
State of AI-assisted
Software Development

2025

Platinum sponsors Premier research partner

Research partnersGold sponsors

Contents

03

Executive summary

08

Foreword

11

Understanding your
software delivery
performance

23

AI adoption and use

33

Exploring AI’s
relationship to
key outcomes

49

DORA AI
Capabilities Model

65

Platform
engineering

73

Value stream
management

79

The AI mirror:
How AI reflects
and amplifies your
organization’s true
capabilities

89

Metrics frameworks

95

Final thoughts:
From insight
to action

97

Acknowledgements

99

Authors

103

Demographics and
firmographics

113

Methodology

131

Our research model
and its theory

137

Next steps

138

Appendix

Contents 2
v. 2025.1

In 2025, the central question for
technology leaders is no longer if
they should adopt AI, but how to
realize its value. DORA’s research
includes more than 100 hours
of qualitative data and survey
responses from nearly 5,000
technology professionals from
around the world.1 The research
reveals a critical truth: AI’s primary
role in software development
is that of an amplifier. It
magnifies the strengths of high-
performing organizations and the
dysfunctions of struggling ones.

Executive summary

The greatest returns on AI
investment come not from the
tools themselves, but from a
strategic focus on the underlying
organizational system: the quality
of the internal platform, the clarity
of workflows, and the alignment
of teams. Without this foundation,
AI creates localized pockets of
productivity that are often lost to
downstream chaos.

Key takeaway:
AI is an amplifier

Executive summary3
v. 2025.1

Executive summary

Drawing on qualitative data and a global survey conducted between June 13 and July 21, 2025, this report
uncovers several key findings on the state of AI-assisted software development, including:

AI adoption has become nearly
universal. The majority of survey
respondents (95%) now rely
on AI and believe (more than
80%) it has increased their
productivity. Yet a notable
portion (30%) currently report
little to no trust in the code
generated by AI, indicating a
need for critical validation skills.

Read more in the AI adoption
and use chapter.

This year’s research identifies
seven distinct team profiles,
from “harmonious high-
achievers” to teams caught in
a “legacy bottleneck,” offering
a new framework for targeted
improvement.

Read more in the Understanding
your software delivery
performance chapter.

Value stream management
(VSM), the practice of
visualizing, analyzing, and
improving the flow of work
from idea to customer, acts
as a force multiplier for AI,
ensuring that local productivity
gains translate into measurable
improvements in team and
product performance.

Read more in the Value stream
management chapter.

Successful AI adoption requires
more than just tools. Our new
DORA AI Capabilities Model
identifies seven foundational
practices—including a clear
AI policy, a healthy data
ecosystem, and a user-centric
focus—that are proven to
amplify the positive impact of AI
on organizational performance.

Read more in the DORA AI
Capabilities Model chapter.

AI adoption now improves
software delivery throughput,
a key shift from last year.
However, it still increases
delivery instability. This suggests
that while teams are adapting
for speed, their underlying
systems have not yet evolved to
safely manage AI-accelerated
development.

Read more in the Exploring AI’s
relationship to key outcomes
chapter.

90% of organizations have
adopted platform engineering,
making a high-quality internal
platform the essential
foundation for AI success.

Read more in the Platform
engineering chapter.

Key findings

Friction

Burnout

Team performance

Software delivery throughput

Product performance

Code quality

Valuable work

Organizational performance

Software delivery instability

Individual effectiveness

-0.05 0.00 0.05 0.10 0.15 0.20

Estimated effect (standardized)

Estimated effect of AI adoption on key outcomes, with 89% credible intervals

The landscape of AI's impact

For outcomes in orange (e.g., Burnout), a negative effect is desirable.

Note: An increase here is not a desirable outcome

For outcomes in orange, such as Burnout,
a negative effect is desirable.
Figure 1: The landscape of AI’s impact

Estimated effect of AI adoption on key
outcomes, with 89% credible intervals

The landscape of AI’s impact

4
v. 2025.1

Analysis and advice for
technology leaders
Successful AI adoption
is a systems problem,
not a tools problem

Our new DORA AI Capabilities
Model reveals that the value
of AI is unlocked not by the
tools themselves, but by the
surrounding technical and cultural
environment. We’ve identified
seven foundational capabilities—
including a clear AI policy, a
healthy data ecosystem, a quality
internal platform, and a user-
centric focus—that are proven to
amplify the positive impact of AI
on performance.

Treat your AI adoption as an
organizational transformation.
The greatest returns will come
from investing in the foundational
systems that amplify AI’s benefits:
your internal platform, your
data ecosystem, and the core
engineering disciplines of your
teams. These elements are the
essential prerequisites for turning
AI’s potential into measurable
organizational performance.

Executive summary

Broad AI adoption with
healthy skepticism

While most developers use AI
to increase productivity, there
is healthy skepticism about the
quality of its output. This “trust
but verify” approach is a sign of
mature adoption.

The conversation must shift from
adoption to effective use. Your
training programs should focus on
teaching teams how to critically
guide, evaluate, and validate
AI-generated work, rather than
simply encouraging usage.

Seven profiles of team
performance

Simple metrics are not enough.
We identified seven distinct
team profiles, each with a unique
combination of performance,
stability, and well-being. This
model provides a nuanced way to
understand your teams’ specific
challenges and create tailored
pathways for improvement.

Use these profiles to diagnose
team health beyond software
delivery performance metrics.
Understand if a team is high-
performing but burning out,
or stable but stuck on legacy
systems, and apply the right
interventions.

Quality platforms unlock
AI’s value

Platform engineering is now nearly
universal (94% adoption). Our
data shows a direct correlation
between a high-quality internal
platform and an organization’s
ability to unlock the value of AI.
Organizations that treat their
platform as an internal product
designed to improve developer
experience see significantly
greater returns.

Prioritize and fund your platform
engineering initiatives. A poor
developer experience and
fragmented tooling may hamper
the impacts of your AI strategy.

A systems view directs AI’s
potential

This year’s research confirms
that VSM creates focused
improvement, driving higher team
and product performance.

VSM acts as a force multiplier
for AI investments. By providing
a systems-level view, it ensures
AI is applied to the right
problems, turning localized
productivity gains into significant
organizational advantages
instead of simply creating more
downstream chaos.

5
v. 2025.1

Executive summary

Using this report

This report details the data behind
these findings, including our new
DORA AI Capabilities Model, which
identifies the key practices that
amplify the benefits of AI.

While every organization is
unique, our findings provide a
framework to inform your strategy
and guide your teams. Use this
research to form hypotheses, run
experiments, and measure the
results to discover what drives
the highest performance in your
specific context.

1.	 Additional detail about who participated in this year’s research is available in the Demographics and firmographics chapter.

6
v. 2025.1

The DORA community1 provides
a platform for professionals to
engage with this research and
apply it to improve their own
organizational performance.

There are several reasons why you should be a part of the DORA
Community:

Learn from experts and peers: The community offers opportunities to
learn from guest speakers and other members through presentations
and discussions.

Stay up to date with research: Be the first to know about new
information and publications from DORA.

Collaborate and discuss: The DORA Community Google Group2
provides a forum for asynchronous conversations, announcements, and
event invitations. This allows members to discuss topics and share their
experiences with others in the field.

Engage in community events: A calendar of events, both virtual and
in-person, is available on DORA.community.

Contribute to the conversation: Contribute to the conversation by
listening, talking, and participating in chats. The community values the
input of its members and provides a space for ongoing discussions
on topics like leadership, team empowerment, and the evolution of
technology practices.

DORA community

Why join the DORA community?

1.	 The DORA community. https://dora.community
2.	 The DORA Community Google Group. https://groups.google.com/g/dora-community/about

7
v. 2025.1

https://groups.google.com/g/dora-community/about
https://dora.community/#calendar
https://dora.community
https://groups.google.com/g/dora-community/about

In 2013, I had the privilege of
working with Dr. Nicole Forsgren
and Jez Humble on the State
of DevOps research. This work
became the basis for the DevOps
Research and Assessment group—
DORA—which became part of
Google Cloud in 2018.

For many, it’s difficult to believe
that just over a decade ago,
software deployments were
dangerous and complex. They
required meticulous planning and
approvals, and often involved
hundreds of risky, error-prone,
manual steps. Despite planning
and care, deployments still caused
massive chaos and disruption,
which is why we only dared to do
them once per year.

Many believe that the goal of science is to explain the
greatest number of observable phenomena with the fewest
principles, to confirm deeply-held intuitions, and to reveal
surprising insights. For more than a decade, this is exactly
what the DORA research program has done.

I’m so excited by how this year’s research helps us better
understand how we can use AI to improve software.

In 2013, the State of DevOps
research showed that doing
multiple deployments per day was
not a crazy idea, and that reliability
seemed to require doing smaller
deployments far more frequently.

What was even more exciting:
you didn’t have to be in a
startup or in Silicon Valley. You
only needed great technical
practices (for example,
automated builds, automated
testing, automated deployments,
proactive production telemetry),
an architecture that enabled
independence of action (the
ability to develop, test, and deploy
value independently, with little
or no coordination cost), and a
culture of learning.

Foreword

Foreword

Gene Kim
Researcher, Vibe Coder, Co-author of
Vibe Coding, The Phoenix Project, DevOps
Handbook, Accelerate

8
v. 2025.1

Foreword

Now, 12 years later, as a
technology community, we are
again faced with a remarkable
new technology—AI. And as we
did a decade ago, we are asking:
Does this new technology actually
enable better software delivery
and organizational performance?

In 2024, DORA released a
landmark report measuring the
effects of AI on software delivery
performance, one of the first
systematic studies of its kind. The
results were startling to some.
The data suggested that the
more AI was used, the worse the
software delivery stability and
throughput became—the very
attributes software development
professionals have been working
for the last decade to improve

Yes, I’ve seen and experienced
how using AI can lead to
problems, everything from silently
deleted tests, obviously broken
functionality, and even deleted
production data. But I’ve also seen
AI used to massively improve
outcomes. I started calling last
year’s report and its findings “the
DORA 2024 anomaly”—that is, an
exciting mystery to be solved.

This belief was informed by
working for the past year with
Steve Yegge, famous for his 20
years at Amazon and Google. He
chronicled how a memo from
Amazon founder Jeff Bezos drove
Amazon’s transformation from a
software monolith into thousands
of microservices. This shift helped
enable 136,000 deployments
deployments per day in 2015,
an achievement that for years
inspired the DORA research.

Together, Steve and I wrote an
upcoming book, Vibe Coding,
where we define “vibe coding”
as any form of coding where you
don’t type out code by hand.
Instead, code emerges from an
iterative conversation with an AI.

We describe how vibe coding has
changed our lives—it has enabled
us to build things we want faster,
pursue more ambitious projects,
work more autonomously, have
more fun, and explore a vastly
larger option space (FAAFO!).

Steve and I have seen how using
vibe coding can go wrong,
resulting in deleted tests,
outages, and even deleted code
repositories. But we’ve concluded
that this was because the
engineering instincts that served
us well for decades were now
proving woefully insufficient.

Suppose the fastest you’ve ever
traveled is walking at four miles
per hour, and someone asks you
to drive a car at 50 miles per hour.
Without practice and training, you
will undoubtedly wreck the car.

We concluded that when AI
dramatically accelerates software
development, our control
systems—that’s us—must also
speed up.1 In other words, a
decade of DORA research has
likely already shown the entire
software development industry
practices must evolve.

•	 We need fast feedback loops—
faster than ever—to match AI-
accelerated code generation.

•	 We need to work within
software architectures that give
us independence of action—
more than ever, we need to be
able to develop, test, and deploy
software independently.

•	 We need a climate for
learning, especially given the
idiosyncratic nature of AI and its
rapid rate of advance.

In Vibe Coding, Steve and I
included the following case
studies that hint at the relevant
principles and practices—and why
they matter so much in the AI era.

9
v. 2025.1

Fast feedback loops and
software architecture

Fernando Cornago, global
vice-president, Digital and
E-Commerce Technology, Adidas,
oversees nearly a thousand
developers. In their generative
AI (gen AI) pilot, they found that
teams who worked in loosely
coupled architectures and had
fast feedback loops “experienced
productivity gains of 20% to
30%, as measured by increases in
commits, pull requests, and overall
feature-delivery velocity,” and had
a “50% increase in ‘Happy Time’”—
more hands-on coding and less
administrative toil.

In contrast, teams with slower
feedback loops due to tight
coupling with the Enterprise
Resource Planning (ERP) systems
saw little or no AI benefits at all.2

Culture of learning

We also appreciated the case
study from Bruno Passos, group
product manager, Developer
Experience, Booking.com,
which has a team of more than
3,000 developers. In their gen
AI innovation efforts, they found
that, “developer uptake of vibe
coding and coding assistant tools
was uneven ... Bruno’s team soon
realized the missing ingredient
was training. When developers
learned how to give their coding
assistant more explicit instructions
and more effective context, they
found up to 30% increases in
merge requests and higher job
satisfaction.”3

Both these case studies point
to the exciting possibility that
AI amplifies the strengths and
weaknesses of our engineering
practices. Individuals, teams,
and teams of teams with great
engineering practices are poised to
get outstanding benefits from AI.

We believe that those who don’t
have such practices will likely have
a very bad time, something the
“2024 DORA anomaly” hinted at.

I am grateful and honored to have
collaborated with Google’s DORA
team, along with our extended
team of experts and researchers
whose work and achievements I
admire, to help inform this year’s
research.

What excites me most is the scale
of the 2025 research: With nearly
5,000 participants, we’ll be able to
conduct a survey of practice that
will hopefully produce “Eureka!”
moments like those of a decade
ago. I’m confident we will see
similar breakthroughs in the
months ahead.

Some of the findings have already
made it into the report, but many
more tantalizing insights are
emerging, and I’m excited to share
those findings in the months and
years to come.

My gratitude goes to the entire
DORA team and the extended
contributors who made this
groundbreaking research possible.

1.	 The Nyquist stability criterion from control theory tells us that any control system must operate at least twice as fast as the system it controls.
2.	 Kim, Gene, and Steve Yegge. Vibe Coding: Building Production-Grade Software With GenAI, Chat, Agents, and Beyond. Foreword by Dario Amodei

(IT Revolution, 2025), 57.
3.	 Ibid, 58.

Foreword 10
v. 2025.1

Understanding your
software delivery
performance: A look at
seven team profiles

Software delivery performance

Nathen Harvey
DORA Lead, Google Cloud

11
v. 2025.1

It’s also the moment where
we begin to understand how
the software will perform in a
production environment, and how
well it meets the needs of our
users. There are many things we
can do in advance of this moment
to increase our confidence that
the software will do what we
expect it to, but the moment of
release is where the theoretical
becomes practical—or not.

Launching new software is
more than just launching new
applications and services. Once
an application has been released,
users’ feedback will encourage (or
force) you to make improvements.

Software delivery performance

The moment when new software has been released is worth
celebrating, because its primary value can be determined
only once the world can use it. These users may be
customers, partners, co-workers, strangers, and even other
technology systems.

Of course, there are many reasons
why you might want or need to
change an application, including to
remediate security vulnerabilities,
improve performance, reduce
operating costs, or reduce its
carbon footprint. At their heart,
these considerations can help
both users and the long-term
success of the application.

We also need to consider the
long-term health and well-being
of the teams responsible for the
building, deploying, operating,
and ongoing support of the
application. We need to have the
right capabilities and conditions
in place that allow these teams
to drive successful outcomes in a
sustainable manner.

These considerations, coupled
with the business imperatives to
move faster and drive greater
success, have led DORA to use
software delivery performance as
a focal point for our research.

Software delivery performance

12
v. 2025.1

Throughput is a measure of how
many changes can move through
the system over a period of time.
Higher throughput means that the
system can move more changes
through to the production
environment.

DORA uses three factors to measure software delivery throughput:

DORA uses two factors to measure software delivery instability:

Instability is a measure of how
well the software deployments
go. When deployments go well,
teams can confidently push more
changes into production and users
are less likely to experience issues
with the application immediately
following a deployment.

Software delivery performance

Instability

Throughput

Lead time for changes

The amount of time it takes for a change to go from committed to
version control to deployed in production.

Change fail rate

The ratio of deployments that require immediate intervention following
a deployment. Likely resulting in a rollback of the changes or a “hotfix”
to quickly remediate any issues.

Deployment frequency

The number of deployments over a given period or the time between
deployments.

Rework rate

The ratio of deployments that are unplanned but happen as a result of
an incident in production.

Failed deployment recovery time

The time it takes to recover from a deployment that fails and requires
immediate intervention.

Taken together, these two factors for software delivery performance
give teams a high-level understanding of their software delivery
performance. Measuring these over time provides insight into how
software delivery performance is changing. These factors can be used
to measure any application or service, regardless of the technology
stack, the complexity of the deployment processes, or its end users.

DORA’s software delivery performance factors take a high-level
view of the entire delivery process and focus on two key factors:
throughput and instability.

Software delivery
performance factors

13
v. 2025.1

Software delivery performance

While these five metrics provide
a vital snapshot of performance,
they are ultimately outcomes.
They tell you what is happening,
but they don’t explain why. A low
deployment frequency might
be caused by technical debt,
bureaucratic processes, or team
burnout—and the metrics alone
can’t distinguish between them.

Look beyond software
delivery performance

To connect the performance
data to the human experience
that drives it, we conducted a
cluster analysis. This approach
moves beyond isolated numbers
to reveal seven common team
profiles, each telling a deeper
story about the interplay between
performance, well-being, and
environment.

14
v. 2025.1

Team performance

This factor measures the
perceived effectiveness and
collaborative strength of an
individual’s immediate team.

Product performance

This factor measures the
success and quality of the
products or services the
team is building based on
characteristics like helping
users accomplish important
tasks and keeping information
safe, and performance metrics
such as latency.

Valuable work

This measures the self-assessed
amount of time an individual
spends doing work they feel is
valuable and worthwhile.

Friction

This measures the extent
to which friction hinders
an individual’s work. Lower
amounts of friction are generally
considered to be a positive
outcome.

Burnout

This measures feelings of
exhaustion and cynicism related
to one’s work. Lower amounts
of burnout are generally
considered to be a positive
outcome.

Software delivery instability

This captures the quality and
reliability of the software delivery
process.

Individual effectiveness

This factor captures an individual’s
self-assessed effectiveness and
sense of accomplishment at work.

Software delivery throughput

This represents the speed
and efficiency of the software
delivery process.

Organizations, teams, and
individuals usually strive to
increase team performance,
product performance, software
delivery throughput, individual
effectiveness, and valuable work
while reducing software delivery
instability, friction, and burnout.

Our analysis revealed seven
distinct team archetypes, ranging
from those excelling in healthy,
sustainable environments
(Harmonious high-achievers) to
those trapped by technical debt
(Legacy bottleneck) or inefficient
processes (Constrained by
process).

We conducted a cluster analysis to understand the human and systemic
factors behind software delivery performance and identify common
patterns. Our statistical clustering approach revealed seven team types
while considering the following factors:

Finding commonality

Software delivery performance15
v. 2025.1

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 1:
Foundational challenges

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 7:
Harmonious high-achiever

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 2:
The legacy bottleneck

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 5:
Stable and methodical

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 4:
High impact, low cadence

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 3:
Constrained by process

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 6:
Pragmatic performers

Software delivery performance

Cluster 1: Foundational challenges

These teams are stuck in survival mode, facing significant challenges
with fundamental gaps in their processes, environment, and outcomes.

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 1:
Foundational challenges

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 7:
Harmonious high-achiever

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 2:
The legacy bottleneck

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 5:
Stable and methodical

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 4:
High impact, low cadence

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 3:
Constrained by process

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 6:
Pragmatic performers

Percentage of respondents: 10% of
survey respondents are in cluster 1.

Performance indicators: Key
performance indicators related to team
output, product delivery, and value
creation are consistently low.

Team well-being: The data shows high
reported levels of burnout and significant
friction.

System stability: There are notable
challenges with the stability of the
software and operational environment.

Figure 3: Cluster 1:
Foundational challenges

The names and descriptions for each of these clusters are an interpretation of the data. Your team may see similar performance levels as a given
cluster but may not feel the cluster name or description describe your team well.
Figure 2: Performance levels of seven team archetypes

Performance levels of seven team archetypes

16
v. 2025.1

Cluster 2: The legacy bottleneck

Teams in this cluster are in a constant state of reaction, where unstable systems
dictate their work and undermine their morale.

Cluster 3: Constrained by process

These teams are running on a treadmill. Despite working on stable systems, their effort
is consumed by inefficient processes, leading to high burnout and low impact.

Cluster 4: High impact, low cadence

These teams produce high-impact work, reflected in strong product performance and
high individual effectiveness. However, this is coupled with a low-cadence delivery
model characterized by low software delivery throughput and high instability.

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 1:
Foundational challenges

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 7:
Harmonious high-achiever

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 2:
The legacy bottleneck

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 5:
Stable and methodical

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 4:
High impact, low cadence

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 3:
Constrained by process

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 6:
Pragmatic performers

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 1:
Foundational challenges

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 7:
Harmonious high-achiever

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 2:
The legacy bottleneck

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 5:
Stable and methodical

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 4:
High impact, low cadence

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 3:
Constrained by process

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 6:
Pragmatic performers

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 1:
Foundational challenges

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 7:
Harmonious high-achiever

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 2:
The legacy bottleneck

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 5:
Stable and methodical

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 4:
High impact, low cadence

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 3:
Constrained by process

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 6:
Pragmatic performers

Percentage of respondents: 11% of
survey respondents are in cluster 2.

Performance indicators: Key metrics for
product performance are low. While the
team delivers regular updates, the value
realized is diminished by ongoing quality
issues.

Percentage of respondents: 17% of
survey respondents are in cluster 3.

Performance indicators: Key
performance indicators show low
effectiveness and the creation of limited
customer or business value.

Percentage of respondents: 7% of
survey respondents are in cluster 4.

Performance indicators: The team
consistently achieves top-tier levels of
productivity. Both effectiveness and
product performance metrics are strong.

Team well-being: The data indicates
a demanding work environment. Team
members report elevated levels of friction
and burnout.

System stability: There are significant
and frequent challenges with the stability
of the software and its operational
environment, leading to a high volume of
unplanned, reactive work.

Team well-being: The data shows
high reported levels of both burnout
and friction. This suggests that current
workflows and processes are creating
a challenging and unsustainable work
environment for the team.

System stability: The team’s software
and operational environments are stable
and reliable. This indicates that technical
instability is not a primary contributor to
the challenges in performance and well-
being.

Team well-being: The data indicates a
low-friction environment, suggesting
that team processes are efficient and
collaborative.

System stability: The operational
environment is characterized by a high
degree of instability. This level of volatility
represents a significant risk to service
reliability and long-term sustainability.

Figure 6: Cluster 4:
High impact, low cadence

Figure 5: Cluster 3:
Constrained by process

Figure 4: Cluster 2:
The legacy bottleneck

Software delivery performance17
v. 2025.1

Cluster 5: Stable and methodical

These teams are the steady artisans of the software world, delivering high-quality,
valuable work at a deliberate and sustainable pace.

Cluster 6: Pragmatic performers

These teams consistently deliver work with impressive speed and stability, even if their
work environment hasn’t reached a state of peak engagement.

Cluster 7: Harmonious high-achiever

This is what excellence looks like—a virtuous cycle where a stable,
low-friction environment empowers teams to deliver high-quality work
sustainably and without burnout.

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 1:
Foundational challenges

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 7:
Harmonious high-achiever

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 2:
The legacy bottleneck

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 5:
Stable and methodical

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 4:
High impact, low cadence

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 3:
Constrained by process

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 6:
Pragmatic performers

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 1:
Foundational challenges

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 7:
Harmonious high-achiever

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 2:
The legacy bottleneck

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 5:
Stable and methodical

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 4:
High impact, low cadence

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 3:
Constrained by process

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 6:
Pragmatic performers

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 1:
Foundational challenges

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 7:
Harmonious high-achiever

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 2:
The legacy bottleneck

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 5:
Stable and methodical

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 4:
High impact, low cadence

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 3:
Constrained by process

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Individual effectiveness

Software delivery
instability

Burnout

Valuable
work

Friction

Product
performance

Software delivery
throughput

Team performance

Cluster 6:
Pragmatic performers

Percentage of respondents: 15% of
survey respondents are in cluster 5.

Performance indicators: Key
performance indicators for product
quality and value creation are consistently
positive. However, the team’s software
delivery throughput is in a lower
percentile, indicating a more deliberate
pace of work.

Percentage of respondents: 20% of
survey respondents are in cluster 6.

Performance indicators: Key
performance indicators for software
delivery are strong, with better-than-
average throughput and low instability.
The team maintains a steady cadence
of valuable output, reliably meeting
expectations.

Percentage of respondents:
20% of survey respondents are
in cluster 7.

Performance indicators: The team
shows positive metrics across multiple
areas, including team well-being, product
outcomes, and software delivery.

Team well-being: The data shows low
reported levels of burnout and friction,
which points to a healthy and sustainable
team environment.

System stability: The team’s software
and operational environments are
characterized by high stability and
reliability.

Team well-being: Where this cluster
differs from the absolute top tier is
in measures of team well-being. The
data shows average levels of reported
burnout and friction. This indicates a
work environment that is functional
and sustainable but may lack strong
engagement drivers.

System stability: The team’s software
and operational environments are stable
and reliable, providing the solid foundation
required for their high performance.

Team well-being: The work environment
is characterized by low reported levels of
burnout and friction.

System stability: The team operates on a
stable technical foundation that supports
both the speed and quality of their work.

Software delivery performance

Figure 9: Cluster 7:
Harmonious high-achiever

Figure 8: Cluster 6:
Pragmatic performers

Figure 7: Cluster 5:
Stable and methodical

18
v. 2025.1

Figure 10 provides powerful
evidence for a core tenet
of DORA research, that the
“speed vs. stability” trade-off
is a myth. The best performers
(clusters 6 and 7) excel at both
dimensions simultaneously.
Conversely, struggles are evident
at the other end of the spectrum.
Some groups, like those facing
foundational challenges (cluster 1),

Software delivery
performance levels

struggle with both throughput and
stability, while other high-impact,
low-cadence teams (cluster 4)
demonstrate that speed without
stability is a dangerous and
unsustainable proposition.

Excellence is achievable. Clusters
6 and 7 represent nearly 40% of
the total sample. Their existence
provides an empirical anchor for

1

7

2

5

4

3
6

-0.5

0.0

0.5

1.0

1.5

-0.3 0.0 0.3
Software delivery throughput

So
ft

w
ar

e
d

el
iv

er
y

in
st

ab
ili

ty

Cluster distribution across software delivery performance factors

Size represents total respondents in cluster

Size represents total respondents in cluster
FIgure 10: Cluster distribution across software delivery performance factors

what is possible—a benchmark
that organizations can strive for.
While achieving this state is
clearly difficult, these groups
serve as a powerful testament
to the fact that high-velocity,
high-quality software delivery
is not a theoretical ideal but an
observable reality.

Cluster distribution across software delivery performance factors

Software delivery performance19
v. 2025.1

How do you compare?
You may be wondering how your
team compares to the rest of the
participants in this year’s research.
It is important to remember that
these measurements are taken
at the application or service
level. Doing so encourages
cross-functional ownership and
accountability for improvement.

Furthermore, the best, most
insightful comparisons of software
delivery performance are for
the same application or service
over time. The goal is continuous
learning and improvement, not
necessarily achieving top software
delivery performance.

Lead time for changes

More than six months

Between one month and six months

Between one week and one month

Between one day and one week

Less than one day

Less than one hour

% at
level Top %

2%

13.2%

28.3%

31.9%

15%

9.4%

100%

98%

84.7%

56.4%

24.4%

9.4%

Deployment frequency

Fewer than once per six months

Between once per month and
once every six moths

Between once per week and once per month

Between once per day and once per week

Between once per hour and once per day

On demand (multiple deploys per day)

% at
level Top %

3.6%

20.3%

31.5%

21.9%

6.5%

16.2%

100%

96.4%

76.1%

44.6%

22.7%

16.2%

Figures 11 through 15 provide
insight into the distribution of
responses we received in the
2025 DORA survey.

Software delivery performance

Figure 11: Distribution of lead time for changes responses from the 2025 DORA Survey

Figure 12: Distribution of deployment frequency responses from the 2025 DORA Survey

Lead time for changes
distribution

Survey question:

What is your lead time for changes
(that is, how long does it take to go
from code committed to code
successfully running in production)?

Deployment frequency

Survey question:

How often does your organization
deploy code to production or release
it to end users?

20
v. 2025.1

Failed deployment recovery time

More than six months

Between one month and six months

Between one week and one month

Between one day and one week

Less than one day

Less than one hour

% at
level

1%

4.9%

9.4%

28%

35.3%

21.3%

100%

98.8%

93.9%

84.5%

56.5%

21.3%

Top %

Change failure rate

0%-2%

2%-4%

4%-8%

8%-16%

16%-32%

32%-64%

% at
level Top %

>64%

8.5%

8.1%

19.6%

26%

19.5%

12.5%

8.5%

16.7%

36.2%

62.2%

81.6%

94.1%

5.9% 100%

13.7%

5.8%

Rework rate

0%-2%

2%-4%

4%-8%

8%-16%

16%-32%

32%-64%

% at
level Top %

>64% 7.3%

15.4%

24.7%

26.1%

6.9%

12.8%

26.5%

52.6%

77.3%

92.7%

100%

6.9%

Software delivery performance

Figure 13: Distribution of failed deployment recovery time responses from the 2025 DORA
Survey

Figure 14: Distribution of change failure rate responses from the 2025 DORA Survey

Figure 15: Distribution of rework rate responses from the 2025 DORA Survey

Failed deployment recovery
time distribution

Survey question:

How long does it generally take to restore
service after a change to production
or release to users results in degraded
service (for example, leads to service
impairment or service outage) and
subsequently requires remediation (for
example, requires a hotfix, rollback, fix
forward, or patch)?

Change failure rate
distribution

Survey question:

Approximately what percentage of
changes to production or releases to
users result in degraded service (for
example, lead to service impairment or
service outage) and subsequently require
remediation (for example, require a hotfix,
rollback, fix forward or patch), if at all?

Rework rate distribution

Survey question:

Approximately what percentage of
deployments in the last six months
were not planned but were performed
to address a user-facing bug in the
application?

21
v. 2025.1

Putting software delivery
performance into practice

The software delivery
performance metrics provide
a high-level view of the entire
delivery process. Changes to
these metrics over time can
provide insight into whether
things are improving or
deteriorating. Interventions
required to change the metrics
will likely vary for each application;
although some common patterns
may emerge, such as long review
and approval cycles.

Let’s walk through a hypothetical
example. During a regular
retrospective, a team has a
discussion about their software
delivery performance. They notice
that the lead time for changes for
the application they work on is
starting to increase.

They may have noticed this by
looking at a dashboard, but it’s
just as likely that they noticed
this through simple observations.
Precision for these metrics isn’t
always required, and teams will
generally know how they are
changing over time.

The team wants to reverse
this trend, but to do so needs
to understand what might be
causing it. This is where additional
data might be helpful. The team
may look at data from their
development systems—like their
code repository or an analytics
tool—and find that code reviews
seem to be taking longer.

The team agrees that this
is an area that they’d like
to improve and discusses
potential interventions, including
reprioritizing code reviews as part
of their daily work and striving
for smaller changes that may
be easier to review. With these
concrete steps identified, they
agree to review change approval
times and all of the software
delivery metrics in a month’s time
to see how they’ve progressed.

Whether your team identifies
as “Constrained by process”
or “Stable and methodical,”
the goal is the same: to foster
a mindset of continuous
improvement that moves you
toward a more harmonious and
high-achieving state.

Software delivery performance 22
v. 2025.1

AI adoption and use

AI adoption and use

Kevin M. Storer, Ph.D.
User Experience Researcher, Google Cloud

Derek DeBellis
Quantitative User Experience Researcher,
Google Cloud

23
v. 2025.1

Findings
As a whole, our findings regarding
the adoption and use of AI by
software developers point to
a broad adoption of and deep
reliance on AI across a diverse
range of tasks. This has yielded
perceived benefits for both
individual productivity and code
quality.

As we continue to explore AI adoption trends by the
software development industry, the use of AI in software
development has expanded significantly. In this rapidly
evolving space, we strive to develop evidence-based
guidance to help the software development community
navigate these changes. This year’s “State of AI-assisted
Software Development” represents our most in-depth
analysis of AI-assisted development yet.

AI adoption and use

Adoption

Ninety percent of this year’s
survey respondents report using
AI at work, a 14.1% increase over
the same metric in last year’s
report. This remarkably high
prevalence of AI use at work
suggests that AI use in software
development has now become
the standard.

AI user status
Percentage of respondents who use AI at work

10%

90%

0%

25%

50%

75%

100%

No Yes

Pe
rc

en
ta

ge
 o

f
re

sp
on

d
en

ts

Proportion of respondents who use AI at work

AI user status

Error bars show the 89% credible interval.Error bars show the 89% credible interval.
Figure 16: AI user status

24
v. 2025.1

Experience

Our respondents report a range of
experience using AI tools, with a
median of 16 months and a mean
of 16.22 months of experience.
For reference, ChatGPT was
released in November of 2022,1
approximately 31 months before
the launch of our survey. In our
data, we have captured both
early- and late-adopters in this
timeline, and note an observed
influx of adoption between late
2023 and mid 2024.

Time

AI users in our sample also vary
in terms of how much time they
spent interacting with AI on their
most recent workday. Survey
respondents report spending a
median of two hours of their most
recent workday interacting with AI,
representing about one-quarter of
an eight-hour workday.

Monthly AI user adoption

Time spent using AI on a recent workday

Number of new users starting each month, with key industry events

Distribution of daily interaction time among AI users

Figure 17: Monthly AI user adoption

Figure 18: Time spent using AI on a recent workday

AI adoption and use

G
it

H
ub

 C
op

ilo
t

C
ha

tG
PT

G
PT

-4

Ll
am

a
2

M
36

5
C

op
ilo

t

C
la

ud
e

3

G
em

in
i 2

.0

0

100

200

300

Jul
2022

Nov
2022

Mar
2023

Jul
2023

Nov
2023

Mar
2024

Jul
2024

Nov
2024

Mar
2025

Jul
2025

Month of AI adoption

N
um

b
er

 o
f

ne
w

 u
se

rs

Number of new users starting each month, with key industry events

Monthly AI user adoption

Median Start Date:
Apr 2024

Median = 2 hrs

0

100

200

300

0 4 8 12
Approximate hours of AI interaction

N
um

b
er

 o
f

re
sp

on
d

en
ts

Distribution of daily interaction time among AI users

Time spent using AI on a recent workday

“Well, I think over the past year or so, people have realized that generative AI is at the
point where it actually works for a lot of things. And now that that is kind of a given,
everyone has applications that could benefit from generative AI in some way.
And so I think there’s a lot of motivation to enable new features to save costs on
certain things to cut down on the amount of time it takes to create certain things. So
I think no one wants to get left behind … I do think that over time it will become more
and more integrated into everything and, if you’re not using generative AI in some
way then, yeah, I think it’s going to be difficult to keep up.”

25
v. 2025.1

https://openai.com/index/chatgpt/
https://openai.com/index/chatgpt/

Reflexive use

Although AI use is nearly
ubiquitous in our sample, reflexive
use—the default employment
of AI when facing a problem—is
not. Among AI users, only 7%
report “always” using AI when
faced with a problem to solve or a
task to complete, while 39% only
“sometimes” seek AI for help.

Still, a full 60% of AI users in our
survey employ AI “about half the
time” or more when encountering
a problem to solve or task to
complete, suggesting that AI has
become a frequent part of the
development process.

Reflexive AI use
How often users turn to AI when encountering a problem or task

AI adoption and use

1%

39%

26%

27%

7%Always

Most of the time

About half the time

Sometimes

Never

0% 10% 20% 30% 40%
Percentage of AI users

How often users turn to AI when encountering a problem or task

Reflexive AI use

Error bars show the 89% credible interval.

Over the past 18 months, Sabre has actively tracked the adoption of gen AI
assistants through usage analytics and satisfaction surveys. Adoption has
surged to 74% across developers with varying tenures and experiences, with
a notable increase in the use of AI for core development tasks.

This increased usage correlates with higher user satisfaction. A remarkable
86% of users report increased productivity. The steady rise in satisfaction
and reported time savings over time suggests that the benefits of gen AI
tools grow as users become more proficient.

Our analytics also revealed a slow uptake of the newest gen AI features, like
agent mode, with only 25% of users leveraging them. In response, Sabre is
enhancing training programs and fostering peer-to-peer knowledge sharing
to increase engagement and ensure our teams are proficient with AI tools.

Jacek Ostrowski, VP Platform Engineering, Sabre

Error bars show the 89% credible interval.
Figure 19: Reflexive AI use

26
v. 2025.1

61%

49%

62%

25%

57%

56%
56%

62%

66%

59%

55%

59%

62%

61%

66%

48%

68%

55%

66%

51%

50%

54%

51%

59%

64%

71%

(25%)

(44%)

(48%)

(57%)

(31%)

(53%)
(31%)

(36%)

(16%)

(32%)

(7%)

(49%)

(55%)

(17%)

(33%)

(58%)

(18%)

(35%)

(55%)

(38%)

(33%)

(54%)

(23%)

(55%)

(59%)

(60%)

Calendar management
Internal communication
Analyzing requirements

Performance analysis
Security analysis

Note taking
Planning & strategizing

Creating/editing videos
Maintaining legacy code

Code review
Creating specifications

Cleaning/organizing data
Understanding tech docs
Creating/editing reports

Debugging
Analyzing data

External communication
Brainstorming

Explaining concepts
Creating test cases

Writing documentation
General proofreading

Modifying existing code
Creating/editing images

Literature reviews
Writing new code

0% 25% 50% 75%
Percentage relying on AI

Proportion of task performers who use AI
Reliance on AI by task

Error bars show the 89% credible interval.
Parenthetical is the % of all respondents who perform the task. The 'Other' category is excluded.

AI adoption and use

Tasks

As in our 2024 DORA Report,2
the number one use for AI
tools among this year’s survey
respondents is writing new code,
with 71% of respondents who
write code using AI to assist them
in doing so.

Reliance on AI by task
Percentage of task performers who use AI

Less common uses of AI among
respondents whose jobs involve
those responsibilities include
analyzing requirements (49%),
internal communications (48%),
and calendar management (25%).

A large majority of respondents
whose jobs involve those
responsibilities also use AI for
literature reviews (68%), modifying
existing code (66%), proofreading
(66%), and creating or editing
images (66%).

Reliance

In addition to using them
frequently, we also find
development professionals are
heavily reliant on AI tools at work.

Only 5% of AI users in our sample
report relying on AI at work “not
 at all”, while 65% report relying on
AI a “moderate amount” (37%), “a
lot” (20%), or a “great deal” (8%).

General reliance on AI at work
Distribution of reliance levels among AI users

5%

30%

37%

20%

8%

Not at all

A little

A moderate amount

A lot

A great deal

0% 10% 20% 30% 40%

Percentage of AI users

Le
ve

l o
f

re
lia

nc
e

Distribution of reliance levels among AI users

General reliance on AI at work

Error bars show the 89% credible interval.
Error bars show the 89% credible interval.
Figure 20: General reliance on AI at work

Error bars show the 89% credible interval.
Parenthetical is the % of all respondents who perform the task. The ‘Other’ category is excluded.
Figure 21: Reliance on AI by task

27
v. 2025.1

AI adoption and use

How customization
supports developer
engagement

When AI gets in the way

While AI coding assistants are designed to save time
and reduce effort, a study conducted at UC Berkeley
found that they can also introduce friction in some
tasks. For example, student developers embraced
AI when handling mechanical tasks like writing
boilerplate and installing packages, but when deeper
understanding was needed, such as interpreting
complex code, those same student developers
largely ignored AI suggestions.

Eye-tracking revealed less than 1% visual attention on
AI chat during interpretive tasks, compared to nearly
19% during the more mechanical ones. The students
in this study often chose to complete tasks manually
to retain control and comprehension, even ignoring
accurate, time-saving suggestions.

Takeaway for teams

To get the most out of AI coding assistants,
developers and teams should invest in customization.
This study showed that AI may disrupt interpretive
tasks by adding cognitive load, especially when
developers are trying to make sense of unfamiliar
code.

The key is aligning AI support with the nature of the
task and preferences of the developer. Tuning your
setup can transform AI from a source of friction
into a more efficient and satisfying development
experience.

What we studied

As AI assistants become more common in
development work, a graduate research team at
UC Berkeley studied how student developers use
AI-powered integrated development environments
(IDEs) in practice. Using eye-tracking data and
interviews, the team observed how Python
developers with between one and five years of
experience tackled two short tasks: one involving
an unfamiliar library, and another requiring
interpretation of a cryptic function.

By applying insights from this study, developers
of all experience levels may find ways of working
with AI coding assistants that are more attuned
to their needs.

Customization as a solution

To reduce friction and better support focused work,
developers and teams can customize their AI tools.
Most IDEs now offer features like toggling inline
suggestions, enabling “on-demand only” modes, or
adjusting the style and structure of suggestions.

Repository-level config files and linked
documentation can help AI assistants follow
established protocols. Experimenting with these
settings can align AI behavior with the cognitive
demands of different tasks, helping to reduce
disruption and increase the usefulness of AI assistants.

Edward Fraser
Graduate student at UC Berkeley’s School
of Information

28
v. 2025.1

AI adoption and use

Mode of AI use

In addition to asking respondents
where they interact with AI, and
for what purposes, we asked
how frequently they interact
with AI in each of the following
“modes”: 1) chat, representing
any type of turn-by-turn text-
based interaction; 2) predictive
text, like tab-to-complete code
suggestions; 3) collaborative,
using AI to make more broad

Surfaces

Conversational AI chatbots are
the most common vehicle for
interacting with AI, followed by
AI embedded within the IDE.

Respondents report interacting
less frequently with AI as part
of automated tool chains and
other development tools and
platforms, but this may be a
feature of those AI tools being
less visible to their users.

Where people interact with AI

Frequency of AI interaction modes

Percentage of respondents using each interaction surface

Percentage of responses for each interaction mode

18%

55%

31%

22%

41%

18%Other dev tools & platforms

Automated tool chain

Internal web interfaces

External web interfaces

Development environment (IDE)

Conversational AI (chatbots)

0% 10% 20% 30% 40% 50%

Percentage of respondents

Proportion of respondents using each interaction surface

Where people interact with AI

Error bars show the 89% credible interval. The 'Other' category is excluded.

61% 12% 7% 3% 5% 8% 4%

10% 19% 19% 8% 10% 25% 9%

38% 20% 13% 6% 7% 12% 5%

19% 17% 14% 5% 7% 22% 16%

Agent mode: AI autonomously operating in the
background, possibly making changes without

direct oversight

Collaborative: using AI to make broad,
coordinated code changes

Chat: AI-assisted conversations for coding tasks

Predictive text, for example code completions

Never

A fe
w tim

es a m
onth

1–3 days a week

4–6 days a week

Once a day

A fe
w tim

es a day

Hourly
 or m

ore

Frequency of use

Proportion of responses for each interaction mode

Frequency of AI interaction modes

is least common, with a majority
(61%) of respondents reporting
“never” interacting with AI tools
in an agentic mode. This usage
pattern likely reflects the relative
maturity of these AI modes; the
lower adoption of agentic AI is
consistent with its more recent
emergence compared to the more
established chat and predictive
text functionalities.

changes to a codebase; and
4) agent, in which AI is allowed
to operate relatively unsupervised
and make changes without
direct oversight.

Corresponding with chatbots and
in-IDE interactions being most
frequent among our respondents,
textual chat and predictive text
modes are the most common
modes for respondents to
interact with AI. Use of AI agents

Error bars show the 89% credible interval. The ‘Other’ category is excluded.
Figure 22: Where people interact with AI

Figure 23: Frequency of AI interaction modes

29
v. 2025.1

AI adoption and use

Code quality

In addition to perceiving positive
impacts on their productivity,
a majority (59%) of survey
respondents also observe that AI
has positively impacted their code
quality. 31% perceive this increase
to be only “slight” and another
30% observe neither positive nor
negative impacts. However, just
10% of respondents perceive any
negative impacts on their code
quality as a result of AI use.

“I feel like AI sometimes writes better code than
I do for certain things, mainly because I feel like it’s
been trained really well. I mentioned before: code
is very binary. It either works or it doesn’t. The code
that AI writes is usually good enough for my purpose.
And it often uses code standards that I might have
accidentally forgotten, or am too lazy to go back and
refactor. So I feel like it kind of creates things more
cohesively.”

Individual productivity

More than 80% of this year’s
survey respondents report a
perception that AI has increased
their productivity. Although
more than 40% report that
their productivity has increased
only “slightly,” fewer than 10%
of respondents perceive AI
contributing to any decrease in
their productivity.

Perceived impact on individual productivity

Perceived impact on code quality

Respondents’ assessment of how AI affects their productivity

Respondents’ assessment of how AI affects their code quality

1%

1%

3%

9%

41%

31%

13%

Extremely decreased

Moderately decreased

Slightly decreased

No impact

Slightly increased

Moderately increased

Extremely increased

0% 10% 20% 30% 40%

Pe
rc

ei
ve

d
 im

p
ac

t

Respondents' assessment of how AI affects their productivity

Perceived impact on individual productivity

Error bars show the 89% credible interval.

Percentage of respondents

1%

2%

7%

30%

31%

21%

7%

Extremely worsened

Moderately worsened

Slightly worsened

No impact

Slightly improved

Moderately improved

Extremely improved

0% 10% 20% 30%

Percentage of respondents

Pe
rc

ei
ve

d
 im

p
ac

t

Respondents' assessment of how AI affects their code quality

Perceived impact on code quality

Error bars show the 89% credible interval.

Error bars show the 89% credible interval.
Figure 24: Perceived impact on individual productivity

Error bars show the 89% credible interval.
Figure 25: Perceived impact on code quality

30
v. 2025.1

AI adoption and use

Trust

Similar to the 2024 DORA Report,2
this year’s findings reveal a
nuanced landscape of user trust
in AI-generated output, with a
clear majority of respondents
(70%) expressing some degree
of confidence in its quality. This
includes nearly a quarter of
respondents (24%) who report
having "a great deal" or "a lot"
of trust. While 30% of those
surveyed indicate a more reserved
stance, with "a little" (23%) or "no
trust at all" (7%) in the quality of
AI-generated output.

This data highlights a key insight:
high levels of AI adoption and
perceived benefits can coexist
with a measured and nuanced
approach to trust. Our findings
suggest that absolute trust is not
a prerequisite for AI-generated
outputs to be useful. This pattern
aligns with established behaviors;
during our interviews, developers
compared this to the healthy
skepticism they apply to other
widely-used resources, such as
solutions found on Stack Overflow,
where information is used, but not
always implicitly trusted.

The trustworthiness of AI in
software development remains
an important topic for debate and
study, and we have previously
identified five strategies to help
foster developers’ trust in AI.3
However, our data suggests
developers may also already be
accounting for this limitation of AI
in their work.

7%

23%

46%

20%

4%

Not at all

A little

Somewhat

A lot

A great deal

0% 10% 20% 30% 40%
Percentage of respondents

Le
ve

l o
f

tr
us

t

Distribution of trust levels among respondents

Trust in the quality of AI-generated output

Error bars show the 89% credible interval.

Trust in the quality of AI-generated output
Distribution of trust levels among respondents

Error bars show the 89% credible interval.
Figure 26: Trust in the quality of AI-generated output

31
v. 2025.1

https://dora.dev/dora-report-2024
https://dora.dev/research/ai/trust-in-ai/
https://dora.dev/research/ai/trust-in-ai/

Final thoughts
Taken together, these findings
suggest that the use of AI in
software development has
become virtually ubiquitous.
AI is used in a wide range of
development tasks, relied on as
part of respondents’ workflows,
and frequently turned to when
facing a problem.

While respondents continue
to report concerns about the
trustworthiness of AI-generated
code, they widely recognize AI’s
positive impacts on their individual
productivity and observed
code quality. So despite some
imperfections, it seems AI use has
rapidly become standard practice
for a majority of organizations
engaged in software development.

Last year, we found that
competitive pressures were a key
driver of AI adoption in software
development.2 Many interviewees
expressed this as a “fear of
missing out” or “getting left
behind” by their peer developers
and competitor companies.

But, whether social pressure
is a logical motivation to adopt
a new technology is debatable.
While our data shows many
positive outcomes of AI adoption,
we have also documented
notable drawbacks.

For this reason, we caution against
interpreting these findings of
AI’s ubiquity as an indication that
all organizations should rapidly
move to adopt AI, regardless of
their specific needs. Rather, we
interpret these findings as a strong
signal that everyone engaged in
software development—whether
an individual contributor, team
manager, or executive leader—
should think deeply about whether,
where, and how AI can and should
be applied in their work.

1.	 Introducing ChatGPT | OpenAI. https://openai.com/index/chatgpt
2.	 Accelerate State of DevOps 2024. https://dora.dev/dora-report-2024
3.	 Fostering developers’ trust in generative artificial intelligence. https://dora.dev/research/ai/trust-in-ai

AI adoption and use

Whether a conservative or
permissive approach is right
will depend on the context.
But, the widespread adoption
of AI suggests that organizations
can no longer ignore the impacts
of its use.

We understand that decisions
about the extent to which AI
should be integrated into software
development are difficult and
best made from data. So, in
our chapter on DORA’s new AI
Capabilities Model, we explore
how cultural and technological
capabilities in organizations affect
the outcomes of their AI adoption
efforts, to provide insight into
ways organizations who choose to
integrate AI into their processes
can do so successfully.

32
v. 2025.1

https://dora.dev/research/ai/trust-in-ai

Exploring AI’s
relationship to
key outcomes

Exploring AI’s relationship to key outcomes

Derek DeBellis
Quantitative User Experience Researcher,
Google Cloud

33
v. 2025.1

In just three years, AI adoption and
use has undergone a remarkable
shift. A developer using AI may
have been surprising in 2022,
but today 90% of technology
professionals use AI at work. The AI
adoption and use chapter shows
near-universal adoption, and the
trend holds far beyond our data.

The 2025 Stack Overflow
Developer Survey found that 84%
of developers are now using or
planning to use AI tools in their
development process, a significant
jump from 76% the previous year.1

Daily use is also common, with
47% of respondents using AI tools
every day. Bolstering this trend,
Atlassian’s 2025 State of DevEx
Survey reports that nearly all
developers (99%) now save time
using AI tools.2

The individual rush is mirrored
in corporate strategy. 88% of
business leaders reported that
accelerating AI adoption is a
priority, according to a 2025
report from LinkedIn Corporate
Communications.3 A McKinsey
survey found 78% of respondents
report that their organizations
were using AI regularly for at least
one business function.4

This priority is reflected in
spending, too: Stanford’s 2025
HAI AI Index reports that total
global corporate investment in
AI hit $252.3 billion in 2024, a
26% increase from the previous
year.5 Perhaps nothing illustrates
this new reality more starkly than
the skills companies are hiring
for: U.S. job postings mentioning
generative AI skills grew by 323%
from 2023 alone.6

Exploring AI’s relationship to key outcomes

AI is the new normal in
software development

34
v. 2025.1

Given this rush to adopt, it’s
important that organizations
understand whether there is a
corresponding rush in benefits.
Widespread adoption doesn’t
automatically equal widespread
value. We need to acknowledge
that adoption can be messy,
driven as much by hype and fear
of missing out (FOMO) as by
informed strategy.

Adoption can also be limited and
constrained by organizational
systems, as we concluded in our
2024 DORA Report, which found
that AI returned a lot of promising
results but also increased software
delivery instability and decreased
software delivery throughput.7

The same 2024 DORA research
found an estimated 1.5% reduction
in software delivery throughput
and an estimated 7.2% increase
in software delivery instability for
every 25% increase in AI adoption.

Our research is not alone in
highlighting these complexities.
For instance, a recent study
from Model Evaluation & Threat
Research (METR) suggested a
stark misalignment between
perception and reality: developers
who were slowed down by AI
tools by 19% still believed the
tools had made them 20% more
efficient.8 In a similar vein, other
third-party research has begun to
indicate potential impacts of AI on
cognition and well-being, further
underscoring that as an industry,
we are still in the early stages of
understanding the true effects of
AI adoption.9,10,11

However, when developers were
asked to evaluate AI on each area
of the SPACE framework,12 they
reported mostly positive impacts
and few negative ones.13 Most
respondents in our chapter on AI
adoption and use also said that AI
has had a positive impact on their
code and their productivity.

What is the impact of
AI adoption?

These mixed signals indicate to
us that more evidence-based
work should be done to evaluate
the true impact of AI on product
development, especially given
the sheer scale of AI investment
and adoption. We believe that
the developer community and
employers should be setting
realistic expectations, and
gaining a clear perspective on
AI’s actual impact is the first
step toward managing those
expectations responsibly.

Exploring AI’s relationship to key outcomes35
v. 2025.1

In order to understand how key
outcomes differ as a function of
AI adoption, we need to be able to
measure AI adoption.

This year, we designed our
measure of AI adoption to follow
some simple rules:

Inclusive: Our measure shouldn’t
be biased toward any single
role (or, indeed, systematically
producing higher or lower
scores for anything other than AI
adoption). For example, a software
developer shouldn’t automatically
score higher just because they use
AI for coding. The measure needs
to capture a general orientation
toward AI, independent of a
person’s specific job function or
anything else besides meaningful
AI adoption.

Data-informed: As we do every
year, we let the data go first—even
if we have strong hypotheses.
Part of this process includes
conducting an exploratory
factor analysis,14 which is less
constrained by our prior beliefs.

Theory-driven: Our
conceptualization and
measurement of AI adoption
should connect with commonly
accepted understandings of AI
use and our qualitative work.

The analysis found that these
three survey items are answered
in a highly similar manner.

This provides evidence that there
is a single, underlying construct
that is causing these three
variables to move together.

We believe this factor captures
three conceptually intertwined
dimensions: a behavioral
dimension (use), a reliance
dimension (how deeply AI
is woven into an individual’s
workflow), and a critical attitudinal
dimension (trust). This aligns with
the literature and our qualitative
work.15,16,17,18

The result was a factor that
was composed of three highly
interrelated variables:

Reliance: In the last three months,
how much have you relied on AI at
work?

A feedback loop likely underlies
this relationship. Trust is a
prerequisite for use, but use is the
mechanism for building trust. This
creates the powerful feedback
loop: as users begin to trust a
system enough to use it, their
increased usage builds further
reliance and deeper trust, creating
a cycle of adoption.

Indeed, that cyclical nature makes
combining these variables a
perfect candidate for a factor,
especially given that our survey
is a snapshot, not a video of a
dynamic process.19 Adoption is a
psychological process involving
attitudes, intentions, and actions.

Measuring AI adoption

Reliance Trust

Reflexive use

Figure 27: Items that make up
the AI adoption factor

Trust: In the last three months,
how much did you trust the quality
of AI-generated output at work?

Reflexive use: In the last three
months, when you encountered
a problem to solve or a task to
complete at work, how frequently
did you use AI?

AI adoption

Items that
make up the
AI adoption
factor

Exploring AI’s relationship to key outcomes 36
v. 2025.1

Exploring AI’s relationship to key outcomes

With a measure of AI adoption
established, we can determine
whether our outcomes differ
when comparing different levels of
AI adoption.20 The basic form is:21

When comparing two people
who share the same traits,
environment, and processes, the
person with higher AI adoption
will, on average, report {number}
more or less {outcome}.22

Of course, almost no individual,
team, or organization is average,
but exploring these average
effects can unearth general
patterns. These patterns can
further help set the context for
more nuanced analyses in the
DORA AI Capabilities Model
chapter, where we explore
the conditions under which AI
adoption is most (and least)
beneficial.

Every year we try to select and
construct outcomes that we think
represent the goals of people who
read the report. In short, we want
to evaluate practices in the terms
that we think matter to technology
professionals. Here are the
outcomes we studied this year:

Connecting this measure to outcomes
Organizational performance

 This is a high-level measure
of the overall success of
the organization based on
characteristics like profitability,
market share, and customer
satisfaction.

Software delivery throughput

This represents the speed
and efficiency of the software
delivery process. See the
Understanding your software
delivery performance chapter
for more details.

Friction

This measures the extent
to which friction hinders
an individual’s work. Lower
amounts of friction are generally
considered to be a positive
outcome.

Team performance

This factor measures the
perceived effectiveness and
collaborative strength of an
individual’s immediate team.

Software delivery instability

This captures the quality and
reliability of the software
delivery process. See the
Understanding your software
delivery performance chapter
for more details.

Product performance

This factor measures the
success and quality of the
products or services the
team is building based on
characteristics like helping
users accomplish important
tasks, keeping information safe,
and performance metrics like
latency.

Individual effectiveness

This factor captures an
individual’s self-assessed
effectiveness and sense of
accomplishment at work.

Valuable work

This measures the self-assessed
amount of time an individual
spends doing work they feel is
valuable and worthwhile.

Burnout

This measures feelings of
exhaustion and cynicism related
to one’s work. Lower amounts
of burnout are generally
considered to be a positive
outcome.

Code quality

This captures an individual’s
assessment of the quality
of code underlying the
primary application or service
they work on.

37
v. 2025.1

Exploring AI’s relationship to key outcomes

The results this year

Friction

Burnout

Team performance

Software delivery throughput

Product performance

Code quality

Valuable work

Organizational performance

Software delivery instability

Individual effectiveness

-0.05 0.00 0.05 0.10 0.15 0.20

Estimated effect (standardized)

Estimated effect of AI adoption on key outcomes, with 89% credible intervals

The landscape of AI's impact

For outcomes in orange (e.g., Burnout), a negative effect is desirable.

Note: An increase here is not a desirable outcome

Estimated effect of AI adoption on key outcomes, with 89% credible intervals
The landscape of AI’s impact

Figure 28 visualizes the relationships AI adoption has with these outcomes.23

We estimate that between two
people who share the same traits,
environment, and processes, the
person with higher AI adoption will
report:24

•	 Higher levels of individual
effectiveness

•	 Higher levels of software
delivery instability

•	 Higher levels of organizational
performance

•	 A higher percentage of time
doing valuable work

•	 Higher levels of code quality25

•	 Higher levels of product
performance

•	 Higher levels of software
delivery throughput

•	 Higher levels of team
performance

•	 Similar levels of burnout

•	 Similar levels of friction

The following sections of this
chapter are going to be attempts
to make sense of this pattern of
results by hypothesizing what
their underlying causes are.

To construct these hypotheses,
we’re going to follow the literature,
our qualitative work, our subject-
matter experts, and what
we’ve learned from the DORA
community. See the Methodology
chapter for more details.

For outcomes in orange, such as Burnout, a negative effect is desirable.
Figure 28: The landscape of AI’s impact

38
v. 2025.1

Exploring AI’s relationship to key outcomes

Since last year’s report, several
outcomes continue to have
positive associations with AI
adoption. Let’s list them:

•	 Higher levels of individual
effectiveness26

•	 Higher levels of code quality

•	 Higher levels of team
performance

•	 Higher levels of organizational
performance

These steady, positive
relationships are becoming a
familiar story. We treat them
here as a baseline, not a headline,
as they are consistent with
last year’s findings and align
with what many practitioners
are experiencing. There are
likely innumerable underlying
mechanisms, many of which may
be specific to your organization,
team, context, and circumstances.

AI can help individuals by handling
boilerplate and other rote
scaffolding, surfacing plausible
options quickly, providing
highly problem-specific output,
summarizing and synthesizing
large swaths of disparate
information, and completing
higher-order tasks like design,
planning, and analysis. These
individual lifts may sum and
compound—small wins multiplied
across people and cycles—to
benefit teams and organizations.

The positive associations
holding steady since 2024

Several outcomes continue to
show patterns that suggest a
less-than-favorable relationship
with AI:

•	 No relationship with friction

•	 No relationship with burnout

•	 AI is associated with an increase
in software delivery instability

We think the stubbornness of
these effects has more to do
with the systems, processes, and
culture an individual is nested
in. As of now, AI tends to turn
up at the keyboard, which can
help explain why code quality
and productivity benefit, but
friction, burnout, and instability
may not. They may reside beyond
the individual’s purview and be
tied more directly to how the
organization is wired.

We think of these outcomes
largely as properties and
consequences of the
sociotechnical system (combining
process and culture). Despite
all the benefits, friction remains
unaffected, burnout stays flat, and
delivery instability rises—unless
the surrounding system and
culture changes.

Stubborn results are reminders
AI is nested in a larger system

39
v. 2025.1

Exploring AI’s relationship to key outcomes

Friction

While a tool designed to automate
repetitive duties might seem
like a clear path to a smoother
workflow, our data indicates that
workplace friction is a much larger
and more complex issue than the
mere completion of rote tasks. As
we’ve indicated, some research
points to friction as a product of
processes beyond the individual.

 In 2019, Microsoft identified
process issues that get in the way
of having a good day:27

•	 Infrastructure issues such as
“unstable and slow systems and
tools”

•	 Outdated documentation

•	 Administrative workload

•	 Time pressure

•	 Repetitive tasks

One of their conclusions is that
managers should “prioritize
and target actions that improve
processes and tools.”

So, even if AI reduced friction
for individual work (for example,
writing code), inefficient
processes could negate that
benefit, especially if they’re not
prepared to handle the increased
volume of changes and the new
ways people are trying to work.

For example, an increase in
change volume without a
corresponding set of evolved
guardrails, roles, and “golden
paths” could increase verification
and coordination costs.28
However, we don’t believe the
story of friction is purely systemic.

For an individual, friction doesn’t
vanish so much as move: It shifts
from manual grind to deciding and
verifying, possibly in the form of
prompt iteration, result vetting,
and assessing code that looks
remarkably similar to correct
code.29 This could net out to
roughly no change in total friction
despite being able to produce
more impactful outputs and
automate certain rote tasks.

Burnout

While it’s tempting to assume that
a tool boosting productivity would
alleviate burnout, our findings
suggest burnout is stubbornly
resistant to technological
solutions. Burnout is likely heavily
influenced by the work culture one
is enveloped in.30

We’ve noted this in our own
data over the years. Burnout
is intricately connected with
leadership, priority stability,
and generative cultures.31 A
2017 meta-analysis found some
recurring burnout antecedents:
low workplace support, a lack of
workplace justice, low rewards,
job insecurity.32 Even if AI reduced
burnout, the effect would likely
be masked by culture’s weighty
influence.

Further, some clear signals are
emerging from our qualitative
work which are aligned with
literature on work intensification,33
suggesting perceived capacity
gains from AI-assisted
development tools have invited
higher expectations of work
output in some organizations. In
these cases, even if AI increases
individual effectiveness, the
balance between demands and
resources remains the same.

“We learned that AI is most effective when it augments the skills of talented
engineers. By automating the tedious, repetitive tasks, AI freed up our
developers to focus on strategic problem-solving and innovation.”

40
v. 2025.1

Exploring AI’s relationship to key outcomes

“Software development has definitely changed because of AI, and I definitely have felt it since this year.
Didn’t really feel it last year. But, I think with the recent innovation of MCPs [Model Context Protocol
servers], and being able to code with the model, I think that’s really changed a lot [in terms of]
releasing features, and the timeline of features, and how much work can be done in a certain
duration of time … Stakeholders are expecting more work to be done within [the product] in a quicker
manner. So deadlines and projects are on a shorter time crunch, and it’s definitely changing the way
I work. So, that worries me a little, because I think they were given a pretty hard deadline from leadership,
and by product leadership, in terms of shipping that product.”

Software delivery instability

If 11 years of DORA have taught
us anything, it’s that the technical
practices and processes of an
organization are intimately tied to
software delivery performance.
Lacking these foundational
capabilities can completely
neutralize any gains from AI.

For example, a team that has
adopted AI might still experience
instability if it hasn’t established a
strong software delivery pipeline
and is highly contingent on other
teams to deliver software. Yet
our data shows AI adoption
not only fails to fix instability,
it is currently associated with
increasing instability.

Perhaps these technical
capabilities are more vital than
ever, demanding even stricter
adherence to their principles.
However, it may be that even
this is not enough. Maybe the
evidence points toward a more
disruptive conclusion: These
technical capabilities and
measurements no longer suffice.
They must evolve for the AI era, be
replaced, or be supplemented.

Some might argue that instability
is an acceptable trade-off for
the gains in development
throughput that AI-assisted
development enables.

The reasoning is that the volume
and speed of AI-assisted delivery
could blunt the detrimental effects

of instability, perhaps by enabling
such rapid bug fixes and updates
that the negative impact on the
end-user is minimized.

However, when we look beyond
pure software delivery metrics,
this argument does not hold up.
To assess this claim, we checked
whether AI adoption weakens
the harms of instability on our
outcomes which have been hurt
historically by instability.

We found no evidence of such
a moderating effect. On the
contrary, instability still has
significant detrimental effects
on crucial outcomes like product
performance and burnout,
which can ultimately negate any
perceived gains in throughput.

41
v. 2025.1

Exploring AI’s relationship to key outcomes

We have observed some shifts
from our 2024 findings:

•	 AI’s relationship with valuable
time has reversed from negative
to positive

•	 AI’s relationship with software
delivery throughput has turned
from negative to positive

•	 AI’s relationship with product
performance has shifted from
neutral to positive

Each of these suggests that
people, teams, and tools have
adapted. People have had another
year to learn how to use AI,
organizations and teams have had
another year to reconfigure, and
AI companies have had another
year to develop better models and
experiences.34

We can start with the tools
themselves. Across many
benchmarks, AI tools are getting
better.35,36,37 Fine-tuning a pre-
trained model on your own
data used to be a complex
task requiring deep machine
learning expertise, but now,
many platforms have created
streamlined workflows.

Cloud providers have also
developed robust tools that
allow you to connect your
private, proprietary data sources
(like a customer database,
internal documents, and code
repositories) to the fine-tuning
process without exposing that
data to the public internet or the
foundation model provider.

Meanwhile, the ways that
organizations use AI have
continued to evolve, which
might provide AI with some extra
capabilities and guardrails for
important tasks like code review,
test generation, debugging, code
refactoring, documentation, and
error resolution.

Individuals and teams have likely
started to understand where,
when, and how AI is most useful.
For one, people are likely learning
to offload mundane, tedious, and
repetitive tasks to AI and spend
more time on problem-solving,
design, and creative work. This
would explain why AI adoption
starts to predict, in a reversal of
last year’s finding, a higher share
of time in valuable work.

Indeed, if AI is handling some of
the grunt work underlying coding
processes (scaffolding, boilerplate,
routine transformations),
developers may have more time to
focus on deploying code, leading
to increased software delivery
throughput and ultimately to
improved product performance.

We could also be observing
organizational systems adapting
into more fruitful environments
for AI, which could empower
individuals and teams to get
more out of their AI use, and also
help their benefits reach teams,
products, and organizations.

We explore some potential system
constraints that might help explain
this in the DORA AI Capabilities
Model and The AI mirror chapters.

It’s reasonable to wonder why
some of these effects were
impacted by adaptation and
others were not (for example,
software delivery instability).
The survey data doesn’t put us
in a good position to answer that
question. It is likely an admixture
of where people are focusing their
efforts, the salience of certain
constraints, and the challenge
of certain problems. This would
likely amount to different learning
curves.

Changes in last year’s patterns
suggest adaptation

42
v. 2025.1

Exploring AI’s relationship to key outcomes

“If it helps me, or does something
in 30 minutes that is going to
take me two hours or more, it’s
good, because now I have that
time and I can do something
else. I can do something
different. I can just do more.
And, so, it also helps you, sort
of, progress faster in your career
as well. Right? Because you are
learning new things faster, too.”

Across different levels, AI is
having a positive impact on most
outcomes, with some notable
exceptions: It has no measurable
relationship with burnout and
friction, and it continues its
detrimental relationship with
software delivery stability.

Comparing some of 2025’s
findings to last year’s, we get a
sense that language models, tools,
and workflows are evolving along
with the people and organizational
systems that interact with them.
People have found ways to use AI
to redirect their efforts to work
they consider more valuable, and
we’re starting to find ways for
AI adoption to level up to better
delivery throughput and product
performance.

It’s important to note that AI
hasn’t made everything better
for technology professionals.
The stubborn persistence of
some issues, including the rise
in instability, the flat levels of
friction, and burnout, is not
entirely a failure of the tool, but
also a failure of the system to
adapt around it. The persistence
of these effects suggests not so
much a failure of AI, but more the
burden of carrying the weight of
the organizational systems one is
nested in—and possibly a failure of
some of those systems to adapt to
the new paradigm.

Conclusion
We believe that the value of AI
is not going to be unlocked by
the technology itself, but by
reimagining the system of work it
inhabits. We explore this further
in the DORA AI Capabilities Model
and The AI mirror chapters.

43
v. 2025.1

Need for cognition

Existential oonnection

Cognitive offloading

Meaningful work

Authentic pride

-0.05 0.00 0.05

Standardized effect estimate

Points are posterior means; lines are 89% credible intervals

Estimated Effect of AI_Adoption_score_scaled on Key Outcomes

Exploring AI’s relationship to key outcomes

At its core, DORA’s focus is the
people who develop software.
The environment under which
developers work plays a critical
role in how they experience their
work lives. AI is poised to change
this environment as organizations
reshape their priorities, leaders
find new ways to innovate, and AI
becomes increasingly integrated
into their workflows. AI has the
potential to shift the kind of work
developers engage in and the
problems they work on.

The sociocognitive impact of AI
on professional developers

Points are posterior means; lines are 89% credible intervals
Estimated effect of AI adoption score scaled on key outcomes

Figure 29: Estimated effect of AI adoption score scaled on key outcomes

Daniella Villalba, Ph.D.
User Experience Researcher, Google Cloud

History shows that technological
advancements can lead to
substantive changes in people’s
mental models. Before Uber, the
idea of paying a stranger for a
ride in their personal car was
almost unthinkable. Yet today,
approximately 31 million people
in the U.S. and Canada use the
service at least once a month.

Professional developers are at
the forefront of this AI-driven
transformation, and our goal is to
capture the resulting shifts in their
experience as they occur.

We chose to investigate six
sociocognitive constructs that
explore how developers view
themselves in relation to their
work:

Authentic pride

Meaning of work

Need for cognition

Existential connection

Psychological ownership

Skill reprioritization

44
v. 2025.1

Exploring AI’s relationship to key outcomes

Meaningful work

Meaningful work refers to people’s
desire for their work lives to
be spent doing something that
matters. Research indicates that
people who derive a sense of
meaning through their work have
higher levels of well-being and job
satisfaction.2

We wanted to examine whether AI
adoption impacted professional
developers’ perception of
whether the work they do has
meaning. We hypothesized that AI
adoption would either (1) increase
developers’ sense of meaning in
their work by allowing them to
automate laborious tasks, and
increase the amount of time they
spend doing valuable work; or
(2) decrease developers’ sense
of meaning in their work by
interfering with their ability to
engage in tasks core to their role.

Results indicated no impact from
AI on developers’ perception of
their work as being more or less
meaningful. Again, it’s possible
that we might be too early in this
transformation to detect these
changes.

Need for cognition

The advent of AI provides people
with a quick and easy way to ease
their mental load. Some data
from academic research has
shown that student developers
report using AI when they want
to “turn off their brain.”3

While there are people who
deeply enjoy engaging in mental
activities,4 it’s possible that AI
might dampen this enjoyment
by providing effortless access to
answers. Complex problems can
now be solved instantly which may
lead to a decreased enjoyment of
mental effort for some.

But our findings indicate that AI
adoption did not lead to changes
in developers’ need to engage in
mental activities.

Authentic pride

Pride1 is a basic emotion. We
feel pride when we attribute
an accomplishment to internal
and controllable causes—our
behavior. For example, the pride
someone might feel after running
a marathon because they know
all the training miles it took to
get there. We feel good about
ourselves when we gain mastery
or accomplish a difficult task.

Why measure feelings of pride in
the context of AI? Because two
countervailing hypotheses exist,
each with important implications.
People might heavily rely on AI and
automate their work, leaving little
room for effortful achievement.
Or, AI might free up people to
do work they find valuable and
take pride in. We found evidence
to support the latter hypothesis:
higher AI adoption is associated
with greater levels of authentic
pride (see Figure 29). This dataset
also suggests a clear mechanism:
higher levels of AI adoption lead
to more time doing valuable work,
and people who spend a higher
percentage of their time doing
work they perceive as valuable
report higher feelings of pride.

These findings show the
potential downstream benefits
of developers learning to offload
mundane tasks to AI. They gain
control over the most valuable
asset—their time—and are free to
engage in projects and ideas that
matter to them.

45
v. 2025.1

Exploring AI’s relationship to key outcomes

Existential connection

Existential connection5 is the
feeling of bridging the gap
between your own inner world
and someone else’s. Philosopher
William James noted that this
gap makes it hard to truly know
another person’s experience.
This concept captures our ability
to form a deep, human link with
others, making us feel less alone in
our perspectives.

We chose to study developers’
existential connections because
the rise of AI could change how
we interact at work. AI offers
instant, personalized answers,
which might reduce the need for
developers to ask colleagues for
help. While efficient, this could
lead to fewer conversations and
shared problem-solving sessions.

We wondered if relying more on
AI and less on each other could
weaken workplace relationships
and leave people feeling more
isolated. Our research, however,
found no link between AI adoption
and a developer’s sense of
existential connection.

This could mean it’s simply too
early to see an impact from
this new technology. It’s also
possible that for every human
interaction AI replaces, it creates
new opportunities for connection
by helping us share and build
upon a wider base of collective
knowledge.

Psychological ownership

Psychological ownership is the
feeling that something is “yours,”
even if it doesn’t actually belong
to you. We can have feelings of
ownership about tangible objects
and intangible constructs, such as
our ideas.6 Many developers feel
a sense of ownership about the
code they write, and we wondered
whether writing code with AI
assistance weakens the sense of
personal ownership over that code.

Our findings indicate with 78%
certainty that AI adoption is not
associated with developers feeling
a diminished sense of personal
ownership over their work. To put
it simply, they did not perceive the
code as being “less theirs” when
they write with AI assistance.
This supports the interpretation
that today’s AI tools function as
sophisticated assistants rather
than autonomous agents.

The code I write is MY code

Most of my coworkers feel
the code they write is theirs

It is hard for me to think
of the code I write as mine

I sense that the code
I write is MY code

I feel a very high degree of personal
ownership for the code I write

-0.2 0.0 0.2 0.4

Disagreement:agreement average

It
em

XXX

OwnershipOwnership

Figure 30: Ownership

Because the AI is seen as a tool
to be wielded rather than a
collaborator who shares credit,
developers have psychologically
integrated it into their workflow,
much like a compiler or a linter.

However, there is a small (21%)
but notable probability that AI
decreases a sense of personal
ownership (see Figure 30). When
developers write code without the
assistance of AI, it’s clear that they
are doing the writing. For some,
the injection of AI into their code-
writing process could ambiguate
the lines between who is doing the
writing, reducing their perceived
investment and personal control,
two key psychological pathways to
feeling ownership over an object
or task.

46
v. 2025.1

Exploring AI’s relationship to key outcomes

1.	 We used a well-established measure of authentic pride. Tracy, Jessica L., Joey T. Cheng, Richard W. Robins, and Kali H. Trzesniewski. "Authentic and
hubristic pride: The affective core of self-esteem and narcissism." Self and identity 8, no. 2-3 (2009): 196-213.

2.	 Steger, Michael F., Bryan J. Dik, and Ryan D. Duffy. “Measuring Meaningful Work: The Work and Meaning Inventory (WAMI).” Journal of Career
Assessment, 2012, 20, no. 3. 322–337.

3.	 Schmidt, Dusana Alshatti, et. al. "Integrating artificial intelligence in higher education: perceptions, challenges, and strategies for academic
innovation." Computers and Education Open, vol 9 (2025). https://www.sciencedirect.com/science/article/pii/S2666557325000333

4.	 Cacioppo, John T., and Richard E. Petty. “The Need for Cognition.” Journal of Personality and Social Psychology, 1982, 42, no. 1. 116–131.
5.	 Pinel, Elizabeth C., Anson E. Long, Erin Q. Murdoch, and Peter Helm. "A prisoner of one’s own mind: Identifying and understanding existential

isolation." Personality and Individual Differences 105 (2017): 54-63.
6.	 Peck, Joann, and Suzanne B. Shu. “Psychological Ownership and Feelings of Possession.” The SAGE Handbook of Consumer Psychology, edited by

Curtis P. Haugtvedt et al. (SAGE Publications, 2009), 331–350.

Skill reprioritization

As developers increasingly
partner with AI, there is a growing
conversation about how this
collaboration might shift the
relative importance of different
skills. We wanted to examine
whether AI adoption impacted
which skills developers think are
more or less important for them
to do their job.

We hypothesized that AI-
specific skills and people-centric
skills might be viewed as more
important than skills specific to
code writing.

We asked participants to rate the
following eight skills from most
important to least important.

1.	 Creating technical
documentation

2.	 Problem-solving skills

3.	 Prompt engineering

4.	 Programming language syntax
memorization

5.	 Reading and reviewing code

6.	 Teamwork and collaboration

7.	 Understanding your team’s
codebase

8.	 Writing code

Not surprisingly, AI adoption
impacted the perceived
importance of prompt
engineering. AI adoption
also increased the perceived
importance of programming
language syntax memorization.
This finding is interesting and
worth further study, as one might
expect syntax memorization to
be one of the first development-
related skills to be perceived as
obsolete in the age of AI.

The most surprising finding is
that AI adoption did not impact
the perceived importance of
any other skill.

We are not ready to make
conclusions from this data as there
are many potential explanations
for these findings. These results
could signify that developers
are in a period of adaptation to
new AI-powered workflows, or
they may simply reflect a belief
that their unique expertise will
continue to be indispensable.

Takeaways

Together, these findings
indicate that AI adoption has
not meaningfully impacted
how developers experience
their work lives. We will continue
proactively monitoring this space
for any shifts.

In the meantime, we recommend
for organizations to give
developers the freedom to double
down on work they find valuable.
Continue to create opportunities
for developers to learn how to
leverage AI to their advantage so
they can offload toilsome tasks
and carve out space in their days
to spend more time doing work
that matters.

To buffer against potential
decreases in psychological
ownership, we recommend
developers view AI as a tool
created to work for them. Even as
this technology becomes more
autonomous, it is important for
developers to see themselves as
the ones in the driver’s seat.

47
v. 2025.1

Exploring AI’s relationship to key outcomes

1.	 2025 Stack Overflow Developer Survey. https://survey.stackoverflow.co/2025
2.	 “Atlassian research: AI adoption is rising, but friction persists.” https://www.atlassian.com/blog/developer/developer-experience-report-2025
3.	 “AI Adoption Starts at the Top: 3x more C-suites on LinkedIn are adding AI literacy skills compared to two years ago.”

https://news.linkedin.com/2025/ai-adoption-starts-at-the-top--3x-more-c-suites-on-linkedin-are-
4.	 “The state of AI: How organizations are rewiring to capture value.”

https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai
5.	 The 2025 AI Index Report. https://hai.stanford.edu/ai-index/2025-ai-index-report, 247. Sourcing quid 2024.
6.	 Ibid, 228. Sourced from Lightcast data.
7.	 Accelerate State of DevOps 2024. https://dora.dev/dora-report-2024
8.	 “Measuring the Impact of Early-2025 AI on Experienced Open-Source Developer Productivity.”

https://metr.org/blog/2025-07-10-early-2025-ai-experienced-os-dev-study
9.	 “ChatGPT May Be Eroding Critical Thinking Skills, According to a New MIT Study.” https://time.com/7295195/ai-chatgpt-google-learning-school
10.	 Gerlich, Michael. “AI Tools in Society: Impacts on Cognitive Offloading and the Future of Critical Thinking.” Societies, 2025, 15, no. 1. Article 6.

https://www.mdpi.com/2075-4698/15/1/6
11.	 “The Impact of Generative AI on Critical Thinking: Self-Reported Reductions in Cognitive Effort and Confidence Effects From a Survey of

Knowledge Workers.” https://www.microsoft.com/en-us/research/wp-content/uploads/2025/01/lee_2025_ai_critical_thinking_survey.pdf
12.	 Forsgren, Nicole, Margaret-Anne Storey and Chandra Maddila. “The SPACE of Developer Productivity: There’s more to it than you think.”

https://queue.acm.org/detail.cfm?id=3454124
13.	 “The SPACE of AI: Real-World Lessons on AI’s Impact on Developers.” https://arxiv.org/pdf/2508.00178
14.	 Quantitative Developmental Systems Methodology Core, Penn State. “Intro - Basic Exploratory Factor Analysis.”

https://quantdev.ssri.psu.edu/tutorials/intro-basic-exploratory-factor-analysis
15.	 Lee, John D., and Katrina A. See. "Trust in automation: Designing for appropriate reliance." Human factors 46, no. 1 (2004): 50-80.
16.	 Cody-Allen, Erin, and Rajiv Kishore. "An extension of the UTAUT model with e-quality, trust, and satisfaction constructs." In Proceedings of the 2006

ACM SIGMIS CPR conference on computer personnel research: Forty four years of computer personnel research: achievements, challenges & the
future, pp. 82-89. 2006.

17.	 Reliance is often considered a behavioral manifestation of trust: “Trust in Automation: Integrating Empirical Evidence on Factors that Influence
Trust”.

18.	 J. J. Po-An Hsieh and Wei Wang, “Explaining Employees’ Extended Use of Complex Information Systems,” European Journal of Information Systems
16, no. 3 (2007): 216–27.

19.	 Adoption is dynamic, but given we have a snapshot, we’re treating these highly co-determinant phenomena as unidimensional. If we had panel
data, we could be more explicit about the cycle.

20.	 Last year, we spoke in terms of “effects”. This year, however, we will speak in terms of comparisons. Although we try to do the work to create the
conditions to speak causally, we don’t want to give false assurances that we understand the underlying causal structure. Occasionally we will speak
in causal terms, but ultimately, we’re doing comparisons. This reasoning is summed up in Regression and Other Stories: “Strictly speaking, though, it
is inappropriate to label these as ‘“effects’” — at least, not without a lot of assumptions … what is observed is an observational pattern … These data
allow between-people comparisons … The safest interpretation of a regression is as a comparison … regression is a mathematical tool for making
predictions. Regression coefficients can sometimes be interpreted as effects, but they can always be interpreted as average comparisons.” Vehtari,
Aki, Andrew Gelman and Jennifer Hill, Regression and Other Stories (Cambridge University Press, 2020), 84-85.

21.	 Following the form suggested in Regression and Other Stories, 85.
22.	 Technically a standardized beta weight.
23.	 Technically, these are standardized beta weights, which equates to the estimated standard deviation difference in the outcome associated with a

standard deviation increase in AI adoption.
24.	 Our dataset is limited, so they’re not strictly identical, but they’re identical in aspects we consider important to blocking biasing pathways.
25.	 Bauer, Jared. “Does GitHub Copilot Improve Code Quality? Here’s What the Data Says.” The GitHub Blog. November 18, 2024. Updated February 6,

2025. https://github.blog/news-insights/research/does-github-copilot-improve-code-quality-heres-what-the-data-says/
26.	 This was called “productivity” last year. The measure differs slightly and “individual effectiveness” is a more accurate label.
27.	 Meyer, André N., Earl T. Barr, Christian Bird, and Thomas Zimmermann. “Today was a good day: The daily life of software developers.” IEEE

Transactions on Software Engineering, 2019, 47, no. 5. (2019): 863–-880.
28.	 Focus time effectiveness of computer assisted protected time for well-being and work engagement of information workers.
29.	 “Ironies of automation.” https://www.sciencedirect.com/science/article/abs/pii/0005109883900468
30.	 Arnold B. Bakker, Evangelia Demerouti, and Ana I. Sanz-Vergel, “Job Demands–Resources Theory: Ten Years Later,” Annual Review of Organizational

Psychology and Organizational Behavior 10 (2023): 25–53.
31.	 Accelerate State of DevOps 2024. https://dora.dev/dora-report-2024
32.	 Aronsson, Gunnar, Töres Theorell, Tom Grape, Anne Hammarström, Christer Hogstedt, Ina Marteinsdottir, Ingmar Skoog, Lil Träskman-Bendz, and

Charlotte Hall. “A systematic review including meta-analysis of work environment and burnout symptoms.” BMC Public Health, 2017, 17, no. 1. 264.
33.	 Work intensification: A systematic review of studies from 1989 to 2022.
34.	 “Technical Performance | The 2025 AI Index Report | Stanford HAI.” https://hai.stanford.edu/ai-index/2025-ai-index-report/technical-performance
35.	 The 2025 AI index Report by Stanford HAI has a lot of benchmark examples from 2023 to 2024. Nature pushes against AI benchmarks:

https://www.nature.com/articles/d41586-025-02462-5
36.	 “Technical Performance | The 2025 AI Index Report | Stanford HAI.” https://hai.stanford.edu/ai-index/2025-ai-index-report/technical-performance
37.	 The Imarena Overview Leaderboard (https://lmarena.ai/leaderboard) shows newer models at the top.

48
v. 2025.1

https://news.linkedin.com/2025/ai-adoption-starts-at-the-top--3x-more-c-suites-on-linkedin-are-
https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai
https://metr.org/blog/2025-07-10-early-2025-ai-experienced-os-dev-study
http://queue.acm.org/detail.cfm?id=3454124
https://quantdev.ssri.psu.edu/tutorials/intro-basic-exploratory-factor-analysis
https://www.nature.com/articles/d41586-025-02462-5

DORA AI
Capabilities Model

DORA AI Capabilities Model

Kevin M. Storer, Ph.D.
User Experience Researcher, Google Cloud

Derek DeBellis
Quantitative User Experience Researcher,
Google Cloud

Nathen Harvey
DORA Lead, Google Cloud

49
v. 2025.1

To develop this model, we
hypothesized a wide range of
capabilities that might contribute
to better outcomes for AI-assisted
development teams, based on
78 in-depth interviews, informed
opinions from leading subject-
matter experts, and previous
DORA research.

Through an extensive debate and
prioritization process, we selected
an initial set of 15 candidate
capabilities to include in this year’s
survey. Of these, a set of seven
AI capabilities showed substantial
evidence of an interaction with
AI use. That is, when teams
paired these capabilities with AI
adoption, the difference AI made
across important outcomes was
amplified.

These seven capabilities form the
core of our new model:

DORA AI Capabilities Model

AI capabilities

DORA has long strived not just to describe the state of software delivery, but to help
organizations make data-backed decisions about how to navigate an ever-changing
landscape of development tools, techniques, and technologies. AI is significantly changing
software development. While rapid advancements have brought many exciting possibilities,
they also bring new questions about how software development might evolve to best meet
this moment.

So, this year, we went beyond questions of who is adopting AI and how they’re using it,
to investigate the conditions in which AI-assisted software developers observe the best
outcomes.

We present these findings as our first DORA AI Capabilities Model. The seven AI capabilities
in this inaugural model are shown to amplify the benefits of AI adoption. Encompassing both
technical and cultural aspects of an organization, our research suggests that investing in
developing these areas can help unlock the potential of AI tools.

As with the DORA Core Model,1 we will continue validating, revising, and refining the DORA
AI Capabilities Model with further research. We are eager to share future iterations with the
DORA Community.

Clear and
communicated
AI stance

Working in small
batches

AI-accessible
internal data

Quality internal
platforms

Healthy data
ecosystems

User-centric focus

Strong version
control practices

50
v. 2025.1

https://dora.dev/research/

Clear and communicated AI
stance

A “clear and communicated
AI stance” refers to the
comprehensibility and awareness
of an organization’s official
position on how its developers
are expected and permitted to
use AI-assisted development
tools. Our measure of a clear
and communicated AI stance is a

single factor, comprised of four
individual indicators, measuring
respondents’ perceptions of:

1.	 the extent to which AI use feels
expected of them at work;

2.	 the extent to which their
organization supports
developers experimenting
with AI;

3.	 the extent to which it is clear
which AI tools are permitted
at work; and

4.	 the extent to which their
organization’s AI policy directly
applies to them.

In this way, an organization with
a clear and communicated AI
stance is one that encourages and
expects AI use by its developers,
supports its developers’
experimentation with AI at work,
and makes explicit which AI tools
are permitted and the applicability
of their AI policy for their staff.

DORA AI Capabilities Model

A clear and communicated AI stance moderates AI’s impact on individual effectiveness

A clear and communicated AI stance determines AI’s impact on organizational performance

Unsubstantiated Small increase Medium increase Large increase

extremely low low average high extremely high

AI policy moderates AI's impact on individual effectiveness

Clear and communicated AI stance

Unsubstantiated Small increase Medium increase

extremely low low average high extremely high

AI Policy determines AI's Impact on organizational performance

Clear and communicated AI stance
Figure 32: A clear and communicated AI stance determines AI’s impact on organizational performanc

Figure 31: A clear and communicated AI stance moderates AI’s impact on individual effectiveness

51
v. 2025.1

With a high degree of certainty, we
found that AI adoption’s positive
benefits depend on organizations
having a clear and communicated
AI stance, such that, when they do:

1.	 AI’s positive influence on
individual effectiveness is
amplified;

2.	 AI’s positive influence on
reported organizational
performance is amplified; and

3.	 AI’s neutral effect on friction is
made beneficial and shown to
decrease friction.

DORA AI Capabilities Model

A clear and communicated AI stance moderates AI’s impact on friction

A clear and communicated AI stance moderates AI’s impact on throughput using AI on a recent workday

Unsubstantiated Small decrease Medium decrease

extremely low low average high extremely high

Clear and communicated AI stance

AI Policy moderates AI's impact on friction

Unsubstantiated Small increase Medium increase

extremely low low average high extremely high

AI Policy moderates AI's impact on throughput

Clear and communicated AI stance

Figure 34: A clear and communicated AI stance moderates AI’s impact on throughput using AI on a recent workday

Figure 33: A clear and communicated AI stance moderates AI’s impact on friction

With a lesser degree of
certainty, we also found that,
in the presence of a clear and
communicated AI stance:

1.	 AI’s positive influence on
software delivery throughput
is amplified.

52
v. 2025.1

DORA AI Capabilities Model

Throughout the in-depth
interviews we conducted this
year, developers routinely and
consistently expressed a lack
of clarity and awareness of
their organization’s stance on AI
use in software development.
Importantly, this lack of clarity and
awareness is likely to manifest in
the form of 1) developers who are
acting too conservatively, using
AI less than they could because
they are afraid of overstepping
the organization’s parameters of
acceptable use; and 2) developers
who are acting too permissively,
using AI in ways that they should
not, which do overstep the
organization’s parameters of
acceptable use.

Neither of these cases is optimal.

For this reason, we have previously
shared these qualitative insights,
concluding that organizations
having a clear and communicated
stance about the expectations
and acceptability of AI in software
development can help foster
developers’ trust in AI,2 assuage
developers’ concerns about
data privacy in cases where they
are unwarranted or resultant
from misunderstanding,3 and
scale adoption of AI-assisted
development tools across the
organization.4

These new survey findings affirm
our recommendation to invest in
making an organization’s stance
on AI-assisted development clear
and communicated to its software
developers, and demonstrate
measurable positive outcomes of

“Why didn’t [I] explore [AI]
earlier? Some of it’s maybe the
stigma of ‘I don’t know how this
is going to be looked upon by
the other members of my team
and management’ … Nobody was
talking about it. So, I don’t think
there was any concern about,
‘man, I’m going to get in trouble
for this.’

But, it was also, ‘I’m not sure how
encouraged this is going to be,
and if this is something they’ll
want us to continue doing.’ So, I
didn’t want to necessarily do it in
secret either. We do have an AI
policy, but it’s more about what
information we can feed to it in
terms of client confidentiality.
Those sorts of things. But I think
if it were to be encouraged, I
might use it more for some more
mundane tasks, too.”

doing so for each individual, team,
and organization.

Significantly, this AI capability
measures the clarity and
awareness—not the specific
content—of an organization’s
stance on AI use in software
development. This means that
organizations and teams can make
their own determinations about
what AI stance is appropriate for
them, given their unique needs,
based on their industry, role, and
data infrastructure.

As long as that stance is
clearly articulated and widely
communicated to their
developers, organizations can
yield greater positive outcomes
from their adoption of AI in their
software development processes.

53
v. 2025.1

https://dora.dev/research/ai/trust-in-ai/
https://dora.dev/research/ai/trust-in-ai/
https://dora.dev/research/ai/concerns-beyond-accuracy-of-ai-output/
https://dora.dev/research/ai/concerns-beyond-accuracy-of-ai-output/
https://dora.dev/research/ai/concerns-beyond-accuracy-of-ai-output/
https://dora.dev/research/ai/concerns-beyond-accuracy-of-ai-output/
https://dora.dev/research/ai/concerns-beyond-accuracy-of-ai-output/
https://dora.dev/research/ai/adopt-gen-ai/
https://dora.dev/research/ai/adopt-gen-ai/
https://dora.dev/research/ai/adopt-gen-ai/

DORA AI Capabilities Model

Healthy data ecosystems

“Healthy data ecosystems”
refers to the overall quality
of an organization’s internal
data systems. In our analysis,
healthiness of data ecosystems
is measured as a single
factor, comprised of three
individual indicators, measuring
respondents’ perceptions of:

1.	 the overall quality of the
internal data sources;

2.	 the accessibility of internal data
sources; and

3.	 the degree to which internal
data sources are siloed or
divided from one another.

In this way, an organization with a
healthy data ecosystem may be
understood as an environment in
which internal data is high-quality,
easily accessible, and unified.

With a high degree of certainty,
we found that AI adoption’s
positive benefits depend on
organizations having healthy data
ecosystems, such that, when
they do, AI’s positive influence
on organizational performance is
amplified.

It is often said that AI models
are only as good as the data
they train on.

In this case, it appears that this
conventional wisdom applies at a
local, organizational level.

When organizations invest in
creating and maintaining high-
quality, accessible, unified data
ecosystems, they can yield
even higher benefits for their
organization’s performance than
with AI adoption alone.

Data ecosystem health moderates AI’s impact on organizational performance

Unsubstantiated Small increase Medium increase Large increase

extremely low low average high extremely high

Data ecosystem health

Data ecosystem health moderates AI's impact on organizational performance

Figure 35: Data ecosystem health moderates AI’s impact on organizational performance

54
v. 2025.1

AI-accessible internal data

“AI-accessible internal data”
refers to the degree to which AI
tools are connected to internal
organizational data sources
and systems. AI-accessible
internal data is measured as a
single factor, comprised of four
individual indicators, measuring
respondents’:

1.	 perceptions that AI tools used
at work have access to internal
company information;

2.	 perceptions that responses
from AI tools used internal
company information as
context;

3.	 frequency of inputting internal
company information in
prompts to AI tools; and

4.	 frequency of using AI tools
to retrieve internal company
information.

In this way, an organization with
AI-accessible internal data may
be understood as one where
workers observe that internal
data is available to their AI systems
and use AI tools to access and
process it.

With a high degree of certainty, we
found that AI adoption’s positive
benefits depend on organizations
having AI-accessible internal data,
such that, when they do:

1.	 AI’s positive influence on
individual effectiveness is
amplified; and

2.	 AI’s positive influence on code
quality is amplified.

While AI tools trained on a general
set of knowledge help developers
feel more effective and produce
higher-quality code, this finding
suggests that AI can be even more
impactful toward those goals
when given access to internal data
sources that allow developers
to provide their AI tools with
company-specific context.

This also suggests that
organizations who invest time
in connecting their AI tools
to their internal systems may
observe better outcomes than
organizations who rely on the less
specialized knowledge provided
by generic foundational models.

Put differently, maximizing the
individual-effectiveness and code-
quality benefits of AI may require
a deeper investment than simply
procuring AI licenses. In some
ways, this finding is unsurprising—
if AI can’t access internal company
data, how useful can it really be?

DORA AI Capabilities Model

AI-accessible internal data moderates AI’s impact on individual effectiveness

Unsubstantiated Small increase Medium increase Large increase

extremely low low average high extremely high

AI-accessible internal data

AI-accessible internal data moderates AI's impact on individual effectiveness

Figure 36: AI-accessible internal data moderates AI’s impact on individual effectiveness

55
v. 2025.1

DORA AI Capabilities Model

AI-accessible internal data moderates AI’s impact on code quality

Unsubstantiated Small increase Medium increase Large increase

extremely low low average high extremely high

AI-accessible internal data

AI-accessible internal data moderates AI's impact on code quality

“I don’t think many of my current clients are at a stage where they can actually effectively
have any AI system … they aren’t even at a stage where they have their data properly
organized … it’s, like, spread out all across the company, and there is no standard system
to actually store data, or have it in a standard format. And then, if they want to use AI,
there is also a bit—actually not a bit, a lot—of data engineering work actually needed to
bring it in a way which can be actually consumed by the gen AI system. I feel many of the
companies are not even at that stage where they can actually effectively use that.”

Strong version control
practices

Strong version control practices
have long been foundational
to high-performing software
development teams. These tools
provide a systematic way to
manage changes to code and
other digital assets over time.

In the age of generative AI, where
the volume and velocity of code
generation are dramatically
increasing, the importance of
these practices is amplified. Our
research indicates a powerful
synergy between mature

version control habits and the
adoption of AI, highlighting that
these practices are crucial for
maximizing AI’s benefits while
mitigating its risks.

With a high degree of certainty, we
found that AI adoption’s positive
benefits depend on respondents’
frequency of version control
commits. Specifically, in the
presence of frequent commits,
AI’s positive influence on individual
effectiveness is amplified.

Additionally, we found that AI
adoption’s positive benefits
depend on respondents’
frequency of use of their version
control systems’ “rollback”
features to undo or revert

changes. Specifically, in the
presence of more frequent
rollbacks, AI’s positive influence on
team performance is amplified.

A key aspect of mature version
control is its function as a
“psychological safety net.” This
safety net allows development
teams to experiment and innovate
with confidence, knowing
that they can easily revert to a
stable state if something goes
wrong. One of the most tangible
examples of this is the reliance
on rollback or revert features. The
ability to undo changes swiftly
and without fuss is not just a
convenience; it’s a critical enabler
of speed and resilience.

Figure 37: AI-accessible internal data moderates AI’s impact on code quality

56
v. 2025.1

DORA AI Capabilities Model

Version control commit frequency moderates AI’s impact on individual effect

Ability to rollback moderates AI’s impact on team performance

Medium increase Large increase

extremely low low average high extremely high

Version control commit frequency

Version control commit frequency moderates AI’s impact on individual effect

Unsubstantiated Small increase Medium increase

extremely low low average high extremely high

Rollback capability

Ability to rollback moderates AI's impact on team performance

The rate at which code can
be produced by AI may help
developers feel more productive.
But, as discussed in our chapter
Exploring AI’s relationship to
key outcomes, AI use is also
associated with a higher degree
of software instability.

We have hypothesized that this is
likely, in part, because it is harder
to review larger batches of code.

So, although rollback reliance does
not directly reduce instability,
we suspect that its positive
effect on team performance for
AI-assisted teams may relate to
the importance of being able
to rapidly undo changes when
working with larger batches of
code and the instability that they
can produce.

Figure 38: Version control commit frequency moderates AI’s impact on individual effect

Figure 39: Ability to rollback moderates AI’s impact on team performance

57
v. 2025.1

DORA AI Capabilities Model

Working in small batches

“Working in small batches”6 is a
long-time DORA Capability, which
refers to the degree to which
teams break down their changes
into manageable units that can
be quickly tested and evaluated.
Working in small batches is
measured as a single factor,
comprised of three individual
indicators, measuring:

1.	 the approximate number
of lines of code committed
in the most recent change
for respondents’ primary
application or service;

2.	 the number of changes
typically combined into a single
release or deployment; and

3.	 how long it takes a developer to
complete the work assigned in
a single task.

A team that scores more highly in
terms of working in small batches
is one that commits fewer lines of
code per change, fewer changes
per release, and assigns work that
can be completed in a shorter
amount of time.

With a high degree of certainty,
we found that AI adoption’s
positive benefits depend on teams
working in small batches, such
that, when they do:

1.	 AI’s positive influence on
product performance is
amplified; and

2.	 AI’s neutral effect on friction is
made beneficial and shown to
decrease friction.

Conversely, we also found that AI
adoption’s benefits for individual
effectiveness are slightly reduced
in teams that are working in small
batches.

Although these results are mixed,
we believe that, overall, they
point to a net-positive impact
of working in small batches for
AI-assisted teams. The observed
reduction in reported increases
in individual effectiveness from
AI use when working in small
batches supports our underlying
theory that AI predominantly
increases perceptions of
individual effectiveness by helping
developers to quickly generate a
large amount of code.

For teams who prioritize working
in small batches, it seems natural
that observed gains in individual
effectiveness would be somewhat
less.

More importantly, we argue that
individual effectiveness should not
necessarily be pursued as a goal
in and of itself. Rather, individual
effectiveness is a means to realize
greater organizational, team,
and product performance, and
improved developer well-being.

In this case, working in small
batches increases reported
product performance, while also
decreasing perceived friction for
AI-assisted teams. We think these
benefits outweigh any potential
harm to individual effectiveness
from working in small batches—
in addition to those benefits of
working in small batches that have
been long-proven as part of our
DORA Core Model.7

58
v. 2025.1

https://dora.dev/capabilities/working-in-small-batches/
https://dora.dev/research

DORA AI Capabilities Model

Batch size moderates AI’s impact on individual effectiveness

Batch size moderates AI’s impact on friction

Large increase Medium increase

Small increase

Unsubstantiated

very large large average small very small

Batch size

Batch size moderates AI's impact on individual effectiveness

Unsubstantiated Small decrease Medium decrease

very large large average small very small

Batch size

Batch size moderates AI's impact on friction

Figure 41: Batch size moderates AI’s impact on individual effectiveness

Figure 42: Batch size moderates AI’s impact on friction

Batch size moderates AI’s impact on product performance

Unsubstantiated Small increase Medium increase

very large large average small very small

Batch size

Batch size moderates AI's impact on product performance

Figure 40: Batch size moderates AI’s impact on product performance

59
v. 2025.1

DORA AI Capabilities Model

User-centric focus

A “user-centric focus” is also a
measure that has been included
in past iterations of our annual
survey. A user-centric focus refers
to the degree to which teams
think about the experiences of
the end users of their primary
application or service.

The extent of a respondent’s user-
centric focus is measured as a
single factor, comprised of three
seven-point Likert scale indicators,
measuring the degree to which
respondents agree that:

1.	 creating value for users is their
focus;

2.	 users’ experience is their top
priority; and

3.	 focusing on the user is key to
the success of the business.

In this way, a team that has a user-
centric focus is one that prioritizes
user experience and understands
its connection to business
success.

With a high degree of certainty,
we found that AI adoption’s
impacts depend on teams having
a user-centric focus. Specifically,
when used on teams that adopt
a user-centric focus, AI’s positive
influence on reported team
performance is amplified.

Importantly, we also found that,
in the absence of a user-centric
focus, AI adoption has a negative
impact on team performance.

Together, these findings show
that investing in developing a
user-centric focus can result
in important benefits for
performance on AI-assisted
teams—and failing to do so can
be detrimental. Without a user-
centric focus, AI adoption is
unlikely to help teams. It may even
harm them.

We have long held that a user-
centric focus can help teams
to clarify their goals and orient
toward a shared strategy, where
user experience serves as a North
Star. This appears to be especially
true for AI-assisted development
teams; they receive an even
greater benefit from AI when they
center their users, and experience
negative impacts from AI adoption
when they do not.

These findings suggest that
organizations that encourage
AI adoption will benefit from
incorporating a rich understanding
of their end users, their goals, and
their feedback into their product
roadmaps and strategies. They
also offer an important warning:
In the absence of a user-centric
focus that prioritizes meeting the
needs of end users, AI adoption
can hurt your team’s performance.

“100% that’s why I have been here for five years—I feel that I am doing
something meaningful and helping a regular person. So, even if I’m doing
it for one person, that’s huge for me. But, here, I’m doing it for many millions
of users … When there are some bad days, like I’m not in the greatest mood,
[if] I know whatever I’m doing is for this purpose, then that thought makes my
day much much better and motivates me to work, basically, that I’m going
to help 100,000 users this year by just developing this small feature.”

60
v. 2025.1

DORA AI Capabilities Model

“A key ‘a-ha’ moment was realizing that clinicians don’t need more tools—they
need less noise. The initial assumption was that value would come from giving
clinicians more advanced capabilities. What we uncovered was the opposite:
simplicity and invisibility of technology were the real innovations. An AI–human
hybrid model delivered superior accuracy, empathy, and trust compared to
standalone automation.”

User-centric focus moderates AI’s impact on team performance

Large decrease
Medium decrease

Small decrease Unsubstantiated Small increase

extremely low low average high extremely high

User-centric focus

User-centric focus moderates AI's impact on team performance

Figure 43: User-centric focus moderates AI’s impact on team performance

61
v. 2025.1

DORA AI Capabilities Model

Quality internal platforms

Understanding the benefits of
quality internal platforms has been
part of our survey in the past. In
our survey, “platforms” refer to a
set of capabilities that is shared
across multiple applications or
services, directed at making these
capabilities widely available across
the organization.

The quality of these platforms
is measured as a single score,
indicating how many of 12
characteristics a respondent
indicates their internal platforms
have. Please refer to the
Appendix for a complete list of
characteristics defining a quality
internal platform in our survey.

With a high degree of certainty,
we found that AI adoption’s
impacts depend on organizations
having quality internal platforms.
Specifically, in organizations

with quality internal platforms,
AI’s positive influence on
organizational performance is
amplified.

Conversely, we found that AI’s
neutral effect on respondents’
reported experiences of
friction is made harmful. That is,
respondents experience more
friction in organizations with
quality internal platforms.

Despite these mixed results,
we believe that, overall, these
findings point to a net-positive
impact of quality internal
platforms for AI-assisted teams.
While quality internal platforms
increase individual effectiveness
by providing a uniform set of
capabilities on which development
teams can easily build, the
standards set by internal platforms
may also dictate boundaries
around how development tools
can be used, for instance, by
defining internal-only APIs with
higher security controls than their
external counterparts.

In this way, quality internal
platforms can serve their function
both by increasing access to
desired capabilities and by limiting
access to undesired capabilities.

Because we have not yet
arrived at a standardized set
of best practices for using AI-
assisted development tools, we
hypothesize that quality internal
platforms may predominantly have
the latter effect in this space—
preventing inappropriate use. This
could explain increases in friction
for heavy AI adopters, which may
not necessarily be a negative
consequence for the organization.

For this reason, and due to
their benefits for organizational
performance, we believe
designing and maintaining
quality internal development
platforms is an important
capability for organizations to
successfully develop software in
an AI-assisted environment.

Internal platforms moderate AI’s impact on organization performance

Unsubstantiated Small increase
Medium increase

Large increase

extremely low low average high extremely high

Platform score scaled

Internal platforms moderate AI's impact on organization performance

Figure 44: Internal platforms moderate AI’s impact on organization performance

62
v. 2025.1

DORA AI Capabilities Model

Putting the DORA AI Capabilities
Model into practice

Team Performance

Code Quality

Product Performance

Individual Effectiveness

Friction

Throughput

Organizational Performance

User-centric Focus

Strong Version Control Practices

Working in Small BatchesAI Adoption ×

AI-accessible Internal Data

Clear + Communicated AI Stance

Quality Internal Platform

Healthy Data Ecosystems

Figure 45: DORA AI Capabilities Model

The findings from this chapter
suggest that successfully
leveraging AI in software
development is not as simple as
just adopting new tools. Rather,
organizations must cultivate a
specific technical and cultural
environment to reap the greatest
rewards.

63
v. 2025.1

DORA AI Capabilities Model

Here is some practical advice based on the seven DORA AI Capabilities:

1.	 "DORA’s Research Program." https://dora.dev/research
2.	 "Fostering developers’ trust in generative artificial intelligence." https://dora.dev/research/ai/trust-in-ai
3.	 "Concerns beyond the accuracy of AI output." https://dora.dev/research/ai/concerns-beyond-accuracy-of-ai-output
4.	 "Helping developers adopt generative AI: Four practical strategies for organizations." https://dora.dev/research/ai/adopt-gen-ai
5.	 “Working in small batches.” https://dora.dev/capabilities/working-in-small-batches
6.	 "DORA’s Research Program." https://dora.dev/research

Clarify and socialize your AI policies

Ambiguity around AI stifles adoption and creates risk.
Establish and socialize a clear policy on permitted
tools and usage to build developer trust. This
clarity provides the psychological safety needed
for effective experimentation, reducing friction
and amplifying AI’s positive impact on individual
effectiveness and organizational performance.

Treat your data as a strategic asset

The benefits of AI on organizational performance are
significantly amplified by a healthy data ecosystem.
Invest in the quality, accessibility, and unification of
your internal data sources. When your AI tools can
learn from high-quality internal data, their value to
your organization increases.

Connect AI to your internal context

Connect your AI tools to your internal systems to
move beyond generic assistance and unlock boosts
in individual effectiveness and code quality. This
means going beyond simply procuring licenses,
and investing the engineering effort to give your
AI tools secure access to internal documentation,
codebases, and other data sources. This provides the
company-specific context necessary for the tools to
be maximally effective.

Center users’ needs in product strategy

Individuals can experience large increases in
their personal effectiveness when they adopt AI.
But, if their users’ needs aren’t their focus, they
may be moving quickly in the wrong direction.
We found that adopting AI-assisted development
tools can harm teams that don’t have a
user-centric focus. Conversely, keeping the
users’ needs as a product’s North Star can guide
AI-assisted developers toward appropriate
goals and has an exceptionally strong positive
effect on the performance of teams using AI.

Embrace and fortify your safety nets

AI-assisted coding can increase the volume and
velocity of changes, which can also lead to more
instability. Your version control system is a critical
safety net. Encourage teams to become highly
proficient in using rollback and revert features, as this
practice is associated with better team performance
in an AI-assisted environment.

Reduce the size of work items

While AI can increase perceptions of individual
effectiveness by generating large amounts of code,
our findings show this isn’t necessarily the most
important metric. Instead, focus on outcomes.
Enforce the discipline of working in small batches,
which improves product performance and reduces
friction for AI-assisted teams.

Invest in your internal platform

A quality internal platform is a key enabler
for magnifying the positive effects of AI on
organizational performance. These platforms provide
the necessary guardrails and shared capabilities that
allow AI benefits to scale effectively and securely
across the organization.

64
v. 2025.1

Platform
engineering

Platform engineering

Eric Maxwell
Lead, 10x Technology, Google Cloud

Benjamin Good
Lead, Platform Engineer, Google Cloud

65
v. 2025.1

Our key findings

Our 2024 report began our exploration into the effects of internal platforms on software
delivery performance.1 We found that platforms have positive impacts on organizational
performance and productivity. However, the benefits came with a trade-off: an increase in
software delivery instability and a decrease in throughput.

This year’s research moves beyond confirming the value of platform engineering to explore
how successful platforms operate and deliver value. The data reveals that platforms are not
just a collection of tools, but a holistic experience that directly impacts performance, well-
being, and an organization’s ability to capitalize on transformative technologies. We found
that users perceive their platform as a single entity; its overall effectiveness matters more
than the quality of any individual feature in the platform.

This chapter unpacks the key patterns defining the state of platform engineering from
ubiquitous adoption and team structures to its crucial role as a strategic foundation for
innovation and risk management.

Platform adoption is nearly universal: 90%.
High-quality platforms are a force multiplier,
improving organizational performance,
productivity, and team well-being.

A platform functions as an engine for
managing risk, enabling speed and
experimentation that corresponds to a small
but credible increase in software delivery
instability: a manageable tradeoff for higher
performance overall.

Dedicated platform teams are the dominant
organizational model, making up 76%. This
shifts the leadership challenge from adoption to
effective governance of a multi-team landscape.

A platform should be seen as a holistic entity
that enables a great developer experience.

A high-quality platform amplifies the effects
of AI adoption on organizational performance.
The positive impact of AI on organizational
performance is strong when platform quality
is high.

Platform engineering 66
v. 2025.1

Extremely Very much Moderately Slightly Not at all

Percentage of respondents

Perceptions of platform capabilities

Presence of each platform characteristic

0% 25% 50% 75% 100%

Helps me follow required processes

Works as expected

Helps me build and run
secure applications

Helps me build and run
reliable applications

Provides the tools and info
I need to work independently

User interface (UI) is
clean and straightforward

Hides underlying infrastructure complexity

Team is responsive to feedback

Is easy to use

Provides clear feedback on my tasks

Automates the tasks I perform

Most organizations now have
an internal platform, showing
the conversation has shifted
from if a platform is needed to
how should a platform be built.
Our data shows that 90% of
organizations have adopted at
least one platform, with 29% of
organizations now using a multi-
platform environment.

Appropriately, 76% of
organizations have at least
one dedicated platform team,
and more than a quarter of

We asked respondents to rate
their platforms based on how well
their platform(s) perform certain
capabilities. For example, “The
platform helps me build and run
secure applications and services.”

We found an experience gap. Core
technical capabilities, such as, “the
platform aids with reliability and
security,” are perceived as well-
provided, while user experience
features, including “acting on
feedback” and “how well tasks are
automated,” lag slightly behind.

all respondents (29%) work in
an organization with multiple
platform teams. The prevalence
of multi-platform use and multiple
dedicated platform teams is
less a sign of redundant tooling,
and more a reflection that
organizations are moving past a
one-size-fits-all model. Instead
they are creating federated and
specialized platforms and teams
to serve distinct domains and
technology stacks.

The challenge for leaders has
shifted from simply “having
a platform” to “governing a
complex platform of platforms.”
Like applications, platforms
will benefit from adopting the
DORA capability of loosely
coupled teams,2 to help manage
complexity. Doing so requires
establishing clear charters
and interfaces between teams
to ensure their ecosystem
collectively improves developer
experience rather than creating
new organizational silos.

Overall experience is what matters

The platform landscape: ubiquitous,
complex, and team-driven

Perceptions of platform capabilities

Platform engineering

Figure 46: Perceptions of platform capabilities

67
v. 2025.1

https://dora.dev/capabilities/loosely-coupled-teams/
https://dora.dev/capabilities/loosely-coupled-teams/

A developer’s overall impression of
the platform, as a helpful partner
or as a source of friction, heavily
colors their rating of every specific
feature. The relatively tight
grouping of capabilities shows
that respondents don’t perceive
the platform as a checklist of
discrete parts; they experience it
as a single entity.

The experience gap likely
reflects platforms where technical
foundations are built first.

This data shows that until
the user experience is addressed,
the platform’s full value remains
unrealized.

Embracing the mindset of the
platform as a product, meaning
you think of your internal
development tooling as products
and your developers as your
customers, helps ensure the user
remains the focus—a key finding in
the 2024 report.

Platform engineering

•	 Build it and they will come: A
team builds a platform based
on what they think developers
need, without doing any
user research, interviews, or
validation. They focus entirely on
the technology and engineering,
assuming its value will be self-
evident.

•	 Why it fails: The platform
ends up being a ghost town
because it doesn’t solve real,
painful problems for developers
or it doesn’t fit their existing
workflows.

•	 A product approach starts
with developer empathy and
discovery. The platform team
continuously engages with
its users to understand their
biggest challenges, ensuring
they build something people
actually want and will use.

•	 The ticket-ops trap: The
platform team operates
like a vending machine for
infrastructure. They don’t have a
vision or a roadmap; their work
is entirely reactive and driven
by an endless queue of tickets
from developers (such as,
“Provision me a database,” “Set
up a CI/CD pipeline.”)

•	 Why it fails: This creates a
bottleneck and adds toil for
both the platform team and the
developers. The team spends
all its time on one-off requests,
and never has capacity to
build cohesive, self-service
capabilities.

•	 A product approach focuses on
building a self-service platform
with a clear roadmap. The goal
is to eliminate ticket queues
by empowering developers to
provision resources themselves
through automated, reusable
tools and golden paths.

•	 The ivory tower platform:
Here, a central team dictates
the platform’s architecture and
tools from on high, enforcing
rigid standards without
collaboration or a feedback
loop. They act as gatekeepers of
technology rather than enablers
of developers.

•	 Why it fails: This approach
can leave developers feeling
disempowered and often
create shadow IT or unofficial
workarounds to bypass the
platform’s constraints, defeating
its purpose.

•	 A product manager for the
platform actively seeks
feedback and treats developers
as customers. The platform
is designed to be enabling,
not just restrictive, offering
paved roads that are easy
and desirable to use, but not
necessarily mandatory.

User-centricity is how you avoid some of the common pitfalls when building internal
developer platforms, such as:

68
v. 2025.1

Correlation Matrix of Platform Capabilities

0.46 0.51 0.51 0.52 0.47 0.56 0.40 0.39 0.45 0.41

0.58 0.60 0.52 0.54 0.60 0.54 0.45 0.49 0.48

0.49 0.49 0.51 0.61 0.53 0.47 0.51 0.44

0.49 0.54 0.62 0.51 0.50 0.50 0.43

0.51 0.62 0.49 0.41 0.50 0.50

0.63 0.54 0.54 0.57 0.47

0.62 0.60 0.66 0.65

0.47 0.58 0.51

0.51 0.45

0.71

Helps follow required processes

Helps build reliable applications

Helps build secure applications

Tasks are well-automated

Abstracts away infrastructure complexity

Behaves as I would expect

Gives clear feedback on tasks

Provides tools to work independently

Teams acts on my feedback

Easy to use

Helps b
uild

 re
lia

ble applic
atio

ns

Helps b
uild

 se
cure

 applic
atio

ns

Ta
sk

s a
re

 w
ell-

auto
m

ate
d

Abst
ra

cts
 away in

fra
st

ru
ctu

re
 com

plexity

Behaves a
s I

 w
ould expect

Gives c
lear f

eedback on ta
sk

s

Pro
vides t

ools
to

 w
ork

 in
dependently

Te
am

s a
cts

 on m
y fe

edback

Easy
 to

 use

UI is
 st

ra
ightfo

rw
ard

 and clean

Correlation matrix of platform capabilities

When considering the capabilities
and how they relate to each other,
all capabilities are more or less
evenly correlated. However, there
are two capabilities that stand out
from the others.

First, the capability most
correlated with a positive user
experience is providing clear
feedback to tasks.

When the platform provides clear
feedback when a task succeeds or
fails, users feel empowered to act,
troubleshoot, and take the next
action, instead of having to sift
through things and figure it out on
their own.

Platform engineering

Second, the “UI is straightforward
and clean” has a lower correlation:
while having a clean UI might
improve perceptions, it doesn’t
necessarily translate to having an
effective platform.

Even though providing clear
feedback and UI are tightly
correlated to other capabilities,
they are still rated among the
lowest in terms of perception.
What this means is that focusing
on improving a single capability in
isolation is a flawed strategy.

To improve the perceived quality
of the platform, teams must treat
it as a holistic internal product
and focus on improving the entire
developer journey. If a platform
is technically excellent but not
user-centric (see the 2024 DORA
report),3 it cannot be considered a
success.

Figure 47: Correlation matrix of platform capabilities

69
v. 2025.1

https://dora.dev/dora-report-2024/
https://dora.dev/dora-report-2024/

Estimated effect of quality internal platforms on key outcomes

A great platform acts as a force
multiplier, which translates directly
into better performance and
productivity. The corresponding
increase in instability may be
representative of a healthy
high-velocity system, where the
additional instability is acceptable
as long as it doesn’t impact
product performance.

A high-quality platform, as defined
by our capabilities, has a broad,
statistically positive impact across
the board. It’s linked to higher
organizational performance,
product performance, and
productivity.

Consistent with past research,
we found that a better platform
is associated with a small but
credible increase in software
delivery instability, meaning a
higher change failure rate and
increased rework.

A force multiplier for performance,
well-being, and risk

Platform engineering

Burnout

Software delivery throughput

Software delivery instability

Team performance

Code quality

Product performance

Organizational performance

Individual effectiveness

0.0 0.2 0.4
Estimated effect (standardized)

Estimated effect of quality internal platforms on key outcomes

For outcomes in orange (e.g., Burnout), a negative effect is desirable.
89% credible intervals

Note: An increase here is not a desirable outcome

“In general, the idea was to try to do continuous delivery as much as possible, if you
get it into the main line, ship it out, try to have some tests in, you know, to try to catch
problems, but just deploy it. And for the most part, that was fine because even if
something failed during deployment, there were a lot of little things to keep the site
from going down. So, a deployment might fail, and we might need to go quickly fix that.
But, the site’s still running.”

The increase in performance
in spite of the increase in
stability, suggests a form of risk
compensation where the platform
makes it fast and cheap to
recover from failure and teams are
empowered to experiment more
and accept a higher rate of minor
failures in pursuit of speed.

The slight increase in instability
should be seen as a manageable
trade-off for the significant gains
in performance that the platform
enables. The improvements in
product performance are likely
more impactful than the modest
gains in delivery throughput and
reduction in delivery stability.

Investing in a high-quality platform
is a powerful strategic lever with
widespread returns.

For outcomes in orange, such as Burnout, a negative effect is desirable.
89% credible intervals
Figure 48: Estimated effect of quality internal platforms on key outcomes

70
v. 2025.1

Platform engineering

The positive effect of AI
adoption on organizational
performance depends on the
quality of the internal platform.
AI adoption has a negligible effect
on organizational performance
when platform quality is low, but
when platform quality is high, the
effect is strong and positive. This
is a critical finding for any leader
investing in AI.

The strategic imperative: Your
platform is the key to unlocking AI

Internal platforms moderate AI’s impact on organization performance

Unsubstantiated Small increase
Medium increase

Large increase

extremely low low average high extremely high

Platform score scaled

Internal platforms moderate AI's impact on organization performance

“Wayfair learned that the biggest gains came not just from detecting failures
faster, but from reducing the effort required to fix them. Embedding AI
into the CI/CD loop showed that developers engage most with targeted,
explainable suggestions and auto-generated fixes when these are delivered
seamlessly in the tools they already use.”

Figure 49: Internal platforms moderate AI’s impact on organization performance

71
v. 2025.1

Platform engineering

1.	 Accelerate State of DevOps 2024. https://dora.dev/dora-report-2024
2.	 “Loosely coupled teams.” https://dora.dev/capabilities/loosely-coupled-teams
3.	 Accelerate State of DevOps 2024. https://dora.dev/dora-report-2024

A high-quality platform serves
two purposes when amplifying
the impacts of AI on organizational
performance. First, it acts as the
distribution and governance layer
required to scale the benefits
of AI from individual productivity
gains to systemic organizational
improvements.

Without this foundation, AI
adoption remains a series of
disconnected local optimizations.
The platform provides the
centralized context and abstracts
away the difficult or tedious parts
of making AI usable and effective
at scale. That said, AI is changing
at a rapid pace. Be cautious not

Three imperatives for the platform era
Embrace the holistic
experience

You can’t fix a bad platform
by improving one feature.

Treat your platform as a whole
product, focusing on the
entire developer journey from
feedback loops to automation.

Make your platform the
foundation for AI

Your platform is the strategic
prerequisite for unlocking the
organizational value of AI.

It is the engine that will turn
your AI investments into a
true competitive advantage.

Use your platform to calibrate
your risk appetite

A great platform changes your
organization’s relationship with
risk by making failure cheap and
easily reversed.

Understand and manage the
trade-off between the velocity
this enables and the resulting
instability, recognizing that the
platform does not eliminate the
local impacts of that risk.

to overly standardize AI practices,
tools and methods, as that will
likely limit the positive impacts and
ability to adapt as AI changes.

Second, as the platform serves
as a risk mitigator when not
considering AI, its risk mitigation
effects are similarly useful for
AI. The platform should be
used to create a safe space,
allowing individuals to learn and
experiment. The safe space for
experimentation will help the
platform and platform teams
to grow and adapt to better
support new models, interaction
modes and ways of developing
applications.

Additionally, whether code is
created by hand or by AI, the
same automated testing and
deployment processes are
applied, essentially helping
to make sure the changes
introduced into applications
and services are safe.

An investment in AI without a
corresponding investment in
high-quality platforms is unlikely
to yield significant returns at
the organizational level. To truly
leverage AI for competitive
advantage, leaders must view
platform engineering as a
foundational strategic enabler.

72
v. 2025.1

Value stream
management

Value stream management

Rob Edwards
Application Delivery Lead, Google Cloud

73
v. 2025.1

Every organization is under pressure to innovate faster. We’re all adopting AI, automating
processes, building platforms, and shipping features at a breakneck pace. But are we
actually getting better? Or are we just getting faster at creating features that don’t deliver
value, faster at burning out our teams, and faster at introducing complexity? The greatest
risk today isn’t falling behind, it’s pouring massive investment into chaotic activity that
doesn’t move the needle.

For over a decade, DORA’s research has been guided by a core belief: The highest-
performing organizations don’t just adopt new tools, they become experts in the system
of delivering value. They have a proven capability for “getting better at getting better.” They
can understand their workflow, identify their true constraints, and apply their resources with
intention and focus.

This year, we’ve confirmed that the capability to elaborate on and manage your value
stream is what truly separates disorganized activity from focused improvement. In our 2025
research, we found that teams who focus on understanding their value streams dedicate
significantly more of their time to valuable work.

More importantly, we’ve discovered that value stream management (VSM) is the force
multiplier that turns AI investment into a competitive advantage, ensuring that this powerful
new technology solves the right problems instead of just creating more chaos.

Value stream management

How to achieve focused
improvement: The principles
of value stream management
Value stream management (VSM)
is the practice of visualizing,
analyzing, and improving the flow
of work from idea to customer.
It is not a heavyweight process,
but a set of four principles for
achieving the clarity needed to
focus on improvements where
they count most.

For a detailed, step-by-step guide
on how to conduct a value stream
mapping exercise, see the DORA
Value Stream Management guide.1

74
v. 2025.1

https://dora.dev/guides/value-stream-management
https://dora.dev/guides/value-stream-management

Value stream management

From mental mess
to shared map

Trying to get your head around
a complex system is tough. It’s
a huge mental drain for anyone
to remember all the intricate
details, which gets in the way of
understanding the bigger picture.

When a team collectively maps
out a system, it gets all those
details out of their heads and
into a shared space. Suddenly,
the system’s structure—and
any hidden patterns—become
obvious. This visibility makes
it much easier to have a real
conversation about what’s working
and what isn’t. At its core, this is
exactly what VSM is all about.

The practice itself is about charting
the entire software delivery
lifecycle, from initial concept all the
way to the customer.

This map covers everything:
product discovery, design,
development, testing, deployment,
and operations. Creating this
shared representation allows
teams to develop a collective
understanding of the workflow,
making it much easier to spot the
real bottlenecks and inefficiencies
that hold things up.

Mapping the entire system from
concept to customer is the goal,
but you don’t have to tackle it all at
once. The key is to start where you
can have the most impact.

Before diving in, take a high-level
look at your workflow to identify
the primary constraint so that you
don’t optimize part of the process
that isn’t the real bottleneck. If
your team’s biggest challenges lie
in product discovery, for instance,
that may be a more effective place
to begin.

Figure 50: An example value stream map showing the flow of a backlog item to production

Still, a powerful and proven
starting point, one DORA has
used for years, is the scope from
code commit to production.
We start there because this
part of the process can be
most readily standardized and
tuned for efficiency.

More importantly, it’s the phase
where teams typically have
the most agency, so they can
make immediate, impactful
improvements. It stands in
contrast to discovery work,
where the primary goal is
optimizing for effectiveness.

Successfully completing this
core process creates quick wins,
building the momentum and
credibility needed to influence
the broader system of product
discovery and customer feedback.

Code
commit

Deploy to
production

Production

Build

Requirement

Backlog

Focus on commit to successful deployment

Review
feature

document

Analyse
codebase

Start
writing code
through IDE

System
design

Debug

Code review
preparation

Code

Code search
(troubleshooting

& reuse)
Generate
unit tests

Code
migration,

improvement

FeedbackProduction
Code

commit

75
v. 2025.1

Value stream management

Focus on flow, not just speed

Once you’ve mapped your value
stream, the real goal is to get work
flowing smoothly and predictably.
Doing so requires a shift from
focusing on local efficiencies to
optimizing the system as a whole.

You should start by measuring
what matters. Track key metrics
like lead time, process time, and
the ratio of value-add to wait time.
These numbers give you data
on your true constraints and
provide a clear baseline, so you’ll
know if your improvements are
actually working.

This systems-level view is
crucial for identifying the best
places to apply new solutions or
technologies. For example, a team
may discover, through mapping,
that code reviews are a significant
bottleneck. With this insight,
they can decide to apply AI to
improve the code review process,
rather than using AI to simply
generate more code that will only
exacerbate the bottleneck.

The real win is using AI to improve
the code review process itself,
clearing the actual blockage
in the system. That’s what focusing
on flow is all about: You want
to solve the whole system’s
biggest problem, not just speed
up a single step.

Create a culture of
continuous improvement

VSM is not a one-time
exercise, but an ongoing cycle
of improvement. Revisit the
value stream map your team
created regularly and treat it
as the starting point for every
improvement discussion.

It’s essential to foster a culture
where teams are empowered to
experiment, learn, and adapt.2
This means stating clear goals,
but also providing teams with the
autonomy to figure out how to
achieve them.

They need the freedom to
experiment, learn, and adapt
without a fear of reprisals. It’s also
crucial to encourage teams to
share what they learn with the rest
of the organization.

By approaching VSM this way and
keeping a record of each iterative
improvement, you create a living
history of your progress. Over
time, you can reflect and establish
a clear story of how each change
sharpened your ability to deliver
value to customers.

Build on a foundation of
technical excellence

A fast, smooth flow is impossible
without a foundation of technical
excellence, and that foundation is
typically a well-designed internal
platform. By giving developers
“paved roads” for capabilities
like testing and delivery, a strong
platform abstracts complexity and
makes high-performance work
scalable.

The relationship between a
strong technical foundation and
organizational performance is
explored in detail in the Platform
Engineering chapter.

“Then there’s, kind of, the
complexity of it like, ‘How
much work is it going to
take?’ and like, ‘How long will
it end up taking?’ ‘How do
you estimate that?’ It’s always
uncertain and then there’s, like,
a lack of control. Are we going
to be able to make changes
that we need on the fly and get
things done?

Or, are we going to have to
go through a two- or three-
week process every time
we want, like, a firewall rule
change? Something like that.
There’s just so many different
ways that [the process] would
have dragged down our work.
I think [especially] the more
senior people were very
familiar with that from working
in other big companies.”

76
v. 2025.1

Value stream management

How this appears in our 2025 findings

For years, DORA has advocated
for using practices like VSM to
create a fast flow of work.3,4 But
does that advice still hold up,
especially with the widespread
adoption of AI?

This year, we wanted to validate
our long-standing hypotheses
about the benefits of VSM.
Our findings confirm that
organizations that embrace the
principles of VSM see significant,
measurable benefits.

First, our research confirms
that VSM practices have a
direct and powerful impact on
performance. We found strong
evidence for the following:

•	 VSM drives team
performance. Teams that
consistently review and improve
their value stream report
markedly higher performance.

•	 VSM leads to more valuable
work. These teams spend
significantly more of their time
on work that matters to the
organization and its customers.

•	 VSM improves product
performance. Ultimately, this
focus on the value stream
translates into better product
outcomes, which is arguably the
most important result.

This data tells a simple, human
story: Teams that work together
to understand their value stream
spend more time on work that
matters. When teams share a
clear understanding of their entire
value stream, they can focus
their efforts on what matters
most, translating that clarity into
meaningful impact.

This clarity is the key to unlocking
new technologies like AI.
Instead of just throwing tools at
a problem, it allows teams to be
strategic. You’re no longer just
optimizing a small step; you’re
removing friction from the
system’s biggest constraint.

This belief led us to formulate
a key hypothesis for this
year’s research:

•	 VSM turns AI into an
organizational advantage:
We hypothesize that VSM
moderates the relationship
between AI adoption and
organizational performance.
Teams with mature VSM
practices can channel the
productivity gains from AI
toward solving system-level
problems, ensuring that
individual improvements
translate into broader
organizational success.
Without VSM, AI risks creating
localized efficiencies that
are simply absorbed by
downstream bottlenecks,
delivering no real value to the
organization as a whole.

77
v. 2025.1

Unsubstantiated Small increase

extremely low low average high extremely high

Value stream mapping

VSM moderates AI’s impact on organisational performance

Medium increase

Value stream management

VSM moderates AI’s impact on organizational performance

This research is not just an
observation; it is a challenge. The
first step to escaping the cycle
of chaotic activity is simple, but
not easy: Ask your team, “Can we
draw our software delivery value
stream on a whiteboard?”

If the answer is no, or if the
drawing reveals more questions
than answers, you have found
your starting point. That single
conversation is the beginning of
getting better at getting better.

Our analysis validates this
hypothesis. While AI adoption
on its own shows a modest
impact, the effect is dramatically
amplified in organizations with
strong VSM practices.

This confirms that VSM is a critical
enabler for getting the most out of
your AI investments. By ensuring
that team-level and individual
productivity gains are focused
on the most important system-
level constraints, VSM helps
translate local improvements into
meaningful organizational impact.

Conclusion

1.	 “How to use value stream mapping to improve software delivery: A guide to value stream mapping.”
https://dora.dev/guides/value-stream-management

2.	 “How to transform your organization.” https://dora.dev/guides/how-to-transform
3.	 “Visibility of work in the value stream.” https://dora.dev/capabilities/work-visibility-in-value-stream
4.	 “Visual Management.” https://dora.dev/capabilities/visual-management

Figure 51: VSM moderates AI’s impact on organizational performance

78
v. 2025.1

The AI mirror:
How AI reflects
and amplifies your
organization’s true
capabilities

The AI mirror

Eirini Kalliamvakou, Ph.D.
Office of the CEO Research Advisor, GitHub

79
v. 2025.1

The AI mirror:
How AI reflects
and amplifies your
organization’s true
capabilities

The AI mirror

Last year’s DORA report found that teams using AI reported
lower throughput and more instability in their software
delivery. The unexpected findings sparked a lively debate—
how could a technology built to accelerate work be linked to
slower, shakier outcomes?

This year, the picture has shifted a bit. AI adoption has
now helped throughput tick upward, but instability still
lingers. That mix of progress and friction has led us to dig
deeper and look beyond simple binary AI comparisons to
understand what really determines its impact.

What we found points to something bigger than tools and
skills: More than anything, the environment that AI is nested
in shapes its impact.

Looking beyond the tools
to drive AI impact

One of the most exciting
outcomes from this year’s
research is the DORA AI
capabilities model. The effect of AI
use on outcomes like throughput,
code quality, and team and
organizational performance was
consistently amplified by seven
capabilities:

1.	 A clear and communicated AI
stance

2.	 A healthy data ecosystem

3.	 AI-accessible internal data

4.	 Strong version control practices

5.	 Working in small batches

6.	 User-centric focus

7.	 A quality internal platform

These systemic conditions reflect
how an organization structures
its work, supports its teams, and
aligns its environment to modern
development practices. These
capabilities can help determine
whether using AI tools translates
into meaningful results, and
that makes them amplifiers. The
fact that they are all team- and
organization-level reinforces a
critical shift we need to make in
how we think about AI’s role in
software delivery.

We are seeing that AI’s effects
on performance depend on
the system in which the work
takes place. For example, a
healthy data ecosystem
integrated with AI tools can
help create conditions that can
boost AI benefits from individual
productivity improvements to
organizational leaps. Without
those foundational efforts to
set up AI users for success, its
benefits may stall, plateau, or
stay unevenly distributed.

To take advantage of this insight,
we should move the spotlight
from how individuals use AI to how
organizations design the systems
around them.

80
v. 2025.1

The AI mirror

Organizations are systems, not
sums of individuals
To understand what is needed
to scale AI impact from
individual productivity gains to
organizational-level benefits, we
need to think about systems.
Organizations are less like
collections of individuals and
tools, and more like networks
of interdependent parts. Work
flows through teams, processes,
policies, infrastructure, and
shared norms. While individual
capabilities play a crucial role
in shaping outcomes, overall
performance emerges from
how all these parts interact.

This idea is central to systems
thinking, a perspective that has
shaped how high-performing
organizations evolve. W. Edwards
Deming,1 one of the founding
figures of modern quality
management, argued that most
performance issues stem not from
people, but from systems. As he
famously put it, “A bad system will
beat a good person every time.”

In a system, improving one
part does not guarantee better
outcomes overall. In fact, local
improvements can be blocked,
diluted, or even reversed if
the rest of the system isn’t
able to adapt.

This is also the core insight of
the Theory of Constraints.2 Every
system has a limiting factor—a
constraint—that governs how

much value it can deliver. Focusing
on anything other than the
constraint might feel productive,
but it won’t meaningfully improve
value flow.

This has implications for AI
adoption. When developers use
AI tools and write code faster, the
code still needs to go through
testing and review queues,
followed by integration and
deployment processes.

The overall pace of delivery is
unlikely to change significantly
unless the surrounding workflows
are updated for developers’ new
tools and increased speed. The
system isn’t designed to carry the
gains, let alone amplify them.

We have seen this story before.
During the shift to cloud,
companies that simply moved
infrastructure without rethinking
architecture and delivery practices
saw limited returns.

However, organizations that
restructured their applications,
teams, and operations for cloud-
native workflows were able to
unlock real value. The same was
true for Agile and DevOps: Both
delivered on their promises only
when they were paired with deep
changes to roles, feedback loops,
and team boundaries.

New, powerful technologies and
tools produce corresponding
transformative results only when
the system around them evolves.

That’s why AI adoption needs to
be treated as a transformation
effort. If the organization wants
to move faster, experiment more,
and shift how developers spend
their time, it will need to revisit
how work itself flows.

Are downstream systems—like
integration, testing, deployment,
and compliance—flexible and
responsive enough to harness
AI’s speed? Are decision-making
structures keeping up with
the tempo of work? Are teams
incentivized to delegate tasks,
verify AI output at scale, and share
knowledge in new ways?

Without intentional changes to
workflows, roles, governance,
and cultural expectations, AI
tools are likely to remain isolated
boosts in an otherwise unchanged
system—a missed opportunity. To
scale AI’s impact, organizations
should invest in redesigning their
systems. That means identifying
constraints, streamlining flow,
and enabling the conditions
where local acceleration becomes
organizational momentum.

What might that transformation
look like?

81
v. 2025.1

https://deming.org/
https://deming.org/
https://en.wikipedia.org/wiki/Theory_of_constraints

The AI mirror

Transformation in two ways:
Augmenting and evolving

As organizations pursue the
full value of AI, we can think
about transformation along
two complementary paths. One
focuses on augmenting existing
systems to remove friction and
support the velocity introduced by
AI tools. The other imagines how
AI opens the door to new ways of
working altogether.

Augmenting: Preparing
systems to carry the gains

When developers begin using
AI tools and experience
productivity improvements, but
teams don’t see a corresponding
boost in throughput or delivery
speed, the system itself may be
the limiting factor.

Code reviews and handoffs: Consider where AI can
accelerate and clarify existing steps. For example,
AI-generated first-pass reviews can reveal issues
quickly and reduce time spent on routine feedback.
Structuring AI input to highlight risks or summarize
diffs can also make reviews easier and faster for
humans.

Integration and deployment pipelines: AI-
generated code moves fast—can your systems keep
up? Continuous integration and deployment pipelines
may need to evolve to reduce wait states and
allow for higher-frequency delivery. Quality checks
powered by AI can be layered in without adding
manual gates, improving flow without sacrificing
assurance.

Security and privacy protocols: With AI now
participating in development and operations
workflows, security practices must evolve. This
includes ensuring secure tool usage, updating
policies, and introducing AI-aware monitoring
systems that maintain trust without introducing
bottlenecks. Automating parts of these processes
can help teams maintain speed.

Change management and cultural alignment:
Like any organizational transformation, AI adoption
needs vision, support, and communication—all traits
of transformational leadership.5 Leaders should
articulate the long-term goals of AI transformation—
whether innovation, velocity, or quality—and support
the transition with training, shared practices, and
realistic expectations.

Culture matters, too. Teams need permission to
experiment, make mistakes, build fluency, and share
what they learn. Rewarding behaviors like verification,
delegation, prompt curation, and agent orchestration
sends the right signals about what success looks like
in an AI-accelerated environment.

Data infrastructure: The AI capabilities model
points to the value of investing in updating data
infrastructure. First, AI’s benefits for productivity and
code quality are amplified when AI models and tools
are connected to internal data.3 Think repos, work
tracking tools, documentation, and even decision
logs and communication tools. Adding this valuable
context improves the output of AI tools. Related to
how critical context is, the second finding was that
the benefits of AI for organizational performance are
larger when the data ecosystem is healthy, that is,
when data is AI-accessible, accurate, and complete.4

Augmentation means identifying
and resolving those friction points
so that individual acceleration can
flow downstream.

82
v. 2025.1

https://dora.dev/capabilities/transformational-leadership/

The AI mirror

Evolving: Designing for what
AI makes possible

Beyond augmenting existing
systems, AI offers a chance
to design new workflows—
approaches that are native to how
AI operates.

Emerging trends like Continuous
AI6 illustrate how AI-native
workflows can be sustained over
the long term. Continuous AI treats
the AI system as a living part of
the development pipeline and a
participant in team processes.

Continuous AI perceives events
happening in the project context
on an ongoing basis and, by
operating autonomously yet
collaboratively, facilitates team
interactions and adjusts direction
along with the team. The key is
for the AI system or agents to be
constantly updated with relevant
context and constantly measured
for accuracy, usefulness, and cost.

AI-native delivery pipelines: AI can continuously analyze code for
bugs, security vulnerabilities, and violations of team standards. It can
suggest tests and even generate them dynamically. With the right data
and integrations, AI can also forecast deployment risks and performance
regressions before they occur.

AI-native data systems: AI can help maintain its own environment
by organizing, tagging, cleaning, and analyzing data. This enables
more robust insight generation and faster iteration on data-informed
decisions. It also surfaces patterns in how teams work, offering new
levers for operational improvement.

AI-native collaboration models: Emerging practices like agentic
workflows and swarming are beginning to reshape how humans and
AI work together. Agentic workflows assign tasks to autonomous AI
agents, while swarming enables teams and AI to converge dynamically
on complex problems. Though still early, these patterns hint at new, more
adaptive modes of collaboration.

AI-native security: AI can expand the capacity of security teams by
detecting threats earlier, identifying anomalous behavior, and even
automating parts of the incident response process. For security teams
that are often under-resourced, AI’s role can be to ease pressure while
improving response times.

This keeps AI aligned with
the organization’s evolving
architecture, practices, and
priorities, ensuring that its outputs
remain relevant and high-quality
as the environment changes.

In both augmentation and
evolution, the common thread is
intention. Deploying AI tools alone
will not produce transformation,
but paired with both pragmatic
and visionary system-level
changes, adopting AI can be
a catalyst for reshaping how
software is built, delivered, and
secured.

83
v. 2025.1

https://githubnext.com/projects/continuous-ai/
https://githubnext.com/projects/continuous-ai/

The AI mirror

Where to begin: Practical steps
for AI transformation

The earlier an organization
begins treating AI adoption as a
transformation effort, the more
control it will have over how
that transformation unfolds. The
technology is evolving quickly, but
the real differentiator lies in how
effectively organizations respond.
Starting before old processes
solidify around new tools means
organizations can shape the future
of their systems, rather than
inherit them by default.

A natural first step is to examine
how work actually flows today.
In practice, that means creating
shared visibility into how ideas
move from inception to delivery.
This process, commonly known
as value stream management, can
help teams visualize each stage
of delivery, from coding and code
review to testing, deployment, and
production.

When done well, mapping the
flow of work exposes where
coordination costs accumulate,
where delays and rework are
common, and where the system
absorbs or stalls acceleration
introduced by AI tools. It can help
zoom in on the factors that the
Theory of Constraints says will
enable value the most.

84
v. 2025.1

The AI mirror

To get started mapping the flow
of work, organizations can form
small, cross-functional working
groups composed of practitioners
embedded in daily software
delivery operations, including
engineers, product managers,
data engineers, operations, and
security. These groups are best
positioned to map the system
from the inside and surface
coordination breakdowns
and bottlenecks, as well as
identify where AI could play a
transformative role.

These efforts are most effective
when they carry executive
sponsorship. That endorsement
signals strategic importance,
ensures the work is resourced,
and creates a clear path from
discovery to action. The mandate
of these working groups is to
make strategic recommendations:
Where should the system adapt to
accommodate AI? Where can AI
augment processes or roles? What
capabilities need to be developed

to unlock long-term value?

In some cases, an external
facilitator or advisor can
help guide the process, offer
benchmarks, and keep the
conversation focused on systemic
opportunities that can unlock
broader improvements.

For change to take root, insight
must come from those inside the
system. When practitioners drive
the discovery and leadership
commits to enabling the
outcomes, the conditions for
meaningful transformation start to
take shape.

Critically, this work must be
approached with systems
thinking. As discussed earlier,
organizations are complex
systems and improving one node,
like accelerating code generation,
will not improve performance
unless the adjacent components
evolve in parallel. The DORA
AI Capabilities Model provides

insight into what organization-
level interventions will amplify AI
benefits.

For example, a working group
might discover that while AI tools
are capable of providing valuable
suggestions, they frequently
generate responses that miss
critical context, such as team
conventions, architectural history,
or past incidents.

That’s probably unsurprising for
many organizations, since such
information is often buried in
disparate systems and informal
knowledge channels.

In response, the group might
recommend exposing internal
documentation, decision records,
and historical tickets to AI models
in a structured, secure way. They
could propose building workflows
that automatically tag and surface

85
v. 2025.1

The AI mirror

“Cultural transformation is just as critical as tooling. Success required not
only introducing automation and metrics, but also aligning teams around
shared goals and ownership.”

this context during development
or review, reducing the time
developers spend searching and
improving the quality of AI output.

Alternatively, the working group
might explore how AI could
be used to identify outdated
documentation, summarize long
project discussions, and detect
inconsistencies between what
systems are doing and what
documentation claims they do.

Doing so can help turn fragmented
knowledge into a structured,
actionable asset.

Beyond process changes, these
working groups can also surface
the need for new skills and roles.
As developers delegate more work
to AI tools, tasks like verification,
orchestration, and workflow
design become more central.

Organizations will need to define
what those roles look like, how
to support them, and how to
align incentives accordingly.

This includes providing targeted
training beyond tools on how
AI can change the nature of
development work.

None of these changes happen
automatically, or all at once. They
require intention, ownership, and
sustained support. However, what
they don’t require is perfection
from the outset.

When organizations start small,
invest with purpose, and create
shared accountability across roles,
they can build momentum. Step
by step, capability by capability,
transformation takes root.

86
v. 2025.1

The AI mirror

AI as mirror and multiplier
AI has the potential to reshape
how software is built, but it does
not change organizational systems
on its own. What it does do, often
very quickly, is reflect how those
systems actually operate.

In well-aligned organizations,
AI amplifies flow. In fragmented
ones, it exposes pain points.
Teams that have strong practices,
flexible workflows, and shared
context often see immediate
benefits.

Teams that rely on brittle
processes and implicit knowledge
may find those gaps more visible
than ever.

This is why AI functions both
as a mirror and a multiplier. It
shines a light on what’s working,
accelerating what’s already in
motion, but it also surfaces what
needs to change.

For organizations ready to look,
the reflection AI offers becomes
a roadmap. As we have seen with
other transformations in the past,
organizations willing to treat AI
adoption as an opportunity to
evolve how work gets done will
be the ones that benefit most—
both from the tools, and from
the transformation they make
possible.

1.	 The W. Edwards Deming Institute. https://deming.org
2.	 “Theory of constraints.” https://en.wikipedia.org/wiki/Theory_of_constraints
3.	 DORA AI Capabilities Model
4.	 Ibid.
5.	 “Transformational leadership.” https://dora.dev/capabilities/transformational-leadership
6.	 “Continuous AI.” https://githubnext.com/projects/continuous-ai

87
v. 2025.1

AI: A skill development
threat—and opportunity

When it comes to skill development, software is
similar to other occupations. Expertise should
flow from senior staff to juniors, and ideally fresh
perspectives and skills should bubble up.

Senior developers do more than review pull requests;
they teach juniors how to think architecturally. Pair
programming isn’t just about catching bugs; it’s
about transmitting tacit knowledge that’s hard to
document. At its best, the three-generation model—
junior, mid-level, senior—helps developers gain skills
from joint problem-solving, not formal training.

We need to investigate the effects of AI deployment
on this taken-for-granted process. I have spent
my career studying intelligent automation and skill,
and have shown across more than 31 occupations
that default use of intelligent automation changes
traditional apprenticeship models, leaving fewer
opportunities for novices to engage in the hands-on
work essential for their development.

Experts can self-serve, so they do. A few juniors
manage to learn despite this participation barrier,
but most struggle. I’ve studied nothing but AI use in
complex task performance since 2023, most recently
in software engineering, and this pattern is likewise
evident in my early findings.

But there are interesting exceptions, and far more
understanding is needed. Like other groundbreaking
technologies in the past, from the printing press

and personal computer to the Internet, AI is being
developed and deployed at unprecedented speed.
And we don’t know how human capabilities will adapt
to these changes.

Instead, many are focused on measuring AI-related
productivity. We track adoption rates, lines of code
generated, pull requests merged. Not metrics
indicative of skill development like linguistic or
stylistic diversity over time.

The best organizations will jointly optimize
for productivity and skills development
among their employees. In fact, in some of my
research, great productivity was only achieved
by insisting on simultaneous skill development.
Measuring and driving for both is the path to
sustainable performance.

AI is an integral part of the future of software
development—and that includes skill development.
For example, we can use AI to parse developer–AI
interactions, link this to version control interactions,
and then to skill and key work outcomes.

That wasn’t cost-effective before, but API costs
for labeling are falling rapidly. With AI we can get
the insight we need to refactor the work and offer
guidance to developers on how they can keep their
learning edge—and help others do the same.

Default AI usage patterns are delivering
breakthrough productivity and blocking skill
development for most devs. To keep our innovative
edge—both individually and collectively—we need
to use AI itself to measure skill development and
productivity simultaneously.

The AI mirror

Matt Beane, Ph.D.
Associate Professor at the University of
California, Santa Barbara, Digital Fellow
at Stanford and MIT, and CEO/Cofounder
of SkillBench

88
v. 2025.1

Metrics
frameworks

Metrics frameworks

Sarah D’Angelo, Ph.D.
User Experience Researcher, Google

Ambar Murillo
User Experience Researcher, Google AI &
Infrastructure

Sarah Inman, Ph.D.
User Experience Researcher, Google

Kevin M. Storer, Ph.D.
User Experience Researcher, Google Cloud

89
v. 2025.1

Measuring software development
can help drive impactful change.
However, it’s a complex task, and
getting started can be daunting as
it involves understanding what you
should measure, and determining
what you can measure.

The most important part is
that you want to drive change
in your organization through
measurement. To do so, we
recommend that you use
frameworks to guide your
measurement strategy.

A framework breaks down a broad
topic (for example, developer
experience) into distinct concepts
that can be measured (such as
speed or satisfaction).

When industry and academia
talk about measuring aspects
of software development, they
often reference frameworks
such as SPACE,1 DevEx,2 HEART,3
and DORA’s software delivery
metrics.4 Choosing a framework
to measure software development
can be a difficult and confusing
step, but it doesn’t have to be.

Choosing measurement frameworks
to fit your organizational goals

The first step is to define what
goals and decisions measurement
will inform, because frameworks
differ in their overarching goals.
For example, common frameworks
in software development
focus on measuring developer
experience, product excellence,
and organizational effectiveness.
Each of these overarching
goals take a slightly different
lens to understanding software
development (see Figure 52).

Metrics frameworks

Figure 52: Types of frameworks typically applied to measuring software development

Types of frameworks typically applied to measuring software development

90
v. 2025.1

https://queue.acm.org/detail.cfm?id=3454124
https://queue.acm.org/detail.cfm?id=3595878
https://research.google/pubs/measuring-the-user-experience-on-a-large-scale-user-centered-metrics-for-web-applications/
https://dora.dev/guides/dora-metrics-four-keys/
https://dora.dev/guides/dora-metrics-four-keys/

To determine which framework is
the best fit for your organization’s
goals, it can be helpful to think
of frameworks as the “why”
behind measurement. They help
you define why you’re trying to
measure and guide the actions
you take based on your findings.

Frameworks provide a lens
through which to view your
data, ensuring your efforts are
aligned with your organizational
goals. To decide on a framework,
you can consider: Why now?
Did something change that is
motivating a desire to measure?
How will you act on your
insights? Are there decisions or
improvements you can enable
with measurement?

Now, the “what” you’ll measure
is the actual metrics, the key
concepts that contribute to the
overarching framework, such as
a velocity or adoption metric.
Generally, there are two different
approaches to data collection you
can take. This is the “how” of your
data collection which will help you
arrive at your metrics.

Self-reported data involves
collecting information directly
from developers about their
experiences. This can be achieved
through approaches such as:

•	 Surveys use questions to gather
opinions, satisfaction levels, and
perceptions on various aspects
of work.

•	 Interviews and focus groups
use one-on-one and group
discussions to go deeper into
specific experiences and topics.

•	 Diary studies collect in situ
data about activities, thoughts,
and experiences.

The strength of self-reported data
is in its ability to capture subjective
experiences and concepts that
are difficult to quantify through
automated means, such as
satisfaction, well-being, or
perceived effectiveness. A key
advantage of self-reported data
is that it doesn’t typically require
extensive instrumentation or deep
observability into developers’
toolchains.

However, self-reported data does
present challenges in terms of
standardization, comparability
across teams, and scalability
for large organizations. Its
inherent subjectivity means that
interpretations can vary, and it
may be more susceptible to biases
(including recall bias and social
desirability bias).

Logs-based measures are
collected automatically from the
tools and systems developers use.
These can include metric types
such as:

•	 Quantity, to count specific
artifacts. For example, the
number of commits or number
of users.

•	 Time-based, to record how
much time is spent on a given
activity. For example, the time
spent coding or reviewing.

•	 Frequency, measuring the
rate over a specific window
of time. For example, monthly
deployments, or weekly
PRs per developer.

The primary benefit of logs-based
measures is their ability to provide
continuously measured and
standardized data at scale. They
offer a detailed view of activities
and outputs.

However, they require sufficient
observability into the developer
toolchain, meaning the necessary
integrations and data collection
mechanisms must be in place,
which can create a higher barrier
to entry.

It is also a common misconception
that logs-based metrics are
objective. Instrumentation
approaches vary, errors can create
inaccuracies, and interpretation is
subject to bias.

A framework will provide you
with the concepts you want to
measure, but ultimately what
you implement depends on your
resourcing, and what data you
have access to. Do you have
the visibility into your toolchain
for logs-based approaches,
or a research team to enable
self-reported data collection?
It’s important to recognize that
not all organizations have the
same resourcing and ability to
implement metrics in the ways
that might be recommended by a
particular framework.

Metrics frameworks91
v. 2025.1

Even with organizational
limitations, frameworks are a
guide, a lens to help you better
understand complex behavior—
but they can not fully capture it.
They’re intended to get you closer
to the truth, but you shouldn’t
expect to measure everything.

When considering how
frameworks and metrics relate,
it’s helpful to think of metrics as
ingredients, and frameworks as
the recipe that is made with the
ingredients. Some core ingredients
can be rearranged in different
ways to make different recipes
(the frameworks), while others are
unique to a specific recipe.

 The meals will all taste different
but some of the underlying
ingredients are shared, and in
many cases you don’t need to
have all of the ingredients to make
a meal that tastes good.

While frameworks differ because
they are intended to drive
different outcomes, some of their
underlying metrics overlap. The
diagram below illustrates some
of the metrics that comprise
frameworks and how they often
overlap. For example, productivity
metrics (such as code commits or
pull requests) may be measured
by all three frameworks.

An organization might use these
metrics to gauge the impact of a
new team structure (organizational
effectiveness), evaluate the
effectiveness of a developer
tool (product excellence), and
understand developer workload
(developer experience).

In contrast, some metrics are
more specialized. Developer well-
being, often a key component of
developer experience frameworks,
is not typically a primary metric
within organizational effectiveness
or product excellence frameworks.

Choosing to use a single
framework can help provide focus
to the actions you take, and it is a
good way to start. However, you’re
not limited to one framework.

As goals and abilities to
measure change, using multiple
frameworks can help create
complementary analytical results,5
resulting in a stronger whole than
its parts. What matters is that
you’re measuring as a way to hold
yourself and your organization
accountable to your goals, and
that you are positioned to act on
what you measure.

Figure 53: Examples of metrics that apply to different frameworks

Metrics frameworks

Examples of metrics that apply to different frameworks

92
v. 2025.1

You might be wondering, does
the introduction of AI into
development workflows change
everything? Do the same
frameworks apply or do we need
new frameworks? When there is
a technological disruption, it may
seem necessary to completely
overhaul your metrics collection
strategy. We recommend careful
consideration of what actually
needs to be changed, especially
when considering the impact of AI.

Adapting your goals to better
understand how AI is impacting
developer experience may
require updating only a few
metrics, allowing you to retain
consistent measures overall.
Instead of throwing out the
entire framework, you can
use existing measures as a
baseline to help identify how
a paradigm shift is changing
the developer experience. For
example, you may need to add
metrics on the acceptance
rates of AI suggestions, model
quality, or trust, while keeping
existing measures of developer
experience, such as perceived
productivity and time spent
reviewing code.

As we see more substantial
advances in AI, who is doing
development tasks—and what
those are—will change. So,
measurement may have to adapt
to include different user profiles
and capture changing workflows,
but the core goals behind why
you are measuring developer
experience likely haven’t changed.
The point here is that if your
overarching goal is the same,
you don’t need to change your
framework; you can expand
your measurements to adapt to
changes in technology.

Even if your goals do change,
it does not necessarily result in
starting a measurement program
from scratch. Since metrics
can contribute to different
frameworks, you often can react
quickly and rearrange the metrics
in the service of new or additional
frameworks. For example,
understanding the impact of AI-
powered developer tools on the
code that is being produced is
likely a new goal that organizations
have not faced before. This is
particularly challenging because
we are trying to measure
something as it is changing.

A common question organizations
are facing is the impact of AI on
code quality.6 As we see AI used to
increase developer velocity, there
is a particular concern that we are
compromising quality for speed.
These increases in developer
velocity in the short term can
seem positive; however, they may
have negative impacts on velocity
in the long term if quality is low.

To address these concerns, your
goal might be to ensure the
code quality at your organization
remains high while you drive
adoption of AI-powered tooling.
This goal involves aspects from
each of the types of frameworks
discussed and likely includes
metrics you are already capturing
(such as code quality, tool
adoption, or perceived velocity).

So, you can continue to use your
existing metrics while introducing
new ones. For example, combining
DORA’s software delivery metrics
with a product excellence
framework such as HEART. can be
an effective way to understand
how developers are experiencing
new AI-powered tools and the
impact on software delivery.7

Applying measurement frameworks
in the age of AI

Metrics frameworks93
v. 2025.1

Measuring software development
is a complex and ongoing
process. While many frameworks
and measurement approaches
are available, you must be
positioned to act on what you
measure. A critical aspect of
ensuring effective action can
be taken is aligning with your
organization’s goals and getting
leadership sponsorship for your
measurement efforts.

Being intentional about the
framework and measurements
you choose can help set you up
for long-term success. In the spirit
of adopting a framework to meet
a specific goal, you can consider
how you might act on this
information following the PDCA
framework:

•	 Plan: figure out your goals,
choose a framework, and get
leadership support

•	 Do: get some baseline
measures, do something
differently

•	 Check: measure again to see
how you’re progressing towards
your goals

•	 Adjust: use your findings to
change the approach moving
forward

We are not here to recommend
one framework over others.
Determining the appropriate
framework based on your goals
can help guide what you measure
and how you take action. Choose
the framework that resonates with
your organization. If it speaks to
you and spurs your organization
into action, it’s the right framework
for right now.

While the frameworks provide a
guiding structure, many of the
underlying measures are the
same. This means that measures
you implement today can often be
adapted and utilized as your needs
and goals evolve, or change.

Metrics frameworks

1.	 “The SPACE of Developer Productivity: There’s more to it than you think.” https://queue.acm.org/detail.cfm?id=3454124
2.	 “DevEx: What Actually Drives Productivity: The developer-centric approach to measuring and improving productivity.”

https://queue.acm.org/detail.cfm?id=3595878
3.	 “Measuring the User Experience on a Large Scale: User-Centered Metrics for Web Applications.”

https://research.google/pubs/measuring-the-user-experience-on-a-large-scale-user-centered-metrics-for-web-applications
4.	 “DORA’s software delivery metrics: the four keys.” https://dora.dev/guides/dora-metrics-four-keys
5.	 “Unlocking product success by combining DORA and H.E.A.R.T.”

https://cloud.google.com/transform/unlocking-product-success-by-combining-dora-and-heart
6.	 “Measuring AI code assistants and agents.” https://getdx.com/research/measuring-ai-code-assistants-and-agents
7.	 “Unlocking product success by combining DORA and H.E.A.R.T.”

https://cloud.google.com/transform/unlocking-product-success-by-combining-dora-and-heart

94
v. 2025.1

Final thoughts:
From insight to action

Final thoughts

This year, we introduced the
inaugural DORA AI Capabilities
Model, a significant evolution of
our research. As organizations
navigate the complexities of AI
adoption, this model provides a
data-backed framework to guide
their journey. It highlights seven
critical capabilities that, when
cultivated, amplify the positive
impacts of AI on important
organizational outcomes.

These capabilities are:

•	 A clear and communicated AI
stance

•	 Healthy data ecosystems

•	 AI-accessible internal data

•	 Strong version control practices

For over a decade, DORA has been a trusted partner in the software
development community, providing research and insights to help
teams improve. As the industry rapidly evolves with the adoption of
new technologies like AI and platform engineering, our commitment
remains the same: to investigate and share the practices that foster
high-performing teams.

•	 Working in small batches

•	 A user-centric focus

•	 Quality internal platforms

This model is our first iteration,
and we consider it a starting
point for an ongoing conversation
with the DORA community and
organizations embracing AI-
assisted software development.
We are eager to learn from your
experiences as you apply these
insights and look forward to
validating and refining the model
in our future research.

This year’s research reveals a
critical insight: We’re still in the
nascent stages of AI-assisted
software development, a
period of rapid technological
and practical evolution where
early standardization would
be premature. Our findings
show that simply deploying
AI tools is not a panacea for
transformation. In fact, AI’s impact
on team performance is strikingly
dependent on a crucial factor: a
user-centric focus.

We found with a high degree
of certainty that when teams
adopt a user-centric focus,
the positive influence of AI on
their performance is amplified.
Conversely, in the absence of a
user-centric focus, AI adoption
can have a negative impact on
team performance.

This finding underscores a vital
message for all organizations:
Investing in and cultivating a
deep understanding of your end
users is not just beneficial, it’s
a prerequisite for success with
AI. Without a user at the center
of your strategy, AI adoption is
unlikely to help, and may even
hinder, your team’s performance.

DORA AI Capabilities
Model

Focus on
the user

Nathen Harvey
DORA Lead, Google Cloud

95
v. 2025.1

Final thoughts

The findings in this year’s report
are complex, and at times may
even appear contradictory. This
reflects the reality of a field in flux.
We encourage you to treat our
findings not as rigid prescriptions,
but as hypotheses for your own
experiments.

Here are some ways you can put
this research into practice:

•	 Run experiments in your
organization: Use DORA’s
findings to formulate
hypotheses and test them on
your teams. This will allow you to
learn more about your specific
operational context and identify
the most impactful areas for
improvement.

Thank you for engaging with
our research. We invite you to
continue the journey with us.
Share your experiences, learn from
your peers, and find inspiration by
joining the DORA community at
https://dora.community.

•	 Conduct internal surveys: Take
inspiration from the questions
used in this year’s survey1 to
design your own. Tailor them
with more nuanced questions
that are directly relevant to your
teams and projects.

•	 Embrace the holistic
experience: Remember that
improving a single feature won’t
fix a flawed platform. Treat your
internal platforms as products,
focusing on the entire developer
journey from feedback loops to
automation.

•	 Share what you learn: As you
conduct your own experiments
and gather insights, disseminate
that knowledge throughout
your organization. This can be
through formal reports, informal
communities of practice, or
casual conversations. The goal is
to foster a culture of continuous
learning.

The greatest risk in this evolving
landscape isn’t falling behind,
but rather investing heavily in
chaotic activity that fails to deliver
meaningful results. Choose the
frameworks and approaches that
resonate with your organization
and spur you to action.

Putting research into practice: Your
turn to experiment

Join the conversation

1.	 “DORA Research: 2025 Survey questions.” https://dora.dev/research/2024/questions

96
v. 2025.1

https://dora.community
https://dora.dev/research/2024/questions/
https://dora.dev/research/2024/questions/

Acknowledgements

DORA Report team

Matt Beane, Ph.D.

James Brookbank

Kim Castillo

Sarah D’Angelo, Ph.D.

Derek DeBellis

Rob Edwards

Edward Fraser

Benjamin Good

Nathen Harvey

Sarah Inman, Ph.D.

Eirini Kalliamvakou, Ph.D.

Gene Kim

Eric Maxwell

Ambar Murillo

Allison Park

Daniel Rock, Ph.D.

Kevin M. Storer, Ph.D.

Daniella Villalba, Ph.D.

Steve Yegge

Jessie Young

The DORA research is a testament
to the power of a passionate and
collaborative global community.
We are immensely grateful to
the thousands of researchers,
experts, practitioners, leaders,
and transformation agents who so
generously share their knowledge
and experiences. This report is
a direct result of that collective
effort. Our thanks also go to you,
the reader. We hope these findings
will empower you and your teams
to drive meaningful change and
continuous improvement within
your organizations.

Research partners

The 2025 DORA Report is
presented by Google Cloud and
IT Revolution in collaboration with
the following research partners.

Sponsors

The 2025 DORA Report was
supported by the following
sponsors. Learn more about these
sponsors on the DORA website.1

Research partners

Presented by

Platinum sponsors

Gold sponsors

Silver sponsors

Acknowledgements97
v. 2025.1

https://dora.dev/research/2025/sponsors

Editor

Seth Rosenblatt

Accuracy Matters2

DORA Community guides

Dhruv Agarwal

Lisa Crispin

Steve Fenton

Denali Lumma

Betsalel (Saul) Williamson

Advisors and experts in the
field

Ameer Abbas

Colette Alexander

Christy Barrett

Sander Bogdan

Kevin Borders

Adam Brown

Michele Chubirka

Andrew Davis

Jerome Simms

Dustin Smith

Dave Stanke

Laura Tacho

Adrienne Braganza Tacke

Finn Toner

Cedric Yao

Members of the DORA community

Research and design partners

Apparent:3 DORA branding

Human After All:4 DORA report
design

Prolific:5 Research infrastructure
support

User Research International:6
Research infrastructure support

Blanca Delgado

Thomas De Meo

Nicole Forsgren, Ph.D.

Vivian Hu

Jez Humble

Michelle Irvine

Ben Jose

Deepti Kamat

Amanda Lewis

Mike Long

Steve McGhee

Rebecca Murphey

Jacek Ostrowski

Justin Reock

Willy Rouvre

Ryan J. Salva

Harini Sampath

Dadisi Sanyika

Robin Savinar

Sean Sedlock

1.	 “DORA 2025 Sponsors.” https://dora.dev/research/2025/sponsors
2.	 “Accuracy Matters.” https://accuracymatters.co.uk
3.	 “We Are Apparent.” https://apparent.com.au
4.	 “Human After All: Clarity through creativity.” https://www.humanafterall.studio
5.	 “Prolific | Easily collect high-quality data from real people.” https://www.prolific.com
6.	 “User Research for Product Development | User Research International.” https://www.uriux.com

Acknowledgements 98
v. 2025.1

Authors

Derek DeBellis

Derek DeBellis has been leading
DORA’s research program since
2022, now happily co-leading
alongside Dr. Kevin M. Storer.

He is driven by a central question:
What helps people work happily
and effectively together? This
question motivates his work
at DORA and his independent
research into power dynamics,
learning architectures, and belief
propagation.

When he’s not analyzing data,
Derek can be found trail running
(twisting his ankles) in the
Colorado Rockies, reading Kafka
and Borges, or recording music.

Nathen Harvey

Nathen Harvey leads Google
Cloud’s DORA team, using its
research to help organizations
improve software delivery speed,
stability, and efficiency.

He focuses on enhancing
developer experience and is
dedicated to fostering technical
communities like the DORA
Community, which provides
opportunities to learn and
collaborate.

Kevin M. Storer

Dr. Kevin M. Storer leads
ethnographic research for Google
Cloud’s DORA team.

His work focuses on
understanding how organizations
can best adapt their software
development practices in
response to recent advancements
in gen AI, especially as it is
used in coding.

Authors99
v. 2025.1

Matt Beane, Ph.D.

Matt Beane is an Associate
Professor in Technology
Management at the University
of California, Santa Barbara,
Digital Fellow at Stanford and
MIT, and CEO/Cofounder of
SkillBench, a firm that helps
companies boost productivity
and skills through gen AI use.

 He has studied the deployment
of intelligent technologies since
2011. He is author of The Skill
Code: How to Save Human Ability
in an Age of Intelligent Machines
(HarperCollins, 2024).

Rob Edwards

Rob Edwards is a Lead for
Software Delivery and Developer
Experience at Google Cloud.

He partners with customers to
help their engineering teams build
and ship software more smoothly
and reliably.

He works from the belief that the
best technical solutions come
from people working together
toward a shared goal, making
technology a tool for business
success.

Edward Fraser

Edward Fraser is a graduate
student at UC Berkeley’s School
of Information, exploring how
human–computer interaction
and emerging technologies can
create more intuitive, empowering
experiences.

Drawing on professional
experience in design and product
management, his recent work
spans an eye-tracking study
of developers using AI coding
assistants, UX research for
enterprise AI tools, and the design
of an educational platform for
incarcerated learners.

Authors 100
v. 2025.1

Eirini Kalliamvakou

Dr. Eirini Kalliamvakou is a Staff
Researcher turned Research
Advisor to GitHub’s CEO. Eirini’s
focus is on understanding
developers’ needs, motivations,
and behavior.

Her work informs evaluations,
innovation strategy, and
storytelling at GitHub, and her
award-winning research on
AI tools and DevEx is shaping
industry practice and community
influence.

Gene Kim

Gene Kim is an award-winning
researcher and author. He has
been studying high-performing
technology organizations since
1999.

His books have sold over 1 million
copies—he is a WSJ bestselling
author of The Unicorn Project, and
co-author of The Phoenix Project,
The DevOps Handbook, and two
Shingo Publication Award-winning
books, Accelerate and Wiring the
Winning Organization.

In 2025, he won the Philip Crosby
Medal from the American Society
for Quality (ASQ). His latest book,
Vibe Coding, is co-authored with
Steve Yegge (coming October
2025).

Authors

Benjamin Good

Benjamin Good is a Cloud
Solutions Architect at Google.

He is passionate about improving
software delivery practices
through cloud technologies and
automation.

As a Solutions Architect he gets
to help Google Cloud customers
solve their problems by providing
architectural guidance, publication
of technical guides, and open
source contributions. Prior to
joining Google, Ben ran cloud
operations for several companies
in the Denver/Boulder area,
implementing building platforms
along the way.

Authors

101
v. 2025.1

Sarah Inman

Sarah Inman is a Senior
UX Researcher on Google’s
Chrome team.

Daniella Villalba, Ph.D.

Daniella Villalba is a Senior UX
Researcher on Google Cloud.
Her research focuses on
understanding developers.

Eric Maxwell

With a career that began in the
trenches of software engineering,
Eric Maxwell has always been
driven by a passion for automation
and a strong empathy for fellow
practitioners. This foundational
experience is the cornerstone
of his work today as the leader
of Google’s 10x Technology
consulting practice.

Eric advises top global companies
on how to deliver value faster by
transforming their organizations
through strategic improvements in
technology, process, and culture.
He contributes his expertise to the
renowned DORA team. Before his
time at Google, Eric was at Chef
Software, where he honed his skills
in infrastructure automation and
whipping up awesome.

Authors

Sarah D’Angelo, Ph.D.

Sarah D’Angelo is a Senior Staff
UX Researcher on Google’s
Core Labs team.

Ambar Murillo

Ambar Murillo is a Staff UX
Researcher on Google’s AI
& Infrastructure team.

102
v. 2025.1

Demographics and
firmographics

The DORA research program has been researching the
capabilities, practices, and measures of high-performing,
technology-driven organizations for over a decade. In
that time, we’ve heard from roughly 45,000 professionals
working in organizations of every size and across many
different industries.

This year, nearly 5,000 working professionals from a variety
of industries around the world shared their experiences
to help grow our understanding of how AI is changing the
field of software development and the conditions in which
organizations can continue to thrive in this new paradigm.
In this chapter, we share a bit more about our respondents,
their identities, their geographies, and their role in software
development.

We thank each of you for sharing your insights with us!

Survey respondent
demographics

This year, a total of 4,867
respondents answered our
survey,1 across a range of
demographics, locations, and
industries.

Demographics and firmographics103
v. 2025.1

Individual

Distribution of respondents age

Distribution of respondents gender

Age

We asked respondents their
age, as an open-text response.
Our sample had a median age
of 41.

Gender

We asked survey respondents
to report their gender. 62.8% of
respondents identified as men,
19.2% as women, 1.1% identified
as non-binary, 0.5% chose to
self-describe, and 2.1% declined
to answer.

Demographics and firmographics

0

200

400

600

800

20 40 60 80

Respondent age

N
um

b
er

 o
f

re
sp

on
d

en
ts

Dashed line indicates median age.

Distribution of Respondent Age

Median age = 41

62.8%

1.1%

0.5%

2.1%

19.2%

Or, in your own words

Non-Binary

Prefer not to say

Woman

Man

20% 40% 60%

Percentage of respondents

Survey question: 'Which of the following describe you, if any?'

Distribution of Respondent Gender

Proportion of respondents who selected each option.

Figure 54: Distribution of respondents age

Figure 55: Distribution of respondents gender

104
v. 2025.1

Distribution of self-reported disabilities

Distribution of respondents role

Disability

We identified disability along six
dimensions that follow guidance
from the Washington Group
Short Set.2 This is the sixth year
we have asked about disability.

Roles

We include a large number of
roles in our survey to capture
the numerous ways that
someone might be involved
in software development.
The most highly represented
roles in our data are full-stack
developers, engineering
managers, and back-end
developers.

Demographics and firmographics

1.3%

1.3%

1.0%

1.0%

2.2%

2.8%

91.5%

I am unable to / find it difficult to type

I am unable to / find it difficult to walk
or stand without assistance

I am deaf / hard of hearing

I am blind / have difficulty seeing

In your own words

Prefer not to say

None of the above apply to me

0 25% 50% 75%

Percentage of respondents

Survey question: 'Which of the following describes you, if any?'

Distribution of Self-Reported Disabilities

Proportion of respondents who selected each option.

0.9%

9.3%

0.3%

1.7%

2.3%

2.9%

3.6%

2.4%

0.8%
0.8%

0.9%

5.1%

0.4%

1.6%

0.5%
0.6%

5.6%

9.3%

3.3%

15.0%

0.5%

0.2%

0.3%

0.8%

7.2%

0.9%

2.8%

4.0%

0.1%

3.2%

1.9%

0.4%
0.4%

1.2%

4.2%

1.7%

0.2%

2.6%

Prompt Engineer
Student

Hardware Engineer
Blockchain

Marketing professional
Scientist

Sales professional
Developer Advocate

Game or graphics developer
Educator

Embedded applications or devices developer
Mobile developer

Designer
Database administrator

Prefer not to answer
Desktop or enterprise applications developer

Academic researcher
Security professional

Developer Experience
Site Reliability Engineer

Business analyst
Research & Development role
Cloud infrastructure engineer

Data scientist or machine learning specialist
System administrator

Product manager
Data Engineer

QA or test developer
Front-end developer

Data analyst
Project manager
Senior Executive

DevOps specialist
Engineer

Other (please specify)
Back-end developer

Engineering manager
Full-stack developer

0 4% 8% 12%

Percentage of respondents

Distribution of Respondent Roles

Survey question: 'Which of the following describes your current job...?'

Figure 56: Distribution of self-reported disabilities

Figure 57: Distribution of respondents role

105
v. 2025.1

Distribution of respondents role experience

Distribution of respondents team tenure

Role experience

We asked survey respondents
to report their years of
experience in their role or
similar positions. Respondents
had a median of six years of
experience working in their role.

Team experience

We asked survey respondents
to report their years of
experience in their current team.
Respondents had a median
of three years of experience
working on their team.

Demographics and firmographics

0

250

500

750

0 10 20 30

Years in current or similar role

N
um

b
er

 o
f

re
sp

on
d

en
ts

Distribution of Respondent Role Experience

Dashed line indicates median years of experience.

Median experience in role = 6 years

0

500

1000

1500

0 10 20 30

Years on current team

N
um

b
er

 o
f

re
sp

on
d

en
ts

Distribution of Respondent Team Tenure

Dashed line indicates median years on team.

Median experience on team = 3 years

Figure 58: Distribution of respondents role experience

Figure 59: Distribution of respondents team tenure

106
v. 2025.1

Distribution of time spent in office

Programming language usage

Where they work

We asked respondents
approximately what percentage
of their last five days were spent
working in an office. Despite
broader initiatives to return
workers to physical office
spaces, 800 of our respondents
worked their most recent five
days fully remotely. The median
time spent in an office over
the last five days was 50%,
suggesting a hybrid model is
most common.

Coding language

We asked respondents which
programming languages
they used most frequently at
work, supporting up to three
top choices. Almost half of
respondents are using Python
at work, while about one-third
are using each of JavaScript
and SQL.

Demographics and firmographics

0

200

400

600

800

0% 25% 50% 75% 100%

Percentage of time spent in the office

N
um

b
er

 o
f

re
sp

on
d

en
ts

Distribution of Time Spent in Office

Dashed line indicates median percentage. Color indicates remote vs. in-office.

0.8%

6.2%

20.0%

23.6%

33.4%

3.3%

0.2%

6.4%

6.5%

47.5%

2.9%

1.8%

32.0%

1.5%

20.1%

7.8%

16.7%

3.9%

18.5%

14.5%

1.2%

5.9%

Lua

Assembly

Dart

Swift

Rust

Ruby

Kotlin

C

Go

HashiCorp Configuration Language (HCL)

PHP

PowerShell

Other (please specify)

C+

C

Bash/Shell (all shells)

HTML/CSS

TypeScript

Java

SQL

JavaScript

Python

0 10% 20% 30% 40%

Percentage of respondents

Survey question: 'Which are the top 3 programming languages that you use at work?'

Programming Language Usage

Proportion of respondents who selected each language.

Figure 60: Distribution of time spent in office

Figure 61: Programming language usage

107
v. 2025.1

Distribution of respondent industries

Distribution of organization sizes

Industry

We asked survey respondents
to identify the industry sector
in which their organization
primarily operates, across 12
categories. Excluding “Other”
responses, the most common
sectors in which respondents
worked were Technology,
Financial Services, and Retail/
Consumer/E-commerce. This
matched our top three 2024
industry demographics.

Size

We asked survey respondents
to identify the number of
employees at their organization,
using nine buckets. The
organizations in which
respondents worked most
commonly had 10,001 or more
employees (22.4%), 51 to 200
employees (16.2%), and 1,001 to
5,000 employees (14.5%).

Organization

Demographics and firmographics

3.4%

2.6%

13.6%

4.5%

5.8%

5.4%

2.4%

3.1%

1.3%

9.7%

7.2%

38.0%

3.1%

Non-profit

Insurance

Energy

Media & Entertainment

Telecommunications

Education

Government

Industrials & Manufacturing

Healthcare & Pharmaceuticals

Retail / Consumer / e-Commerce

Other (please specify)

Financial Services

Technology

0 10% 20% 30%

Percentage of respondents

Distribution of Respondent Industries

Survey question: 'What industry is the company you work for in?'

5.3%

22.4%

14.5%

10.2%

12.2%

8.7%

8.8%

16.2%

1.6%Self-employed

1 - 10 employees

11 - 50 employees

51 - 200 employees

201 - 500 employees

501 - 1000 employees

1001 - 5000 employees

5001 - 10,000 employees

10,001 + employees

0% 5% 10% 15% 20%

Percentage of respondents

Distribution of Organization Sizes

Survey question: 'Approximately how many people are employed by the organization...?'

Figure 62: Distribution of respondents industries

Figure 63: Distribution of organization sizes

108
v. 2025.1

Active integration of AI into end-user service

Impact of primary service unavailablity

AI-infused services and
applications

We asked respondents to
indicate whether they agreed
that their application or service
was actively adding AI-powered
experiences across the last
three months. A roughly equal
number of respondents agreed
and disagreed, with more than
a quarter strongly disagreeing
that their application was
adding AI-powered experiences
in this timeline.

Application criticality

We asked respondents to
indicate the criticality of their
application to their employer
by indicating what level of
impact the unavailability of
that application would have
for the organization’s ability
to achieve its goals and serve
its customers. More than half
of our respondents felt the
unavailability of their application
would have “a great deal” of
impact on the company.

Service

Demographics and firmographics

16.9%

9.4%

6.9%

20.9%

6.1%

14.1%

25.8%Strongly disagree

Mostly disagree

Somewhat disagree

Neither agree nor disagree

Somewhat agree

Mostly agree

Strongly agree

0% 5% 10% 15% 20% 25%

Percentage of respondents

Active integration of AI into end-user Services

51.8%

6.2%

23.9%

16.7%

1.3%None at all

A little

A moderate amount

A lot

A great deal

0 10% 20% 30% 40% 50%

Percentage of respondents

Impact of Primary Service Unavailability

Question: '...what level of impact would the unavailability
of this application/service have...?'

Figure 64: Active integration of AI into end-user service

Figure 65: Impact of primary service unavailablity

109
v. 2025.1

Distribution of primary service or application age

Primary service end-user characteristics

Service age

We asked participants to
indicate approximately how
many years the primary
application or service they work
on has existed. Our respondents’
applications had a median age
of eight years.

Service users

We asked participants to
indicate characteristics of their
applications’ primary end users.
A majority of respondents
were developing business
applications, with a roughly
even number developing for
internal and external audiences.

Demographics and firmographics

0

200

400

600

0 10 20 30

Service age (years)

N
um

b
er

 o
f

re
sp

on
d

en
ts

Distribution of Primary Service or Application Age

Dashed line equals median

Median service age = 8 years

56.8%

51.2%

32.7%

52.9%

Consumers (people who use it
for personal reasons)

External (people from outside
of my own organization)

Business (people who use it for
business reasons)

Internal (people from within
my own organization)

0 10% 20% 30% 40% 50%

Percentage of respondents

Survey question: 'What are some of the characteristics of the primary end users...?'

Primary Service End-User Characteristics

Proportion of respondents who selected each characteristic.

Figure 66: Distribution of primary service or application age

Figure 67: Primary service end-user characteristics

110
v. 2025.1

This year, we had respondents from more than 100 countries. Our largest number
of respondents were located in the U.S., followed by the UK, and India.

Country

Country

USA Japan Malaysia Peru Uruguay Madagascar

UK New Zealand Romania Serbia Viet Nam Morocco

India Switzerland Estonia Slovakia Andorra Nicaragua

Germany Hungary Slovenia Thailand Armenia Panama

Canada Belgium Indonesia Ukraine Bahamas Paraguay

Netherlands Denmark United Arab
Emirates

Afghanistan Bahrain Republic of Moldova

Australia Norway Bulgaria Ecuador Belarus Somalia

France Ireland Croatia El Salvador Bolivia Sri Lanka

Portugal Chile Costa Rica Jordan Burkina Faso The former Yugoslav
Republic of
Macedonia

Poland Philippines Nigeria Kenya Democratic
Republic of the
Congo

Tunisia

Mexico Greece Russian Federation Lithuania Ethiopia Uganda

Sweden Israel Turkey Malta Grenada Yemen

Spain Singapore Bangladesh South Korea Hong Kong (S.A.R.) Zambia

NA Finland China Algeria Iceland

Georgia Austria Costa Rica Cyprus Iran

Italy Czech Republic Egypt Côte d’Ivoire Kazakhstan

South Africa Argentina Latvia Dominican Republic Lebanon

Brazil Colombia Pakistan Guatemala Luxembourg

Demographics and firmographics

Color intensity indicates the number of survey respondents from each country, with darker shades representing a higher volume of participants.

29% U.S.

6% Canada

2% Mexico

14% UK

1% Ireland
2% France

7% India

1% Japan

3% Australia

2% Sweden

6% Germany

4% Netherlands

1% Italy

2% Poland

1% Georgia
2% Portugal

2% Spain

1% South Africa

1% Brazil

111
v. 2025.1

The sole inclusion criterion
for our interviews is that
participants are involved in some
way in professional software
development. Our screener
collects no information about
participants’ demographics
outside of those required to
confirm their job, location, and
language eligibility. In total, we
interviewed 78 participants who
met these criteria.

When asked about their
responsibilities, 70 interview
participants indicated that
they personally write or modify
source code, 37 indicated that
they manage software delivery
pipelines and/or development
infrastructure, 15 indicated that
they make purchasing decisions
about development products and
services, 12 indicated that they
define and update organizational
policies about technology use,
and two indicated that their work
related to software development
only in some other way.

Although these responsibilities
suggest their roles were
typically multifaceted, we asked
participants how they would best
describe their work from the
following options: “I am a software
developer”, “I administrate
software development
infrastructures”, “I manage
people who develop software”,
“I set policies about software
development for my organization”,
“I make purchasing decisions
about products and services
used in software development”,
“My work is not at all related to
software development”, “My work
is related to software development
in a way that is not listed here”.

Interview participant demographics

1.	 Not every respondent was part of each analysis because of survey conditionality or missingness.
2.	 “WG Short Set on Functioning (WG-SS).” https://www.washingtongroup-disability.com/question-sets/wg-short-set-on-functioning-wg-ss/

67 interviewees described
themselves as primarily software
developers, seven described
themselves as primarily managers
of software developers, one
indicated being primarily an
administrator of software
development infrastructures,
and three indicated their work
primarily relates to software
development in some other way.

76 interviewees were located
in the U.S., one was located in
Mexico, and one was located in
Trinidad and Tobago. That the
vast majority of participants
were located in the U.S. was not
surprising, given the interviewer’s
language fluency and scheduling
limitations.

Demographics and firmographics 112
v. 2025.1

Methodology

Question selection

We think about the following aspects when considering whether to
include a question in a survey:

Is this question…

•	 Established so we can connect our work to previous efforts?

•	 Capturing an outcome the industry wants to accomplish (for
example, high team performance)?

•	 Capturing a capability the industry is considering investing
resources into (for example, AI)?

•	 Capturing a capability we believe will help people accomplish
their goals (for example, quality documentation)?

•	 Something that helps us evaluate the representativeness of our
sample (for example, role or gender)?

•	 Something that helps us block biasing pathways (for example,
coding language or role)?

•	 Something that is possible to answer with at least a decent
degree of accuracy for the vast majority of respondents?

We address the literature, engage with the DORA community, conduct
cognitive interviews, run parallel qualitative research, work with subject
matter experts, and hold team workshops to inform our decision as to
whether to include a question in our survey.

A methodology is supposed to be like a recipe that will
help you replicate our work and determine if the way
our data was generated and analyzed is likely to return
valuable information. Although we don’t have the space
to go into the exact details, hopefully this is a great
starting point for those considerations.

Survey experience

We take great care to improve the
usability of the survey. We conduct
cognitive interviews and usability
tests to make sure that the survey
hits certain specification points:

•	 Time needed to complete
survey should, on average, be
low

•	 Comprehension of the
questionnaire should be high

•	 Effortfulness should be
reasonably low, which is a
huge challenge given the
technical nature of the
concepts

Survey development

Methodology

Derek DeBellis
Quantitative User Experience Researcher,
Google Cloud

Kevin M. Storer, Ph.D.
User Experience Researcher, Google Cloud

113
v. 2025.1

Localizations

People around the world have responded to our survey every year.
This year we worked to make the survey more accessible to a larger
audience by localizing the survey into English, Español, Français,
Português,日本語, and 简体中文.

Data collection

Collect survey responses

We use multiple channels to recruit. These channels fall into two
categories: organic and panel.

The organic approach is to use all the social means at our disposal to
let people know that there is a survey that we want them to take. We
create blog posts. We use email campaigns. We post on social media,
and we ask people in the community to do the same (that is, snowball
sampling).

We use the panel approach to supplement the organic channel. Here
we try to recruit people who are traditionally underrepresented in the
broader technical community and try to get adequate responses from
certain industries and organization types.

In short, this is where we get some control over our recruitment—
control we don’t have with the organic approach. The panel approach
also allows us to simply make sure that we get enough respondents,
because we never know if the organic approach is going to yield the
responses necessary to do the types of analyses we do. This year we
had sufficient organic responses to run our analysis and the panel
helped round out our group of participants.

Survey flow

This year we had a lot of questions
we wanted to ask, but not enough
time to ask them. Our options
were…

•	 Make an extremely long
survey

•	 Choose a subset of areas
to focus on

•	 Randomly assign people
to different topics

We didn’t want to give up on any
of our interests, so we chose to
randomly assign participants to
one of four separate flows. There
was a lot of overlap among the
four different flows, but each flow
dove deeply in a different space.

Here are the four different
pathways:

•	 AI

•	 Platform engineering

•	 Sociocognitive aspects

•	 AI capabilities

Methodology 114
v. 2025.1

Last year we introduced the use
of in-depth, semi-structured
interviews to supplement our
annual survey with qualitative
data that can triangulate,
contextualize, and clarify our
quantitative findings.

This year, we significantly
expanded the role of qualitative
data in our research design
by interviewing development
professionals on a continuous
basis from July 2024–July 2025.
In addition to using these insights
to clarify findings from our survey
design, we also used qualitative
data to generate new hypotheses
to test as part of our survey,

This section outlines our analytical
method, which is heavily steeped
in the works of Statistical
Rethinking and Regression and
Other Stories.1,2 We could attach
a footnote from one of those to
each sentence. We walk through
our entire workflow with a
simplified example so you can
determine the appropriate level
of trust to put into our results
and replicate our approach. The
2024 DORA Report explored the
theoretical principles behind
our analysis in the Methodology
section. This year, we focus on
the practical application: how we
conducted our analysis.

Interviews

Statistical analysis

especially as related to emerging
practices in AI-assisted and AI-
driven development paradigms.

The interview guides used
throughout this process were
designed to touch on a range
of foundational topics in the
domain of AI use in software
development, while affording
flexibility to probe topics of
interest raised by participants
as they emerged. Interview
sessions were designed to last
approximately 90 minutes each,
and were conducted remotely.

To do so, we are going to go
through a simulated, simplified,
and idealized example. We’re
going to smooth over or even
skip some of the complexity. This
guide is a high-level overview;
some aspects of a full analysis
are discussed lightly or not at
all to maintain focus on the core
workflow. Here are the core
variables in this toy analysis:

1.	individual_experience
= how much experience
someone has in this type of role
(manifest variable)

2.	resources = resources (for
example, tools) available to do
work (manifest variable)

In total, we interviewed 78
participants who were confirmed
to be professionally involved in
software development through
a screener survey and phone
screen. All interviews were video-
and audio-recorded. All interviews
were transcribed using automated
software. Quotations appearing in
the final publication of this report
were revisited and transcribed
manually prior to inclusion. Words
added or altered in participant
quotations by the authors of this
report are indicated by brackets
([]) and words removed are
indicated by ellipses (...). Edits
were made only in cases where
required for clarity or anonymity.

3.	stability = does the
organization have stable
priorities (manifest variable)

4.	individual_effectiveness_
score = a factor made up of
four indicators

5.	ai_adoption = does the
organization have stable
priorities

If you finish this little section,
hopefully you have a better sense
of whether to trust us, a desire to
replicate this work, and a couple
of new statistics tricks.

Methodology115
v. 2025.1

All statistical models contain
causal assumptions; our
approach is to make them
explicit. Correlation may not imply
causation, but how you think
about causation will impact your
correlations. We codify our theory
about how the world works in a
directed acyclic graph (DAG).3

This DAG is our map of
the causal landscape, built
from prior research, qualitative
work, and domain expertise.
By visualizing our assumptions,
we make them transparent and
debatable, which is a cornerstone
of rigorous science.4

For this example, our extremely
simplified DAG hypothesizes
that individual_experience,
resources,5 and stability
are common causes of both
ai_adoption and individual_
effectiveness.

Step 1: Defining our causal theory (the DAG)

Load necessary libraries

library(dagitty)

library(ggdag)

library(lavaan)

library(tidyverse)

library(brms)

library(tidybayes)

library(ggplot2)

library(emmeans)

library(performance)

library(semPlot)

Define the causal relationships in our simplified DAG

simple_dag <- dagitty('dag {

 ai_adoption [exposure]

 individual_effectiveness [outcome]

 individual_experience [adjusted]

 resources [adjusted]

 stability [adjusted]

 individual_experience -> ai_adoption; resources -> ai_adoption;
stability -> ai_adoption

 ai_adoption -> individual_effectiveness

 individual_experience -> individual_effectiveness; resources ->
individual_effectiveness; stability -> individual_effectiveness

}')

Plot the DAG to visualize our theory

ggdag(simple_dag, text = FALSE, use_labels = "name") + theme_dag_
blank()

Methodology 116
v. 2025.1

Generating fake data from
our causal theory

Let’s use the causal structure
defined in our DAG to simulate a
dataset for this example. This is
fake data.

Creating data from a known
causal structure gives us a
perfect “ground truth.” This is
incredibly helpful because it allows
us to stress-test our methods.
If our analysis can’t recover the
correct answer from this clean,
perfectly known data, it certainly
can’t be trusted with messy,
real-world data.

However, this is also a
simplification. Real data contains
complexities like non-linear
relationships, measurement error,
unknown causal structures, and
missing values that we exclude
from this simplified example.

Define the model with specific path coefficients to generate data

model_specification <- "

 # -- Measurement Model --

 ai_adoption_factor =~ 0.8*use + 0.7*reliance + 0.6*trust

 individual_effectiveness_factor =~ 0.8*effective +
0.7*productivity + 0.7*impactful + 0.6*flow

 # -- Structural Model (Paths based on the DAG) --

 ai_adoption_factor ~ 0.4*individual_experience + 0.3*resources +
0.2*stability

 individual_effectiveness_factor ~ 0.3*ai_adoption_factor +
0.3*individual_experience + 0.2*resources + 0.15*stability"

set.seed(2025)

simulated_data <- simulateData(model_specification, sample.nobs =
500)

#get a sense of the data

summary(simulated_data)

glimpse(simulated_data)

This output diagram visualizes
our theory. Our focus is
ai_adoption’s impact on
individual_effectiveness,
but to properly estimate that, we
need to understand the broader
context. The DAG identifies
several key confounders—factors
that influence both our cause and
our effect. These are:

individual_experience (with
role)

resources (required to do role
are available)

stability (priority stability)

We’ll let the DAG explicitly identify
them later.

Methodology

resources

individual_effectiveness

individual_experience

ai_adoption

stability

117
v. 2025.1

Before testing our causal or
structural theory, we must ensure
our measurement tools are sound
using a confirmatory factor
analysis (CFA).6 This step validates
that our survey items reliably
measure their intended latent
constructs (Kline, 2015).
We evaluate the model by
checking for good global fit,
strong local factor loadings,
and no major points of strain
via modification indices.

Step 2: Evaluating the measurement model (CFA)

Define the measurement-only portion of our model

measurement_model <- "

 ai_adoption_factor =~ use + reliance + trust

 individual_effectiveness_factor =~ effective + productivity +
impactful + flow

"

Fit the CFA model to our simulated data

cfa_fit <- cfa(measurement_model, data = simulated_data)

Review the fit indices, loadings, and modification indices

summary(cfa_fit, fit.measures = TRUE, standardized = TRUE)

modificationindices(cfa_fit, sort = TRUE, minimum.value = 10)

Methodology

This is some of the output for that model.

> summary(cfa_fit, fit.measures = TRUE,
standardized = TRUE)

lavaan 0.6-19 ended normally after 34 iterations

 Estimator ML

 Optimization method NLMINB

 Number of model parameters 15

 Number of observations 500

Model Test User Model:

 Test statistic 7.579

 Degrees of freedom 13

 P-value (Chi-square) 0.870

Model Test Baseline Model:

 Test statistic 651.579

 Degrees of freedom 21

 P-value 0.000

User Model versus Baseline Model:

 Comparative Fit Index (CFI) 1.000

 Tucker-Lewis Index (TLI) 1.014

Loglikelihood and Information Criteria:

 Loglikelihood user model (H0) -5515.401

 Loglikelihood unrestricted model (H1)
-5511.612

 Akaike (AIC) 11060.803

 Bayesian (BIC) 11124.022

 Sample-size adjusted Bayesian (SABIC)
11076.411

Root Mean Square Error of Approximation:

 RMSEA 0.000

 90 Percent confidence interval - lower 0.000

 90 Percent confidence interval - upper 0.023

 P-value H_0: RMSEA <= 0.050 0.999

 P-value H_0: RMSEA >= 0.080 0.000

Standardized Root Mean Square Residual:

 SRMR 0.017

118
v. 2025.1

How to interpret the CFA
output

The lavaan7 output provides a rich
set of diagnostics. Here’s how to
interpret the key sections using
your results.

1. The chi-square test (χ2). This is
the test of perfect fit. It tests the
null hypothesis that the model fits
the data exactly.

Your result: Test statistic = 7.579,
df = 13, P-value = 0.870

Guideline: We hope for a
non-significant result (p > .05).

Interpretation: The p-value
is very high (0.870), meaning
we cannot reject the null
hypothesis. The test indicates
that our model’s structure is
statistically indistinguishable
from a perfect fit.8

Warning: This is the traditional,
formal statistical test of model
fit. However, with very large
samples like DORA’s, this test is
overly sensitive and almost always
indicates a “poor fit” even when
the model is excellent. Because of
this, we use it as a reference but
rely more heavily on the practical
indices below.

2. Incremental fit indices (CFI
& TLI). These indices compare
our model’s fit to a “worst-case”
baseline model where no variables
are related.

Your result:
CFI = 1.000, TLI = 1.014

Guideline: We check for values
> 0.90 (acceptable) and > 0.95
(excellent).

Interpretation: The values are at
or above the theoretical maximum
of 1.0. This signals a perfect fit
relative to the baseline model.
(Note: TLI can sometimes exceed
1.0 in well-fitting models.)

3. Absolute error indices
(RMSEA & SRMR). These indices
measure the “badness-of-fit”
or the average error between
the model’s predictions and the
actual data.

Your RMSEA result:
RMSEA = 0.000 with a 90% CI
of [0.000, 0.023]

Guideline: We check for a point
estimate < 0.08 (acceptable)
and < 0.06 (excellent).

Interpretation:
Your RMSEA is zero, with the entire
confidence interval falling well
below the threshold for excellent
fit. This suggests there is virtually
no error of approximation.

Your SRMR result:
SRMR = 0.017

Guideline:
We check for a value < 0.08.

Interpretation: The value is
extremely low, indicating that the
average standardized difference
between the observed and
predicted correlations is tiny.

4. Factor loadings and
modification indices (output
not shown). Use the standardized
factor loadings to inspect if the
loadings are substantial and similar
from within the factor.9 Use the
modification indices to locate
areas of local strain in your model.
High modification indices indicate
areas of potential misspecification.

In this example, across the board,
every single fit index points to
a model that fits the data near-
perfectly. This is exactly what
we hope to see in this specific
scenario. Because we generated
the data directly from this
model’s specifications, a perfect
fit confirms that our analytical
method is working correctly and
can recover a known structure.
However, it’s crucial to note that
seeing results this flawless with
real-world survey data would
be highly unusual and almost
worrisome. Such a perfect fit
in a real analysis might suggest
that the model is too simple
for the data’s complexity or, in
some cases, that the model has
been “overfit” through extensive
tweaking.

Methodology119
v. 2025.1

With validated measures, we use structural
equation modeling (SEM) to perform a holistic
fit test of our entire causal theory. The purpose
of SEM is to compare the covariance structure
implied by our DAG to the covariance structure
observed in our data.

A good model is one where the theory’s predictions
closely match reality. We are evaluating how well our
theoretical model aligns with the observations.

Step 3: Testing and evaluating the model structure (SEM)

#Define our theoretical model

Define the model with specific path
coefficients to generate data

structural_model <- "

 # -- Measurement Model --

 ai_adoption_factor =~ use + reliance + trust

 individual_effectiveness_factor =~ effective +
productivity + impactful + flow

 # -- Structural Model (Paths based on the DAG)
--

 ai_adoption_factor ~ individual_experience +
resources + stability

 individual_effectiveness_factor ~ ai_adoption_
factor + individual_experience + resources +
stability

"

Fit the full SEM to the data to estimate the
path coefficients

sem_fit <- sem(model_specification, data =
simulated_data)

Run a full summary to get fit measures,
loadings, and path coefficients

sem_summary <- summary(sem_fit, standardized =
TRUE, rsquare = TRUE)

sem_summary

Methodology

Inspect specific areas of local fit

residuals(sem_fit, type = "standardized")

modificationindices(sem_fit, sort. = TRUE,
minimum.value = 10)

--- Generate a Minimal, Monochrome SEM Path
Diagram ---

semPaths(sem_fit,

 # --- Core Content ---

 what = "std", # IMPORTANT: Show
standardized coefficients on paths

 whatLabels = "est", # Show the estimate
value (the coefficient)

 # --- Layout & Sizing ---

 layout = "tree2", # A clean hierarchical
layout

 rotation = 2, # Rotates the layout for
better viewing (often top-to-bottom)

 sizeMan = 8, # Size of manifest
variables (squares)

 sizeLat = 10, # Size of latent
variables (circles)

 edge.label.cex = 0.8, # Font size for the
path coefficients

 nCharNodes = 0, # Ensures full variable
names are displayed

 # --- Minimalist Aesthetics ---

 style = "ram", # A clean drawing style
from the RAM specification

 residuals = FALSE, # HIDE residual
variances to reduce clutter

 intercepts = FALSE, # HIDE intercepts for
simplicity

 # --- Monochrome Theme ---

 color = "white", # Fill color for all
shapes

 edge.color = "black", # Color for all
arrows

 border.color = "black", # Border color for
shapes

 border.width = 1.5, # Thickness of the
borders

 label.color = "black" # Color of the text
on the arrows

)

120
v. 2025.1

How we evaluate the SEM

Judging if the model is “good”
requires a holistic check of several
indicators. We group these into
two categories:

1. Global fit: The 30,000-foot
view.9 These indices tell you
how well the model as a whole
reproduces the data.

The chi-square test (χ2): This is
the test of perfect fit. It tests the
null hypothesis that the model fits
the data exactly.

CFI & TLI: The comparative fit
index and Tucker-Lewis index
measure how much better our
model is than a “worst-case”
model. We check for values > 0.90
(acceptable) or > 0.95 (excellent).

RMSEA: The root mean square
error of approximation is a
“badness-of-fit” index measuring
the average model error. We check
for values < 0.08 (acceptable) or <
0.06 (excellent).

2. Local fit: Checking under the
hood. These diagnostics help us
find specific points of strain within
the model.

Factor loadings: In the
standardized output, we check
for high, significant loadings
(ideally > 0.50) for the items on
their respective latent factors. This
confirms our measurement model
is strong.

Standardized residuals: These
show the error for each individual
relationship in the model. We

check for an absence of large
values (for example, no absolute
values > 2.58), which would indicate
a specific relationship is poorly
predicted by our theory.

Modification indices: These
“what-if” statistics tell us where the
model is under the most strain. We
check for large values to diagnose
problems (like a survey item
measuring two concepts at once),
but we avoid blindly modifying
our model based on them without
strong theoretical justification.

A good model is one that has
acceptable global fit, strong factor
loadings, and no major signs of
local strain. It’s this constellation of
evidence that gives us confidence
in the model’s structure.

0.67

0.85

1.00

0.33

0.23

0.12

0.27

0.17

0.88

0.92

0.17 0.98

0.16

1.00

trust

reliance

use

resources

stability

individual_experience

ai_adoption_factor

individual_effectiveness
_factor

productivity

impactful

effective

flow

Methodology121
v. 2025.1

Methodology

Testing the theoretical model’s implications

 Our DAG also generates a set of testable predictions
known as “implied conditional independencies.”
These are focused on the circumstances in which
these variables are not related. Think of this as
testing a theoretical model’s alibis. If they hold up,
you have more reason to believe it.

When we run
`impliedConditionalIndependencies(simple_dag)’,
we notice:

These statements are a core prediction of our causal
model, stating that a person’s individual experience,
their available resources, and their team’s stability
are all independent of one another. In other words,
knowing the level of available resources for a
team provides no information about an individual’s
experience on that team or the team’s overall
stability.

We first check this informally by examining the
covariances in the original model. They’re all near 0,
so we have some pretty good evidence.

We can also try a more formal test, where we build
these implications in our structural equation model.
We would do this by constraining those parameters
to 0. In our last model, we asked the model to
estimate those parameters, as we believed they were
free to be whatever they wanted to be. Now, we’re
saying they’re zero.

The key result comes from the anova() function,
which performs a formal Chi-squared difference test.
This provides a formal comparison between your
original model (sem_fit) and the more restrictive
model (constrained_fit) where you forced the
covariances to be zero. The key question is: “Did
forcing those relationships to be zero significantly
harm the model’s fit?”

check in the "Covariances" section of this
output

summary(sem_fit, standardized = TRUE)

--- Formally Test the Implied Conditional
Independencies ---

#get the implied conditional independencies

impliedConditionalIndependencies(simple_dag)

#we can just inspect the covariances

sem_summary$pe %>% filter(op == "~~",

 lhs %in% c("individual_experience",

 "resources",

 "stability"))

1. Define a new, constrained model string

constrained_model_string <- "

 # -- Measurement Model --

 ai_adoption_factor =~ use + reliance + trust

 individual_effectiveness_factor =~ effective +
productivity + impactful + flow

 # -- Structural Model (Paths based on the DAG)
--

 ai_adoption_factor ~ individual_experience +
resources + stability

 individual_effectiveness_factor ~ ai_adoption_
factor + individual_experience + resources +
stability

 # --- NEW CONSTRAINTS ---

 # We now explicitly force the covariances to
zero based on the DAG's implication

 individual_experience ~~ 0*resources

 individual_experience ~~ 0*stability

 resources ~~ 0*stability

"

2. Fit the constrained model

constrained_fit <- sem(constrained_model_string,
data = simulated_data)

3. Compare the original model (sem_fit) to the
constrained model

A non-significant p-value means the constraints
are supported by the data.

anova(sem_fit, constrained_fit)

ind_ _||_ rsrc

ind_ _||_ stbl

rsrc _||_ stbl

122
v. 2025.1

 Df AIC BIC Chisq Chisq diff RMSEA Df diff Pr(>Chisq)

sem_fit 28 10952 11040 21.454

constrained_fit 31 15319 15420 24.980 3.5267 0.018739 3 0.3173

The results suggest that
restricting or constraining those
three covariances to zero did not
significantly hurt the model.

Chisq diff (Chi-squared
difference):
This is the raw measure of how
much worse the fit got when you
added the constraints.

Your result:
3.5267. By itself, this number is
hard to interpret.

Df diff (Difference in degrees
of freedom):
This shows how many constraints
you added.

Your result:
3. This is correct, as you forced
three covariances to zero.

Pr(>Chisq) (The P-value):
This is the most important number.
It tells you the probability of
seeing a Chisq diff of 3.5267 or
larger if the constraints were
actually true in the population.

After gaining confidence in our
DAG’s structure, we turn to our
main question. We use our DAG
to identify the correct adjustment
set and then fit a Bayesian model.
While our framework is causal, we
interpret our results as principled
comparisons, acknowledging the
limitations of observational data
(Gelman et al., 2020).

Step 4: Estimating comparisons with a Bayesian model

Setting priors

Our approach of testing a
predictor across numerous
outcomes creates a multiple
comparisons challenge. To
address this, we implement a
consistent, skeptical Bayesian
prior for our predictor in every
model.10 This acts as a principled
defense against being fooled by
randomness. By setting a skeptical
prior (student_t(3, 0, 0.5)),11 we
formally build in the belief that the
true effect is likely small, which
tames the false positive rate.12

Determining the adjustment
set

DAG will let you know what
variables to include, and perhaps
more importantly, what variables
not to include, in your model. If
your DAG is correct, the inclusion
of these variables should prevent
biasing pathways from biasing
your estimate of AI adoptions
(exposure) impact on individual
effectiveness (outcome).

Methodology

Your result:
0.3173.

In short, the implications held up
and the constrained model is the
more parsimonious approach.

123
v. 2025.1

Identify adjustment set

adjustmentSets(simple_dag, exposure = "ai_
adoption", outcome = "individual_effectiveness")

Prepare data

model_data <- simulated_data %>%

 mutate(

 ai_adoption_score = rowMeans(select(., use,
reliance, trust)),

 individual_effectiveness_score =
rowMeans(select(., effective, productivity,
impactful, flow))

) %>%

 mutate(across(c(ai_adoption_score, individual_
experience, resources, stability), scale))

Define priors

priors <- c(prior(student_t(3, 0, 0.5), class
= "b"), prior(student_t(3, 0, 2.5), class =
"Intercept"), prior(exponential(1), class =
"sigma"))

Methodology

Fit models

baseline_model <- brm(formula = individual_
effectiveness_score ~ individual_experience +
resources + stability, data = model_data, family
= gaussian(), prior = priors, chains = 4, iter
= 4000, warmup = 2000, seed = 2025, silent = 2,
refresh = 0)

full_model <- brm(formula = individual_
effectiveness_score ~ ai_adoption_score +
individual_experience + resources + stability,
data = model_data, family = gaussian(), prior =
priors, chains = 4, iter = 4000, warmup = 2000,
seed = 2025, silent = 2, refresh = 0)

Compare models with LOO

loo_compare <- loo(baseline_model, full_model)

print(loo_compare)

#coefficient summaries with 89% credibility
intervals

posterior_summary(full_model, probs = c(1-
.11/2,.11/2))

#type s error (approximately a pvalue)

1 - mean(as.matrix(full_model)[,"b_ai_adoption_
score"] >0)

 Estimate Est.Error Q94.5 Q5.5

b_ai_adoption_score 0.199 0.041 0.265 0.134

We believe a single metric is
never enough to understand a
model. Instead, we evaluate the
evidence through four key lenses,
embracing the uncertainty in our
data as a source of knowledge.

1. Does predictive accuracy
improve? (The LOO result)

Yes. The LOO comparison shows a
clear preference for the full_model
(elpd_diff = 10.7, se_diff = 5.2).13
This is our first piece of evidence:
including ai_adoption_score
creates a model that is expected
to make better predictions on new
data. It’s not just statistical noise;
it’s a predictively useful variable.

2. Is the effect consistently on one side of zero? (Type S error)

Yes. Checking at the posterior summary for b_ai_adoption_score:

The 89% credible interval (from Q5.5 to Q94.5) for the AI adoption
coefficient is [0.13, 0.26]. The entire interval is well above zero. This
means there is a very low probability of a Type S (Sign) error. We can be
highly confident that the relationship is positive.

124
v. 2025.1

3. Do we have a good sense of the
effect’s size? (Type M Error)

Yes. The model provides a clear
sense of the magnitude. Our
best estimate is a 0.20 standard
deviation increase in effectiveness
for every one standard deviation
increase in AI adoption. The
credible interval [0.13, 0.26]
gives us a plausible range for
this effect. It’s not a huge effect,
but it’s not trivial either, and the
estimate is reasonably precise.
This clarity helps us avoid a Type
M (Magnitude) error by preventing
us from overstating the effect’s
importance.

4. Does this align with our
theory?

Yes. Our initial DAG hypothesized
a direct, positive causal path
from AI adoption to individual
effectiveness. All the statistical
evidence we’ve gathered—from
the SEM’s structural validation
to the LOO comparison and
the final posterior estimate—is
consistent with this theoretical
claim. The data supports the
story we started with.

Synthesis

By combining these four
perspectives, we move beyond a
simple “Is it significant?” mindset.
The evidence converges to show
that the relationship between
AI adoption and effectiveness is
predictively useful, directionally
stable, modest but clearly
estimated in magnitude, and
theoretically sound. This approach
helps us avoid “getting jerked
around by noise patterns that
happen to exceed the statistical
significance threshold.”14

Fitting a model is not the end.
We perform a series of rigorous
diagnostic checks to ensure the
results are reliable.16 This includes
checking for MCMC convergence
(hatR < 1.01, high ESS), running
posterior predictive checks to
ensure the model can reproduce
the observed data, and checking
model assumptions via residual
analysis (Gelman et al., 2013). This
topic is worth a chapter in itself.
We are simply going to share some
important diagnostic checks to
consider. These are worth knowing
because their applicability is
widespread, from basic models
to advanced ones. The basic
categories are:

Step 5: Diagnosing the model for trustworthiness15

Computational health:

We first ensure the model’s
algorithm ran correctly and
produced stable estimates. This is
a technical check for the model’s
computational engine, ensuring its
results are reliable (for example,
checking that the R^ statistic is
less than 1.01).

Predictive alignment:

We then check if the model’s
predictions align with the real-
world data we started with. We
use the model to simulate data
and see if it “checks like” the data
we actually observed. A model
that can’t recreate the past can’t
be trusted to explain the present.

Statistical validity:

Finally, we verify that the model’s
core statistical assumptions were
met. This involves inspecting
the model’s errors (its residuals)
to ensure we haven’t violated
fundamental principles, such
as the assumption of a linear
relationship.

Methodology125
v. 2025.1

Methodology

print("--- Convergence Diagnostics (R-hat, ESS) ---")

summary(full_model)

print("--- Visual Trace Plots ---")

plot(full_model, N = 4, ask = FALSE)

print("--- Posterior Predictive Check ---")

pp_check(full_model, ndraws = 100)

print("--- Residual Assumption Checks ---")

check_model(full_model)

0.4

0.3

0.2

0.1

0.0
-4 -2 0 2

individual_effectiveness_score

D
en

si
ty

Observed data Model-predicted data

Model-predicted lines should resemble observed data line
Posterior predictive check

Reference line should be flat and horizontal
Homogeneity of variance

Fitted values

IS
td

. r
es

id
ua

ls
I

0.0

1.5

1.0

0.5

-1.0 -0.5 0.0 0.5 1.0

High collinearity (VIF) may inflate parameter uncertainty
Collinearity

Va
ri

an
ce

 In
fl

at
io

n
Fa

ct
or

(V
IF

, l
og

-s
ca

le
d

)

ai_adoption_score
individual_experience

resources stability

Low (<5)

1

2

3

5

10

Reference line should be flat and horizontal
Linearity

Points should be inside the contour lines
Influential observations

Dots should fall along the line
Normality of residuals

Re
si

d
ua

ls
St

d
. r

es
id

ua
ls

Sa
m

pl
e

q
ua

nt
ile

 d
ev

ia
ti

on

Fitted values

Leverage (hii)

Standard normal distribution quantiles

2

1

0

-1

-2

25

0

-25

3

2

1

0

-1

-2

-3

-1.0 -0.5 0.0 0.5 1.0

0.00 0.01 0.02 0.03 0.04

-2 0 2

98
23

419

0.8

0.8

47299

126
v. 2025.1

Finally, we translate our statistical
results into intuitive visualizations.
We interpret our model by
examining the full posterior
distribution of our main parameter,
plotting conditional predictions
(or estimated marginal means)
to understand the magnitude of
the comparison, and viewing the
regression line in the context of
the raw data.

Step 6: Visualizing the estimated effect

-0.2

0.0

0.2

Low Average High

AI Adoption Score (Standardized: -1, Avg, +1 SD)

Pr
ed

ic
te

d
 E

ff
ec

ti
ve

ne
ss

 S
co

re

Comparing low, average, and high levels
of AI adoption

Predicted individual
effectiveness

-2
-1
0
1
2

-2 0 2 4

AI Adoption Score (Standardized)

In
d

iv
id

ua
l E

ff
ec

ti
ve

ne
ss

 S
co

re

Regression line and 89% credible
interval overlaid on raw data.

Relationship between AI adoption
and effectiveness

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3
Coefficient Estimate (Standardized)

D
en

si
ty

This shows the full range of plausible values for the effect
Posterior distribution for AI adoption score

Top: Predictions on the outcome scale. Bottom: Posterior distribution of the standardized coefficient.

Three views of the effect of AI adoption on individual effectiveness

For our final results, we report
89% credible intervals, a choice
that deliberately shows the
arbitrariness of p-value-centric
thinking and focuses on the
stable, high-density region of the
posterior (McElreath, 2020).

Methodology127
v. 2025.1

Methodology

--- STEP 6: Visualizing the Estimated Effect

print("Generating visualizations...")

6a. The Posterior Distribution

plot_posterior <- full_model %>%

 spread_draws(b_ai_adoption_score) %>%

 ggplot(aes(x = b_ai_adoption_score)) +

 stat_halfeye(fill = "#1565C0") +

 geom_vline(xintercept = 0, linetype = "dashed")
+

 labs(

 title = "Posterior Distribution for AI
Adoption Score",

 subtitle = "This shows the full range of
plausible values for the effect.",

 x = "Coefficient Estimate (Standardized)",

 y = "Density"

) +

 theme_minimal()

6b. The Comparison Plot (Estimated Marginal
Means)

emm_results <- emmeans(full_model,

 specs = ~ ai_adoption_
score,

 at = list(ai_adoption_
score = c(-1, 0, 1)),

 prob = 0.89) # 89%
Credible Interval

plot_comparison <- as.data.frame(emm_results) %>%

 ggplot(aes(x = ai_adoption_score, y = emmean))
+

 geom_point(size = 4, color = "#1565C0") +

 geom_errorbar(aes(ymin = lower.HPD, ymax =
upper.HPD), width = 0.1, linewidth = 1) +

 labs(

 title = "Predicted Individual Effectiveness",

 subtitle = "Comparing low, average, and high
levels of AI adoption.",

 x = "AI Adoption Score (Standardized: -1,
Avg, +1 SD)",

 y = "Predicted Effectiveness Score"

) +

 theme_minimal() +

 scale_x_continuous(breaks = c(-1, 0, 1), labels
= c("Low", "Average", "High"))

--- 6c. The Relationship in Context
(Scatterplot with Regression Line) ---

Create a reference grid: a sequence of points
along the range of our predictor

plot_grid <- ref_grid(full_model,

 at = list(ai_adoption_score
= seq(min(model_data$ai_adoption_score),

max(model_data$ai_adoption_score),

length.out = 100)))

Get the predictions (estimated marginal means)
at each point in our grid

emm_plot_data <- emmeans(plot_grid, "ai_adoption_
score", prob = 0.89) %>% as.data.frame()

Now, create the plot with this new, smooth data

plot_relationship <- ggplot(emm_plot_data, aes(x
= ai_adoption_score, y = emmean)) +

 geom_point(data = model_data, aes(y =
individual_effectiveness_score), alpha = 0.2,
color = "gray50") +

 geom_line(color = "#1565C0", linewidth = 1.5) +
No group aesthetic needed now

 geom_ribbon(aes(ymin = lower.HPD, ymax = upper.
HPD), alpha = 0.2, fill = "#1565C0") +

 labs(

 title = "Relationship Between AI Adoption and
Effectiveness",

 subtitle = "Regression line and 89% credible
interval overlaid on raw data.",

 x = "AI Adoption Score (Standardized)",

 y = "Individual Effectiveness Score"

) +

 theme_minimal()

128
v. 2025.1

--- Print the corrected plot ---

print(plot_relationship)

--- Print the final plots to the screen ---

print(plot_posterior)

print(plot_comparison)

print(plot_relationship)

--- Combine the three plots using patchwork ---

The '+' operator puts plots side-by-side

The '/' operator stacks them vertically

combined_plot <- (plot_comparison + plot_
relationship) /

 plot_posterior +

 plot_annotation(

 title = "Three Views of the Effect of AI
Adoption on Individual Effectiveness",

 caption = "Top: Predictions on the outcome
scale. Bottom: Posterior distribution of the
standardized coefficient."

)

--- Print and save the final combined plot ---

print(combined_plot)

ggsave(

 combined_plot,

 filename = "combined_plot.svg",

 height = 6 * .75,

 width = 9 *.75,

 dpi = 600

)

print("--- Workflow Complete ---")

Methodology129
v. 2025.1

Methodology

1.	 McElreath, Richard. Statistical Rethinking: A Bayesian Course with Examples in R and STAN (Chapman and Hall/CRC, 2020).
2.	 Gelman, Andrew, Jennifer Hill, and Aki Vehtari. Regression and Other Stories of Analytical Methods for Social Research (Cambridge University Press,

2020).
3.	 The Our research model and its theory chapter provides an overview of this codified theory.
4.	 Pearl, Judea. Causality (Cambridge University Press, 2009).
5.	 The Our research model and its theory chapter has a much more comprehensive overview.
6.	 Before we do a confirmatory factor analysis, we do an exploratory factor analysis to understand how the factors fall out before we constrain

parameters with a theoretical model. This, in combination with other diagnostics, helps us better understand where our theory might have areas of
poor fit.

7.	 Rosseel Y (2012). “lavaan: An R Package for Structural Equation Modeling.” Journal of Statistical Software, 48(2), 1–36.
https://doi.org/10.18637/jss.v048.i02

8.	 This is good news for the simpler model. It is essentially saying we don’t lose a lot of information by not freely estimating certain parameters.
9.	 There are formal tests you could use to evaluate this.
10.	 Good modeling isn’t just about fit; it’s about finding the simplest model that fits well (Occam’s razor). You could keep adding parameters to achieve

this. The questions are which parameter is justifiable and how much can you trim without losing much understanding.
11.	 We also test for how robust the results are to various priors. In the end, we’ve decided we want to prevent false positives more than false negatives.

We don’t want people exploring certain areas based on us being tricked by noise.
12.	 There is a good discussion on the topic here: https://discourse.mc-stan.org/t/why-studentt-3-0-1-for-prior/8102
13.	 For interaction terms, we use an even more skeptical prior (normal(0, 0.3)), as these effects are expected to be smaller.
14.	 The model on top is the model that is making the best predictions. The elpd_diff should be greater than the se_diff. I start feeling especially

confident when elpd_diff is greater than 2x the se_diff (so, greater than 10.4 or 5.2 x 2).
15.	 The earlier you start evaluating these assumptions, the better.
16.	 Exploring the distributions and patterns in descriptive stats is a sometimes tedious, but crucial part that takes place at the start, before models are

even being considered.

This workflow—from explicit
theory to rigorous validation,
estimation, and diagnostics—is
designed to produce transparent,
trustworthy, and robust insights.

We’re hoping that sharing
our process here and the
Our research model and its
theory chapter puts readers in
a position to better evaluate our
work. We’re also hopeful that this
makes replication possible and
encourages people to leverage
some fun statistical approaches.

Conclusion

130
v. 2025.1

Our research model
and its theory

This chapter outlines the
theoretical model that underpins
our analysis and estimates. It
is a product of discussion with
the DORA community, the
experiences of subject-matter
experts who are responsible for
implementing changes across the
company, literature, and troves of
qualitative data. The model isn’t
just an exercise of connecting
boxes with lines. It is critical
because the theoretical and
unavoidably casual assumptions
contained within it guide the
analysis. Small changes have
large implications on the analysis.
Correlation does not imply
causation, but our assumptions
about causation do impact the
correlations we find.

“Theory represents an essential decision that causes
the world to appear wholly different—in a wholly
different light. Theory is a primary, primordial decision,
which determines what counts and what does not …”

Byung-Chul Han1

This model is unique for DORA
in two key ways. First, we are
primarily focused on the impact
of AI adoption and the conditions
under which this impact is
modified (AI capabilities). This
means the model is primarily
designed so we can get accurate
estimates about the effect of
AI adoption on the outcomes
we believe are important to
technology-driven organizations.

 Normally, the model is trying to
predict the relationship between
many capabilities and many
outcomes.

Second,2 the model is evaluated at
the level of a structural equation
model, but the results of that
analysis are only to establish the
model’s plausibility. From there, we
build targeted Bayesian models
to generate more focused and
granular estimates.

The Methodology chapter goes
into considerable detail about this.

The basic flow of this chapter is as
follows:

The model: Introduction to our
overall model

The concepts: Description of the
high-level concepts of the model

The theory: Outline of the
theoretical justification for each
pathway

This chapter, combined with the
Methodology chapter, provides
an overview of both the theory
and analysis that are behind
the results. It should lay bare
our assumptions. We hope this
understanding provides enough
information to replicate, leverage,
and evaluate our work.

Our research model and its theory

Derek DeBellis
Quantitative User Experience Researcher,
Google Cloud

131
v. 2025.1

The concepts (represented as
boxes) in our causal model are
high-level groupings. These
groupings simplify the visualization
and don’t necessarily represent
the exact measurements used in
our analysis. The model contains
contextual concepts that help
us understand the respondents’
circumstances. This includes
environment traits, service traits,
processes, and individual traits.

The model

AI adoption is a particular latent
factor from our confirmatory
factor analysis that is a composite
of reflexive use, trust, and reliance.
Then there are our outcomes,
which are explained in more detail
in the executive summary and the
AI impacts chapter.

We like to think that no concept
here is superfluous. Getting good
estimates of AI adoption’s effect
requires mapping the tangled
reality in which that effect resides.

We use structural equation
modeling and directed acyclic
graphs to evaluate how well this
theoretical model aligns with
observed data. When the model
is verified, we use the DAG to
adjust our analyses to get better
estimates.

The Methodology chapter dives
into the minutiae. Here, we’re
going to focus on the concepts
and theory undergirding this
model.

Environment
traits

Service traits

Process and
practice

Individual traits

Organizational
performance

Product
performance

Software
delivery

performance

Team
performance

Individual-level
outcomes

AI adoption

Our research model and its theory 132
v. 2025.1

The concepts

AI adoption

AI adoption measures the
integration of AI into an individual’s
workflow and mindset. This
concept distinguishes simple tool
usage from a deeper partnership
with technology.

We measured AI adoption through
three core indicators:

•	 Trust

•	 Reflexive use

•	 Reliance

Processes and practices

This category captures a wide
array of capabilities. Some are
AI-specific. Some are group-level
processes. Some are individual-
level processes. They’re all
representative of actions and
ways of working.

There are many constructs
associated with this:3

•	 Clear and communicated AI
stance

•	 Healthy data ecosystems

•	 AI-accessible internal data

•	 Strong version control practices

•	 Working in small batches

•	 User-centric focus

•	 Quality internal platforms

Each of these constructs is part of
our inaugural AI capabilities model
discussed in the AI Capabilities
Model chapter.

Individual traits

This category captures the
specific characteristics of an
individual, including their role,
age, and tenure on a team. It also
covers the nature of their work,
such as the amount of time they
spend on AI-related tasks. These
details provide crucial context
for understanding a person’s
experience and how they interact
with technology.

This concept is explored or
constituted by the following
observations:

•	 Time spent using AI

•	 Years spent on team

•	 Individual role

•	 Individual age

•	 Individual tasks

•	 AI-specific tasks

Our research model and its theory133
v. 2025.1

Environmental and
organizational traits

These concepts describe the
broader structural context
in which work happens. This
includes stable factors like
company size and industry, as
well as more dynamic conditions
like the availability of resources
and the stability of priorities.
This environment creates the
conditions that either enable or
constrain technology adoption
and overall performance.

Service traits

Service traits define the key
characteristics of the primary
application or service on which an
individual works. Understanding
a service’s age, criticality, and
whether it is AI-infused is essential
for contextualizing performance
metrics and the relevance of
certain technical practices.

Organizational performance

This is a high-level measure
of the overall success of
the organization, based on
characteristics like profitability,
market share, and customer
satisfaction.

Team performance

This factor measures the
perceived effectiveness and
collaborative strength of an
individual’s immediate team.

Product performance

This factor measures the success
and quality of the products or
services the team is building,
based on characteristics such
as helping users accomplish
important tasks, keeping
information safe, and performance
metrics like latency.

Software delivery
performance

•	 Software delivery throughput:
This represents the speed
and efficiency of the software
delivery process. See the
Understanding your software
delivery performance chapter
for more details.

•	 Software delivery instability:
This captures the quality and
reliability of the software
delivery process. See the
Understanding your software
delivery performance chapter
for more details.

Individual outcomes

•	 Code quality: This captures an
individual’s assessment of the
quality of code underlying the
primary application or service
they work on.

•	 Individual effectiveness: This
factor captures an individual’s
self-assessed effectiveness and
sense of accomplishment at
work.

•	 Valuable work: This measures
the self-assessed amount of
time an individual spends doing
work they feel is valuable and
worthwhile.

•	 Friction: This measures
the extent to which friction
hinders an individual’s work.
Lower amounts of friction are
generally considered to be a
positive outcome.

•	 Burnout: This measures
feelings of exhaustion and
cynicism related to one’s work.
We consider burnout a key
impediment to an individual’s
work.

Our research model and its theory 134
v. 2025.1

The theory
If our findings are the structure
and our analysis is the
construction, then theory is the
foundation. This section explains
this theoretical foundation for the
key pathways in our model that
allow us to accurately estimate
the impact of AI. To maintain
clarity, this section focuses on
the high-level relationships within
the model. We will highlight the
pathways that we anticipate
require the most justification.
While our analysis relies on
granular relationships between
specific constructs, our focus
here remains on the overarching
theoretical connections. Each
pathway we highlight is grounded
in established literature, qualitative
work, and subject-matter
expertise, and reinforced by a
decade of our own research into
what drives high performance.

Service traits → Software
delivery performance

A service’s inherent traits dictate
the challenges of its delivery. An
older service, for example, often
carries significant technical debt
that creates friction and slows
delivery.4,5 A service’s criticality, on
the other hand, acts as a powerful
catalyst for organizational
attention and resources. This
focus may streamline processes
and invest in advanced practices
like automated testing and
Site Reliability Engineering,
simultaneously improving both
speed and stability.

Non-critical services are often
starved of this investment, leading
to neglect, accumulating risk, and
creating a drag on performance
that only becomes visible when it
is too late. An AI-infused service
introduces many of the challenges
of MLOps,6 each fundamentally
altering the stability and speed of
the delivery pipeline.

Process and practice →
(Multiple outcomes)

DORA’s research has
demonstrated, over the last
decade, that the way people and
teams work dictates their ability
to ship software, work effectively,
collaborate, and ultimately build
great products. While the specific
practices explored this year may
be different and the development
world is now inundated with AI,
this fundamental principle holds.

Well-designed processes …

1.	 Turn software throughput
and stability into repeatable
outcomes,7

2.	 Reduce coordination overhead
and allow teams to spend
energy on developing and
learning instead of fire-fighting
and stifling process,8,9

3.	 Reduce cognitive load and
buffer individuals from stress,10,11

4.	 Help ideas become a reality
without compromising security,
software delivery performance,
or reliability.12,13

Team performance →
Individual outcomes

A well-functioning team doesn’t
just deliver products; it carries
the individual.14 Collaborative,
reliable, and efficient teams
bolster and amplify an individual’s
performance. A team lacking in
those traits stifles and constrains
an individual, creating demands
that drain them.15,16 In this way, a
high-performing team provides
both the conditions for good work
and the pathways for that work to
make an impact.

Environment traits →
Individual outcomes

The work environment exerts
forces on individuals that
impact how they work and how
they experience work. We can
understand these forces through
the Job Demands-Resources
(JD-R) model, which separates
factors that cause stress
(demands) from those that enable
success (resources).17 Larger
organizations, for example, often
create demands like navigating
bureaucracy and coping with
shifting priorities.18 Industries
all have unique demands that
could change the prevalence and
experience of burnout.19

Our research model and its theory135
v. 2025.1

1.	 Han, Byung-Chul. The Agony of Eros, Vol. 1 (MiT Press, 2017), 47.
2.	 This approach was adopted in 2023.
3.	 We tested 15 constructs total in this space.
4.	 Forsgren, Nicole, Jez Humble, and Gene Kim. Accelerate: The science of lean software and devops: Building and scaling high performing technology

organizations (IT Revolution, 2018).
5.	 Our 2022 and 2024 reports dive into this.
6.	 Sculley, David, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo,

and Dan Dennison. “Hidden technical debt in machine learning systems.” Advances in neural information processing systems, 2015. 28.
7.	 We don’t want to cite ourselves, but 10+ years of our research has underscored this point.
8.	 MacCormack, Alan, John Rusnak, and Carliss Y. Baldwin. “Exploring the Structure of Complex Software Designs: An Empirical Study of Open Source

and Proprietary Code.” Management Science, 2006, 52, no. 7. 1015–1030.
9.	 Hackman, J. Richard. Leading Teams: Setting the Stage for Great Performances (Harvard Business Press, 2002).
10.	 Bakker, Arnold B., and Evangelia Demerouti. “The job demands-resources model: State of the art.” Journal of Managerial Psychology, 2007, 22, no. 3.

309–328.
11.	 Demerouti, Evangelia, Bakker, Arnold B., Nachreiner, Friedhelm, and Schaufeli, Wilmar B. (2001). “The job demands-resources model of burnout.”

Journal of Applied Psychology, 2001, 86, no. 3. 499–512.
12.	 Forsgren, Nicole, Jez Humble, and Gene Kim. Accelerate: The science of lean software and devops: Building and scaling high performing technology

organizations (IT Revolution, 2018).
13.	 MacCormack, Alan, John Rusnak, and Carliss Y. Baldwin. “Exploring the Structure of Complex Software Designs: An Empirical Study of Open Source

and Proprietary Code.” Management Science, 2006, 52, no. 7. 1015–1030.
14.	 Hackman, J. Richard. Leading Teams: Setting the Stage for Great Performances (Harvard Business Press, 2002).
15.	 Demerouti, Evangelia, Bakker, Arnold B., Nachreiner, Friedhelm, and Schaufeli, Wilmar B. (2001). “The job demands-resources model of burnout.”

Journal of Applied Psychology, 2001, 86, no. (3). 499–512.
16.	 Bakker, Arnold B., and Evangelia Demerouti. “The job demands-resources model: State of the art.” Journal of Managerial Psychology, 2007, 22, no. 3.

309–328.
17.	 Bakker, Arnold B., and Evangelia Demerouti. “The job demands-resources model: State of the art.” Journal of Managerial Psychology, 2007, 22, no. 3.

309–328.
18.	 Aiken, Michael, and Jerald Hage. “Organizational alienation: A comparative analysis.” American Sociological Review, 1966, 31, no. 4. 497–507. They

suggest that a larger organization might create more formal rules.
19.	 Maslach, Christina, and Michael P. Leiter. “Understanding the burnout experience: recent research and its implications for psychiatry.” World

Psychiatry, 2016, 15, no. 2). 103–111.
20.	 When this survey was taken, many sectors in the United States were undergoing transformations, to put it euphemistically.
21.	 Hobfoll, Stevan E. “Conservation of resources: A new attempt at conceptualizing stress.” American Psychologist, 1989, 44, no. 3. 513–524.
22.	 Crawford, Eean R., Jeffery A. LePine, and Bruce Louis Rich. “Linking job demands and resources to employee engagement and burnout: A

theoretical and meta-analytic review.” Journal of Applied Psychology, 2010, 95, no. 5. 834–848.

Conclusion
The theory outlined in this chapter
is the foundation upon which our
analysis rests.

We have focused on the model’s
most critical pathways rather
than providing an exhaustive
justification for every link. This
is a deliberate choice to offer
clarity and transparency into
the core assumptions that guide
our conclusions.

Further, certain industries might
be facing external pressures that
create stressors due to a sense
of uncertainty.20,21 Organizations
also vary dramatically in terms of
the availability of resources (for
example, tools) and the stability
of priorities. A lack of resources
makes work difficult. Separately,
unstable priorities create moving
targets that de-incentivize
ambitious, long-term projects.22

Our research model and its theory

By providing this blueprint, we
invite you to rigorously evaluate
our findings, supplement your own
thinking, and apply these causal
stories to the challenges you face.

This model is our map; we
encourage you to use it, question
it, and help us improve it.

136
v. 2025.1

Next steps

Read the book:
Flow engineering: From Value Stream Mapping to
Effective Action. IT Revolution.
https://itrevolution.com/product/flow-engineering

Read publications from DORA’s research program,
including prior DORA Reports.
https://dora.dev/publications

Review frequently asked questions about the
research and the reports. https://dora.dev/faq

Read and submit changes, corrections, and
clarifications to this report. https://dora.dev/
publications/errata

Check if this is the latest version
of the 2025 DORA Report:
https://dora.dev/vc/?v=2025.1

Join the DORA Community to discuss, learn,
and collaborate on improving the impact of
technology-driven teams and organizations.
https://dora.community

Explore the capabilities that enable a climate for
learning, fast flow, and fast feedback.
https://dora.dev/capabilities

Read the book:
Accelerate: The Science of Lean Software and
DevOps: Building and Scaling High Performing
Technology Organizations. IT Revolution.
https://itrevolution.com/product/accelerate

Read the book: Team Topologies:
Organizing Business and Technology Teams
for Fast Flow. IT Revolution.
https://itrevolution.com/product/team-topologies/

Read the book:
The Skill Code: How to Save Human Ability in
an Age of Intelligent Machines. HarperCollins.
https://www.harpercollins.com/products/the-skill-
code-matt-beane

Next steps137
v. 2025.1

https://itrevolution.com/product/flow-engineering
https://dora.dev/publications
https://dora.dev/faq
https://dora.dev/publications/errata
https://dora.dev/publications/errata
https://dora.dev/vc/?v=2025.1
https://dora.community
https://dora.dev/capabilities
https://itrevolution.com/product/accelerate
https://itrevolution.com/product/team-topologies/
https://www.harpercollins.com/products/the-skill-code-matt-beane
https://www.harpercollins.com/products/the-skill-code-matt-beane

Appendix

Organizational performance:
This is a high-level measure of the
overall success of the organization
based on characteristics like
profitability, market share, and
customer satisfaction.

For each of the following
performance indicators, how did
your organization do relative to its
goals over the past year?

•	 Increased number of customers

•	 Relative market share for
primary products

•	 Your organization’s overall
performance

•	 Your organization’s overall
profitability

•	 Achievement of organizational
and mission goals

•	 Customer satisfaction

•	 Operating efficiency

•	 Quality of products or services
provided

Team performance: This
factor measures the perceived
effectiveness and collaborative
strength of an individual’s
immediate team.

How outcomes were evaluated
How would you rate your team’s
current performance in the
following areas?

•	 Delivering innovative solutions

•	 Adapting to change

•	 Effectively collaborating with
each other

•	 Being able to rely on each other

•	 Efficiently working together

Product performance: This
factor measures the success and
quality of the products or services
the team is building based on
characteristics like helping users
accomplish important tasks,
keeping information safe, and
performance metrics like latency.

For the primary service or
application that you work on, how
would you rate your application
or service’s current performance
across the following areas?

•	 Performance metrics like
latency

•	 Doing what it is supposed to do

•	 Helping people accomplish
what is important to them

•	 Usability and ease of navigation

•	 Keeping user information safe

•	 Reliability and availability for
users

Software delivery throughput:
This represents the speed and
efficiency of the software delivery
process. See the Understanding
your software delivery
performance chapter for more
details.

•	 How often does your
organization deploy code to
production or release it to end
users?

•	 What is your lead time for
changes (that is, how long
does it take to go from code
committed to code successfully
running in production)?

•	 How long does it generally
take to restore service after a
change to production or release
to users results in degraded
service (for example, leads to
service impairment or service
outage) and subsequently
requires remediation (for
example, requires a hotfix,
rollback, fix forward, or patch)?

Appendix 138
v. 2025.1

Software delivery instability:
This captures the quality and
reliability of the software delivery
process. See the Understanding
your software delivery
performance chapter for more
details.

•	 Approximately what percentage
of changes to production
or releases to users result
in degraded service (for
example, lead to service
impairment or service outage)
and subsequently require
remediation (for example,
require a hotfix, rollback, fix
forward or patch), if at all?

•	 Approximately what percentage
of deployments in the last six
months were not planned but
were performed to address
a user-facing bug in the
application?

Code quality: This captures an
individual’s assessment of the
quality of code underlying the
primary application or service they
work on.

•	 How would you rate the quality
of code underlying the primary
service or application you work
on?

Individual effectiveness: This
factor captures an individual’s
self-assessed effectiveness and
sense of accomplishment at work.

•	 In the last three months, how
effectively were you able
to perform your tasks and
responsibilities at work?

•	 In the last three months, how
productive did you feel in your
work?

•	 In the last three months, how
much impact do you think your
work has had?

•	 In the last three months, how
often were you able to reach a
high level of focus or achieve
“flow” at work?

Valuable work: This measures the
self-assessed amount of time an
individual spends doing work they
feel is valuable and worthwhile.

•	 In the last three months,
approximately what percentage
of your time was spent doing
work that felt valuable and
worthwhile?

Friction: This measures the
extent to which friction hinders an
individual’s work.

•	 In the last three months, to what
extent did friction hinder your
work?

Burnout: This measures feelings
of exhaustion and cynicism related
to one’s work.

In the last three months, to what
extent have you experienced the
following?

•	 Felt indifferent or cynical
towards your work

•	 Felt burned out from your work

•	 Felt ineffective in your work

•	 Your feelings about work
negatively affected your life
outside of work

Appendix

AI adoption

AI adoption is not a key outcome
but it is a central measure used
throughout the report. Here’s a
bit more background on how we
measure it.

AI adoption: This factor measures
the extent to which individuals are
integrating AI into their daily work
and their attitudes toward it.

In the last three months, when you
encountered a problem to solve
or a task to complete at work, how
frequently did you use AI?

In the last three months, how
much have you relied on AI at
work?

In the last three months, how
much did you trust the quality
of the output from AI-generated
code as part of your development
work?

139
v. 2025.1

Appendix

Definition used for platform
and platform team:

Platform: A platform is a set of
capabilities that is shared across
multiple applications or services.
A company may have multiple
overlapping platforms, but we
refer to these overall as “the
platform.”

Platform team: A platform
engineering team is a group of
people dedicated to building and
running the platform. A dedicated
platform engineering team is not
required.

Platform engineering: The
software and systems engineering
practice used when building a
platform.

Platform engineering

List of characteristics defining a
robust platform:

To what extent does your
platform(s) demonstrate the
following characteristics?

The platform helps me build and
run reliable applications and
services.

The platform’s user interface (UI) is
straightforward and clean.

The platform provides the tools
and information I need to work
independently.

The platform helps me build
and run secure applications and
services.

The platform behaves in a way I
would expect.

The platform helps me follow
required processes (such as,
code reviews, security sign-offs).

The platform provides the
tools and info I need to work
independently.

The platform gives me clear
feedback on the outcome of my
tasks.

The tasks I perform on the
platform are well automated.

The platform team acts on the
feedback I provide.

The platform is easy to use.

The platform effectively abstracts
away the complexity of underlying
infrastructure.

140
v. 2025.1

“State of AI-assisted Software
Development” by Google LLC is
licensed under CC BY-NC-SA 4.0.

141
v. 2025.1

https://creativecommons.org/licenses/by-nc-sa/4.0/

Get better at getting better
dora.dev

