 
effectiveness. All the statistical 
evidence we’ve gathered—from 
the SEM’s structural validation 
to the LOO comparison and 
the final posterior estimate—is 
consistent with this theoretical 
claim. The data supports the 
story we started with.

Synthesis

By combining these four 
perspectives, we move beyond a 
simple “Is it significant?” mindset. 
The evidence converges to show 
that the relationship between 
AI adoption and effectiveness is 
predictively useful, directionally 
stable, modest but clearly 
estimated in magnitude, and 
theoretically sound. This approach 
helps us avoid “getting jerked 
around by noise patterns that 
happen to exceed the statistical 
significance threshold.”14

Fitting a model is not the end. 
We perform a series of rigorous 
diagnostic checks to ensure the 
results are reliable.16 This includes 
checking for MCMC convergence 
(hatR < 1.01, high ESS), running 
posterior predictive checks to 
ensure the model can reproduce 
the observed data, and checking 
model assumptions via residual 
analysis (Gelman et al., 2013). This 
topic is worth a chapter in itself. 
We are simply going to share some 
important diagnostic checks to 
consider. These are worth knowing 
because their applicability is 
widespread, from basic models 
to advanced ones. The basic 
categories are:

Step 5: Diagnosing the model for trustworthiness15

Computational health:

We first ensure the model’s 
algorithm ran correctly and 
produced stable estimates. This is 
a technical check for the model’s 
computational engine, ensuring its 
results are reliable (for example, 
checking that the R^ statistic is 
less than 1.01).

Predictive alignment:

We then check if the model’s 
predictions align with the real-
world data we started with. We 
use the model to simulate data 
and see if it “checks like” the data 
we actually observed. A model 
that can’t recreate the past can’t 
be trusted to explain the present.

Statistical validity:

Finally, we verify that the model’s 
core statistical assumptions were 
met. This involves inspecting 
the model’s errors (its residuals) 
to ensure we haven’t violated 
fundamental principles, such 
as the assumption of a linear 
relationship.
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print("--- Convergence Diagnostics (R-hat, ESS) ---")

summary(full_model)

print("--- Visual Trace Plots ---")

plot(full_model, N = 4, ask = FALSE)

print("--- Posterior Predictive Check ---")

pp_check(full_model, ndraws = 100)

print("--- Residual Assumption Checks ---")

check_model(full_model)
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Finally, we translate our statistical 
results into intuitive visualizations. 
We interpret our model by 
examining the full posterior 
distribution of our main parameter, 
plotting conditional predictions 
(or estimated marginal means) 
to understand the magnitude of 
the comparison, and viewing the 
regression line in the context of 
the raw data. 

Step 6: Visualizing the estimated effect 
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Three views of the effect of AI adoption on individual effectiveness

For our final results, we report 
89% credible intervals, a choice 
that deliberately shows the 
arbitrariness of p-value-centric 
thinking and focuses on the 
stable, high-density region of the 
posterior (McElreath, 2020).
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# --- STEP 6: Visualizing the Estimated Effect 
---

print("Generating visualizations...")

# 6a. The Posterior Distribution

plot_posterior <- full_model %>%

  spread_draws(b_ai_adoption_score) %>%

  ggplot(aes(x = b_ai_adoption_score)) +

  stat_halfeye(fill = "#1565C0") +

  geom_vline(xintercept = 0, linetype = "dashed") 
+

  labs(

    title = "Posterior Distribution for AI 
Adoption Score",

    subtitle = "This shows the full range of 
plausible values for the effect.",

    x = "Coefficient Estimate (Standardized)",

    y = "Density"

  ) +

  theme_minimal()

# 6b. The Comparison Plot (Estimated Marginal 
Means)

emm_results <- emmeans(full_model,

                       specs = ~ ai_adoption_
score,

                       at = list(ai_adoption_
score = c(-1, 0, 1)),

                       prob = 0.89) # 89% 
Credible Interval

plot_comparison <- as.data.frame(emm_results) %>%

  ggplot(aes(x = ai_adoption_score, y = emmean)) 
+

  geom_point(size = 4, color = "#1565C0") +

  geom_errorbar(aes(ymin = lower.HPD, ymax = 
upper.HPD), width = 0.1, linewidth = 1) +

  labs(

    title = "Predicted Individual Effectiveness",

    subtitle = "Comparing low, average, and high 
levels of AI adoption.",

    x = "AI Adoption Score (Standardized: -1, 
Avg, +1 SD)",

    y = "Predicted Effectiveness Score"

  ) +

  theme_minimal() +

  scale_x_continuous(breaks = c(-1, 0, 1), labels 
= c("Low", "Average", "High"))

# --- 6c. The Relationship in Context 
(Scatterplot with Regression Line) ---

# Create a reference grid: a sequence of points 
along the range of our predictor

plot_grid <- ref_grid(full_model,

                      at = list(ai_adoption_score 
= seq(min(model_data$ai_adoption_score),

                                                       
max(model_data$ai_adoption_score),

                                                        
length.out = 100)))

# Get the predictions (estimated marginal means) 
at each point in our grid

emm_plot_data <- emmeans(plot_grid, "ai_adoption_
score", prob = 0.89) %>% as.data.frame()

# Now, create the plot with this new, smooth data

plot_relationship <- ggplot(emm_plot_data, aes(x 
= ai_adoption_score, y = emmean)) +

  geom_point(data = model_data, aes(y = 
individual_effectiveness_score), alpha = 0.2, 
color = "gray50") +

  geom_line(color = "#1565C0", linewidth = 1.5) + 
# No group aesthetic needed now

  geom_ribbon(aes(ymin = lower.HPD, ymax = upper.
HPD), alpha = 0.2, fill = "#1565C0") +

  labs(

    title = "Relationship Between AI Adoption and 
Effectiveness",

    subtitle = "Regression line and 89% credible 
interval overlaid on raw data.",

    x = "AI Adoption Score (Standardized)",

    y = "Individual Effectiveness Score"

  ) +

  theme_minimal()
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# --- Print the corrected plot ---

print(plot_relationship)

# --- Print the final plots to the screen ---

print(plot_posterior)

print(plot_comparison)

print(plot_relationship)

# --- Combine the three plots using patchwork ---

# The '+' operator puts plots side-by-side

# The '/' operator stacks them vertically

combined_plot <- (plot_comparison + plot_
relationship) /

  plot_posterior +

  plot_annotation(

    title = "Three Views of the Effect of AI 
Adoption on Individual Effectiveness",

    caption = "Top: Predictions on the outcome 
scale. Bottom: Posterior distribution of the 
standardized coefficient."

  )

# --- Print and save  the final combined plot ---

print(combined_plot)

ggsave(

  combined_plot,

  filename = "combined_plot.svg",

  height = 6 * .75,

  width = 9 *.75,

  dpi = 600

)

print("--- Workflow Complete ---")
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1.	 McElreath, Richard. Statistical Rethinking: A Bayesian Course with Examples in R and STAN (Chapman and Hall/CRC, 2020). 
2.	 Gelman, Andrew, Jennifer Hill, and Aki Vehtari. Regression and Other Stories of Analytical Methods for Social Research (Cambridge University Press, 

2020).
3.	 The Our research model and its theory chapter provides an overview of this codified theory.
4.	 Pearl, Judea. Causality (Cambridge University Press, 2009).
5.	 The Our research model and its theory chapter has a much more comprehensive overview.
6.	 Before we do a confirmatory factor analysis, we do an exploratory factor analysis to understand how the factors fall out before we constrain 

parameters with a theoretical model. This, in combination with other diagnostics, helps us better understand where our theory might have areas of 
poor fit. 

7.	 Rosseel Y (2012). “lavaan: An R Package for Structural Equation Modeling.” Journal of Statistical Software, 48(2), 1–36. 
https://doi.org/10.18637/jss.v048.i02

8.	 This is good news for the simpler model. It is essentially saying we don’t lose a lot of information by not freely estimating certain parameters.
9.	 There are formal tests you could use to evaluate this. 
10.	 Good modeling isn’t just about fit; it’s about finding the simplest model that fits well (Occam’s razor). You could keep adding parameters to achieve 

this. The questions are which parameter is justifiable and how much can you trim without losing much understanding. 
11.	 We also test for how robust the results are to various priors. In the end, we’ve decided we want to prevent false positives more than false negatives. 

We don’t want people exploring certain areas based on us being tricked by noise.
12.	 There is a good discussion on the topic here: https://discourse.mc-stan.org/t/why-studentt-3-0-1-for-prior/8102
13.	 For interaction terms, we use an even more skeptical prior (normal(0, 0.3)), as these effects are expected to be smaller.
14.	 The model on top is the model that is making the best predictions. The elpd_diff should be greater than the se_diff. I start feeling especially 

confident when elpd_diff is greater than 2x the se_diff (so, greater than 10.4 or 5.2 x 2).
15.	 The earlier you start evaluating these assumptions, the better.
16.	 Exploring the distributions and patterns in descriptive stats is a sometimes tedious, but crucial part that takes place at the start, before models are 

even being considered.

This workflow—from explicit 
theory to rigorous validation, 
estimation, and diagnostics—is 
designed to produce transparent, 
trustworthy, and robust insights. 

We’re hoping that sharing  
our process here and the  
Our research model and its 
theory chapter puts readers in 
a position to better evaluate our 
work. We’re also hopeful that this 
makes replication possible and 
encourages people to leverage 
some fun statistical approaches. 

Conclusion
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Our research model 
and its theory

This chapter outlines the 
theoretical model that underpins 
our analysis and estimates. It 
is a product of discussion with 
the DORA community, the 
experiences of subject-matter 
experts who are responsible for 
implementing changes across the 
company, literature, and troves of 
qualitative data. The model isn’t 
just an exercise of connecting 
boxes with lines. It is critical 
because the theoretical and 
unavoidably casual assumptions 
contained within it guide the 
analysis. Small changes have 
large implications on the analysis. 
Correlation does not imply 
causation, but our assumptions 
about causation do impact the 
correlations we find.

“Theory represents an essential decision that causes 
the world to appear wholly different—in a wholly 
different light. Theory is a primary, primordial decision, 
which determines what counts and what does not …”

Byung-Chul Han1 

This model is unique for DORA 
in two key ways. First, we are 
primarily focused on the impact 
of AI adoption and the conditions 
under which this impact is 
modified (AI capabilities). This 
means the model is primarily 
designed so we can get accurate 
estimates about the effect of 
AI adoption on the outcomes 
we believe are important to 
technology-driven organizations.

 Normally, the model is trying to 
predict the relationship between 
many capabilities and many 
outcomes. 

Second,2 the model is evaluated at 
the level of a structural equation 
model, but the results of that 
analysis are only to establish the 
model’s plausibility. From there, we 
build targeted Bayesian models 
to generate more focused and 
granular estimates. 

The Methodology chapter goes 
into considerable detail about this. 

The basic flow of this chapter is as 
follows:

The model: Introduction to our 
overall model

The concepts: Description of the 
high-level concepts of the model

The theory: Outline of the 
theoretical justification for each 
pathway

This chapter, combined with the 
Methodology chapter, provides 
an overview of both the theory 
and analysis that are behind 
the results. It should lay bare 
our assumptions. We hope this 
understanding provides enough 
information to replicate, leverage, 
and evaluate our work.

Our research model and its theory

Derek DeBellis
Quantitative User Experience Researcher, 
Google Cloud
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The concepts (represented as 
boxes) in our causal model are 
high-level groupings. These 
groupings simplify the visualization 
and don’t necessarily represent 
the exact measurements used in 
our analysis. The model contains 
contextual concepts that help 
us understand the respondents’ 
circumstances. This includes 
environment traits, service traits, 
processes, and individual traits. 

The model

AI adoption is a particular latent 
factor from our confirmatory 
factor analysis that is a composite 
of reflexive use, trust, and reliance. 
Then there are our outcomes, 
which are explained in more detail 
in the executive summary and the 
AI impacts chapter. 

We like to think that no concept 
here is superfluous. Getting good 
estimates of AI adoption’s effect 
requires mapping the tangled 
reality in which that effect resides. 

We use structural equation 
modeling and directed acyclic 
graphs to evaluate how well this 
theoretical model aligns with 
observed data. When the model 
is verified, we use the DAG to 
adjust our analyses to get better 
estimates. 

The Methodology chapter dives 
into the minutiae. Here, we’re 
going to focus on the concepts 
and theory undergirding this 
model. 

Environment
traits

Service traits

Process and 
practice

Individual traits

Organizational 
performance

Product
performance

Software 
delivery 

performance

Team 
performance

Individual-level
outcomes

AI adoption
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The concepts 

AI adoption

AI adoption measures the 
integration of AI into an individual’s 
workflow and mindset. This 
concept distinguishes simple tool 
usage from a deeper partnership 
with technology.

We measured AI adoption through 
three core indicators:

•	 Trust

•	 Reflexive use

•	 Reliance

Processes and practices

This category captures a wide 
array of capabilities. Some are 
AI-specific. Some are group-level 
processes. Some are individual-
level processes. They’re all 
representative of actions and 
ways of working. 

There are many constructs 
associated with this:3

•	 Clear and communicated AI 
stance

•	 Healthy data ecosystems

•	 AI-accessible internal data 

•	 Strong version control practices 

•	 Working in small batches 

•	 User-centric focus 

•	 Quality internal platforms

Each of these constructs is part of 
our inaugural AI capabilities model 
discussed in the AI Capabilities 
Model chapter.

Individual traits

This category captures the 
specific characteristics of an 
individual, including their role, 
age, and tenure on a team. It also 
covers the nature of their work, 
such as the amount of time they 
spend on AI-related tasks. These 
details provide crucial context 
for understanding a person’s 
experience and how they interact 
with technology.

This concept is explored or 
constituted by the following 
observations:

•	 Time spent using AI

•	 Years spent on team

•	 Individual role

•	 Individual age

•	 Individual tasks

•	 AI-specific tasks
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Environmental and 
organizational traits

These concepts describe the 
broader structural context 
in which work happens. This 
includes stable factors like 
company size and industry, as 
well as more dynamic conditions 
like the availability of resources 
and the stability of priorities. 
This environment creates the 
conditions that either enable or 
constrain technology adoption 
and overall performance.

Service traits

Service traits define the key 
characteristics of the primary 
application or service on which an 
individual works. Understanding 
a service’s age, criticality, and 
whether it is AI-infused is essential 
for contextualizing performance 
metrics and the relevance of 
certain technical practices.

Organizational performance

This is a high-level measure 
of the overall success of 
the organization, based on 
characteristics like profitability, 
market share, and customer 
satisfaction.

Team performance 

This factor measures the 
perceived effectiveness and 
collaborative strength of an 
individual’s immediate team.

Product performance 

This factor measures the success 
and quality of the products or 
services the team is building, 
based on characteristics such 
as helping users accomplish 
important tasks, keeping 
information safe, and performance 
metrics like latency.

Software delivery 
performance

•	 Software delivery throughput: 
This represents the speed 
and efficiency of the software 
delivery process. See the 
Understanding your software 
delivery performance chapter 
for more details.

•	 Software delivery instability: 
This captures the quality and 
reliability of the software 
delivery process. See the 
Understanding your software 
delivery performance chapter 
for more details.

Individual outcomes

•	 Code quality: This captures an 
individual’s assessment of the 
quality of code underlying the 
primary application or service 
they work on.

•	 Individual effectiveness: This 
factor captures an individual’s 
self-assessed effectiveness and 
sense of accomplishment at 
work.

•	 Valuable work: This measures 
the self-assessed amount of 
time an individual spends doing 
work they feel is valuable and 
worthwhile. 

•	 Friction: This measures 
the extent to which friction 
hinders an individual’s work. 
Lower amounts of friction are 
generally considered to be a 
positive outcome.

•	 Burnout: This measures 
feelings of exhaustion and 
cynicism related to one’s work. 
We consider burnout a key 
impediment to an individual’s 
work. 
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The theory
If our findings are the structure 
and our analysis is the 
construction, then theory is the 
foundation. This section explains 
this theoretical foundation for the 
key pathways in our model that 
allow us to accurately estimate 
the impact of AI. To maintain 
clarity, this section focuses on 
the high-level relationships within 
the model. We will highlight the 
pathways that we anticipate 
require the most justification. 
While our analysis relies on 
granular relationships between 
specific constructs, our focus 
here remains on the overarching 
theoretical connections. Each 
pathway we highlight is grounded 
in established literature, qualitative 
work, and subject-matter 
expertise, and reinforced by a 
decade of our own research into 
what drives high performance.

Service traits → Software 
delivery performance

A service’s inherent traits dictate 
the challenges of its delivery. An 
older service, for example, often 
carries significant technical debt 
that creates friction and slows 
delivery.4,5 A service’s criticality, on 
the other hand, acts as a powerful 
catalyst for organizational 
attention and resources. This 
focus may streamline processes 
and invest in advanced practices 
like automated testing and 
Site Reliability Engineering, 
simultaneously improving both 
speed and stability. 

Non-critical services are often 
starved of this investment, leading 
to neglect, accumulating risk, and 
creating a drag on performance 
that only becomes visible when it 
is too late. An AI-infused service 
introduces many of the challenges 
of MLOps,6 each fundamentally 
altering the stability and speed of 
the delivery pipeline.

Process and practice → 
(Multiple outcomes)

DORA’s research has 
demonstrated, over the last 
decade, that the way people and 
teams work dictates their ability 
to ship software, work effectively, 
collaborate, and ultimately build 
great products. While the specific 
practices explored this year may 
be different and the development 
world is now inundated with AI, 
this fundamental principle holds.

Well-designed processes …

1.	 Turn software throughput 
and stability into repeatable 
outcomes,7

2.	 Reduce coordination overhead 
and allow teams to spend 
energy on developing and 
learning instead of fire-fighting 
and stifling process,8,9

3.	 Reduce cognitive load and 
buffer individuals from stress,10,11

4.	 Help ideas become a reality 
without compromising security, 
software delivery performance, 
or reliability.12,13

Team performance → 
Individual outcomes

A well-functioning team doesn’t 
just deliver products; it carries 
the individual.14 Collaborative, 
reliable, and efficient teams 
bolster and amplify an individual’s 
performance. A team lacking in 
those traits stifles and constrains 
an individual, creating demands 
that drain them.15,16 In this way, a 
high-performing team provides 
both the conditions for good work 
and the pathways for that work to 
make an impact.

Environment traits → 
Individual outcomes

The work environment exerts 
forces on individuals that 
impact how they work and how 
they experience work. We can 
understand these forces through 
the Job Demands-Resources 
(JD-R) model, which separates 
factors that cause stress 
(demands) from those that enable 
success (resources).17 Larger 
organizations, for example, often 
create demands like navigating 
bureaucracy and coping with 
shifting priorities.18 Industries 
all have unique demands that 
could change the prevalence and 
experience of burnout.19
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Conclusion
The theory outlined in this chapter 
is the foundation upon which our 
analysis rests. 

We have focused on the model’s 
most critical pathways rather 
than providing an exhaustive 
justification for every link. This  
is a deliberate choice to offer 
clarity and transparency into  
the core assumptions that guide 
our conclusions. 

Further, certain industries might 
be facing external pressures that 
create stressors due to a sense 
of uncertainty.20,21 Organizations 
also vary dramatically in terms of 
the availability of resources (for 
example, tools) and the stability 
of priorities. A lack of resources 
makes work difficult. Separately, 
unstable priorities create moving 
targets that de-incentivize 
ambitious, long-term projects.22

Our research model and its theory

By providing this blueprint, we 
invite you to rigorously evaluate 
our findings, supplement your own 
thinking, and apply these causal 
stories to the challenges you face. 

This model is our map; we 
encourage you to use it, question 
it, and help us improve it.
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Next steps

Read the book:  
Flow engineering: From Value Stream Mapping to 
Effective Action. IT Revolution.  
https://itrevolution.com/product/flow-engineering

Read publications from DORA’s research program, 
including prior DORA Reports.  
https://dora.dev/publications

Review frequently asked questions about the 
research and the reports. https://dora.dev/faq

Read and submit changes, corrections, and 
clarifications to this report. https://dora.dev/
publications/errata

Check if this is the latest version  
of the 2025 DORA Report:  
https://dora.dev/vc/?v=2025.1

Join the DORA Community to discuss, learn, 
and collaborate on improving the impact of 
technology-driven teams and organizations. 
https://dora.community

Explore the capabilities that enable a climate for 
learning, fast flow, and fast feedback.  
https://dora.dev/capabilities

Read the book:  
Accelerate: The Science of Lean Software and 
DevOps: Building and Scaling High Performing 
Technology Organizations. IT Revolution.  
https://itrevolution.com/product/accelerate

Read the book: Team Topologies:  
Organizing Business and Technology Teams  
for Fast Flow. IT Revolution.  
https://itrevolution.com/product/team-topologies/

Read the book:  
The Skill Code: How to Save Human Ability in  
an Age of Intelligent Machines. HarperCollins.  
https://www.harpercollins.com/products/the-skill-
code-matt-beane
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Appendix

Organizational performance: 
This is a high-level measure of the 
overall success of the organization 
based on characteristics like 
profitability, market share, and 
customer satisfaction.

For each of the following 
performance indicators, how did 
your organization do relative to its 
goals over the past year?

•	 Increased number of customers

•	 Relative market share for 
primary products

•	 Your organization’s overall 
performance

•	 Your organization’s overall 
profitability

•	 Achievement of organizational 
and mission goals

•	 Customer satisfaction

•	 Operating efficiency

•	 Quality of products or services 
provided

Team performance: This 
factor measures the perceived 
effectiveness and collaborative 
strength of an individual’s 
immediate team.

How outcomes were evaluated
How would you rate your team’s 
current performance in the 
following areas?

•	 Delivering innovative solutions

•	 Adapting to change

•	 Effectively collaborating with 
each other

•	 Being able to rely on each other

•	 Efficiently working together 

Product performance: This 
factor measures the success and 
quality of the products or services 
the team is building based on 
characteristics like helping users 
accomplish important tasks, 
keeping information safe, and 
performance metrics like latency.

For the primary service or 
application that you work on, how 
would you rate your application 
or service’s current performance 
across the following areas?

•	 Performance metrics like 
latency

•	 Doing what it is supposed to do

•	 Helping people accomplish 
what is important to them

•	 Usability and ease of navigation

•	 Keeping user information safe

•	 Reliability and availability for 
users

Software delivery throughput: 
This represents the speed and 
efficiency of the software delivery 
process. See the Understanding 
your software delivery 
performance chapter for more 
details.

•	 How often does your 
organization deploy code to 
production or release it to end 
users?

•	 What is your lead time for 
changes (that is, how long 
does it take to go from code 
committed to code successfully 
running in production)?

•	 How long does it generally 
take to restore service after a 
change to production or release 
to users results in degraded 
service (for example, leads to 
service impairment or service 
outage) and subsequently 
requires remediation (for 
example, requires a hotfix, 
rollback, fix forward, or patch)?
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Software delivery instability: 
This captures the quality and 
reliability of the software delivery 
process. See the Understanding 
your software delivery 
performance chapter for more 
details.

•	 Approximately what percentage 
of changes to production 
or releases to users result 
in degraded service (for 
example, lead to service 
impairment or service outage) 
and subsequently require 
remediation (for example, 
require a hotfix, rollback, fix 
forward or patch), if at all?

•	 Approximately what percentage 
of deployments in the last six 
months were not planned but 
were performed to address 
a user-facing bug in the 
application?

Code quality: This captures an 
individual’s assessment of the 
quality of code underlying the 
primary application or service they 
work on.

•	 How would you rate the quality 
of code underlying the primary 
service or application you work 
on?

Individual effectiveness: This 
factor captures an individual’s 
self-assessed effectiveness and 
sense of accomplishment at work.

•	 In the last three months, how 
effectively were you able 
to perform your tasks and 
responsibilities at work?

•	 In the last three months, how 
productive did you feel in your 
work?

•	 In the last three months, how 
much impact do you think your 
work has had?

•	 In the last three months, how 
often were you able to reach a 
high level of focus or achieve 
“flow” at work?

Valuable work: This measures the 
self-assessed amount of time an 
individual spends doing work they 
feel is valuable and worthwhile. 

•	 In the last three months, 
approximately what percentage 
of your time was spent doing 
work that felt valuable and 
worthwhile?

Friction: This measures the 
extent to which friction hinders an 
individual’s work.

•	 In the last three months, to what 
extent did friction hinder your 
work?

Burnout: This measures feelings 
of exhaustion and cynicism related 
to one’s work.

In the last three months, to what 
extent have you experienced the 
following?

•	 Felt indifferent or cynical 
towards your work

•	 Felt burned out from your work

•	 Felt ineffective in your work

•	 Your feelings about work 
negatively affected your life 
outside of work

Appendix

AI adoption

AI adoption is not a key outcome 
but it is a central measure used 
throughout the report. Here’s a 
bit more background on how we 
measure it.

AI adoption: This factor measures 
the extent to which individuals are 
integrating AI into their daily work 
and their attitudes toward it.

In the last three months, when you 
encountered a problem to solve 
or a task to complete at work, how 
frequently did you use AI?

In the last three months, how 
much have you relied on AI at 
work?

In the last three months, how 
much did you trust the quality 
of the output from AI-generated 
code as part of your development 
work?
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Appendix

Definition used for platform 
and platform team:

Platform: A platform is a set of 
capabilities that is shared across 
multiple applications or services. 
A company may have multiple 
overlapping platforms, but we 
refer to these overall as “the 
platform.”

Platform team: A platform 
engineering team is a group of 
people dedicated to building and 
running the platform. A dedicated 
platform engineering team is not 
required.

Platform engineering: The 
software and systems engineering 
practice used when building a 
platform.

Platform engineering

List of characteristics defining a 
robust platform:

To what extent does your 
platform(s) demonstrate the 
following characteristics?

The platform helps me build and 
run reliable applications and 
services.

The platform’s user interface (UI) is 
straightforward and clean.

The platform provides the tools 
and information I need to work 
independently.

The platform helps me build 
and run secure applications and 
services.

The platform behaves in a way I 
would expect.

The platform helps me follow 
required processes (such as,  
code reviews, security sign-offs).

The platform provides the 
tools and info I need to work 
independently.

The platform gives me clear 
feedback on the outcome of my 
tasks.

The tasks I perform on the 
platform are well automated.

The platform team acts on the 
feedback I provide.

The platform is easy to use.

The platform effectively abstracts 
away the complexity of underlying 
infrastructure.
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“State of AI-assisted Software 
Development” by Google LLC is 
licensed under CC BY-NC-SA 4.0.
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