
April 2025 Edition

Vertex AI Gemini

Gemini Models
on Vertex AI

Gemini 1.5
Pro

Gemini 1.5
Flash

Gemini 2.0
Flash

Gemini 2.0
Flash Lite

Input modalities text, documents, image,
video, audio, pdf

text, documents, image,
video, audio, pdf

text, documents, image,
video, audio, pdf

text, documents, image,
video, audio, pdf

Output modalities text text Text, audio (exp) text

Context window, total token
limit

2,097,152 1,048,576 1,048,576 1,048,576

Output context length 8,192 8,192 8,192 8,192

Grounding with Search Y Y Y N

Context Caching Y Y Y N

Function calling Y Y Y Y

Max Limits Images: 7200
Image size: 20MB

Videos: 10
Video length: ~1.8 hrs

Audio: 1
Audio length: ~19 hrs
Pages per PDF: 1000
Max PDF size: 30 MB

Images: 3000
Image size: 20MB

Videos: 10
Video length: 1 hr

Audio: 1
Audio length: ~8.4hr
Pages per PDF: 1000
Max PDF size: 30 MB

Images: 3000
Image size: 7MB

Videos: 10
Video length: ~45mins (with
audio)/1hr (without audio)

Audio: 1
Audio length: ~8.4hr
Pages per PDF: 1000
Max PDF size: 50 MB

Images: 3000
Image size: 7MB

Videos: 10
Video length: ~45mins (with
audio)/1hr (without audio)

Audio: 1
Audio length: ~8.4hr
Pages per PDF: 1000
Max PDF size: 50 MB

Code execution N N Y N

Live API N N Y N

Latency Most capable in 1.5 family Fastest in 1.5 family More capable but slower
than Lite

Fastest+cost efficient

Fine tuning Y Y Y N

SDK Vertex AI SDK Vertex AI SDK Gen AI SDK Gen AI SDK

Pricing units Character Character Token Token

Contents
General tips for Multimodal prompting

Working with Images

Working with Videos

Working with Audio

Working with Documents

Gemini Multimodal
Prompting
Multimodal prompts combine multiple input formats - text, image, video, audio,
document - and generate a text-only output.

Document

Audio

Image

Video

Text

Text

General tips
for Multimodal
prompting

Craft clear and
concise instructions
● As with general prompting strategies, remember to be specific and explicit with your instructions.

● Use prompt components as needed (persona, task) with structured or well-formatted
instructions.

Multimodal.Tip #1

You are a zoologist whose job is to name
animals in the image. You should always
provide an english and latin name.

1. American Bison, Bison bison

2. Lesser Mouse Deer, Tragulus javanicus

3. Giraffe, Giraffa camelopardalis

4. Reindeer, Rangifer tarandus

5. Chinese Water Deer, Hydropotes inermis

6. Pronghorn, Antilocapra americana

Add your media first for
single-media prompts
● If your prompt contains a single media file - image, video or audio or document - place the

media file before the text prompt.

● While Gemini can handle media and text inputs in any order, for prompts containing a single
media, it might perform better if that media file is placed before the text prompt.

● For prompts with highly interleaved media files with texts, order them in the most logical way.

input_image = Part.from_data(
 data=base64.b64decode(encoded_image),
 mime_type="image/jpeg")

input_prompt = "..."

MODEL_ID = "gemini-2.0-flash"
model = GenerativeModel(MODEL_ID)

responses = model.generate_content(
 contents=[input_image, input_prompt],
 generation_config=generation_config,
 safety_settings=safety_settings
)

for response in responses:
 print(response.text, end="")

Multimodal.Tip #2

Use System Instructions to
shape the models response
● System instructions guide the model's behavior before it addresses end user prompts, allowing

you to define model roles and context, and desired output format.

● By setting these instructions, you effectively steer the model's responses and ensure more
consistent behavior across multiple turns. This approach is particularly useful for establishing a
specific persona or maintaining a consistent style.

system_prompt = """You are good at looking at pictures and
uncovering the full story within a visual scene. Your task is to
provide a rich and insightful description of the image"""

input_image = Part.from_data(
 data=base64.b64decode(encoded_image),
 mime_type="image/jpeg")

input_prompt = "Describe what is depicted on the image"

MODEL_ID = "gemini-2.0-flash"
model = GenerativeModel(model_name=MODEL_ID,
 system_instruction=system_prompt)

responses = model.generate_content(
 contents=[input_image, input_prompt],
 generation_config=generation_config,
 safety_settings=safety_settings
)

for response in responses:
 print(response.text, end="")

Multimodal.Tip #3

Add examples to the prompt
● Use realistic few-shot examples to illustrate how you would like the task to be accomplished

with the example prompt followed by the example response.

● The illustrated examples steer the model towards the response style or format you like.

You are an expert nutritionist. Your task is to read the label and extract
all entities about the product in the label. Follow the example below:

{

 "ingredients": [

 "Maida", "Sugar", "Eggs", "Ghee",…"Permitted Additive (E 422)"

],

 "allergen_information": {

 "contains": ["Dryfruits", "Nuts"],

 "may_contain": ["dairy", "tree nuts", "peanuts", "gluten" …]

 }

}

EXAMPLE 1
{
 "ingredients": ["Sugar",
 ...],
 "allergen_information": {
 "contains": ["Added ..."],
 "may_contain": []
 }
}
EXAMPLE 2
{
 "ingredients": ["Cow's Milk", ...],
 "allergen_information": {
 "contains": ["Milk … "],
 "may_contain": []
 }
}
Now your turn!

Multimodal.Tip #4

Analyze the following image containing fruits.

How much should I pay for the fruits given the following
price list?

Answer the question through these steps:

1. Identify all kind of fruits in the image.

2. Count the quantity of each fruit.

3. For each fruit identified, check the price
from the price list.

4. Calculate subtotal price for each type of fruit.

5. Calculate total price of fruits using subtotals.

Answer:

Break it down step-by-step
Divide complex tasks into manageable sub-tasks, guiding the model through the process.

Let's calculate the total price:

1. Fruits in the image: Bananas, Apples

2. Quantity of each fruit: Bananas: 2, Apples: 3

3. Price per fruit: Bananas: $0.80 each, Apples: $1.50 each

4. Subtotal price for each fruit:

 Bananas: 2 bananas * $0.80/banana = $1.60

 Apples: 3 apples * $1.50/apple = $4.50

5. Total price: $1.60 (bananas) + $4.50 (apples) = $6.10

Therefore, you should pay $6.10 for the fruits.

Image

List

Multimodal.Tip #5

Analyze the following image containing fruits.

How much should I pay for the fruits given the following
price list?

Answer the question through these steps:
1. Identify all kind of fruits in the image.
2. Count the quantity of each fruit.
3. For each fruit identified, check the price
from the price list.
4. Calculate subtotal price for each type of fruit.
5. Calculate total price of fruits using subtotals.

Return answer as JSON

{"items": [{"name": string, "quantity": int,
"subtotal_price": numeric}], "total_price": number}

Answer:

Specify the output format
Ask for the output to be in the format you want - Markdown, JSON, HTML and more.

This is referred to as Controlled Generation, which can be used directly in the prompt, Vertex AI
Studio or through the API with response_schema defined.

{
 "items": [
 {
 "name": "Apples",
 "quantity": 2,
 "subtotal_price": 3.00
 },
 {
 "name": "Bananas",
 "quantity": 2,
 "subtotal_price": 1.60
 }
],
 "total_price": 4.60
}

Multimodal.Tip #6

Image

List

https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/control-generated-output?_gl=1*gmgd0i*_ga*MTU4ODMxNzYyNi4xNzQ0NjY4MzQ5*_ga_WH2QY8WWF5*MTc0NTQzNjA0NS4xNC4xLjE3NDU0MzY0MTcuMTEuMC4w

Use Context Caching for
repeated queries
Ideal Use Cases:

● Chatbots with lengthy instructions
● Recurring video or document analysis
● Frequent code repository analysis

How it Works:

● Create a cache of your long input.
● Reference this cache by its resource

name in subsequent prompt requests.
● Optionally set a cache expiration time.

Multimodal.Tip #7

Benefits:

● Cost Savings: Avoid reprocessing large inputs in every request.
● Reduced Latency: Faster processing when asking multiple questions about the same long

content.
● Significant Savings: Particularly beneficial for longer media.

Consider enabling context caching when asking multiple questions about long videos, audio, or
documents to optimize costs and potentially reduce processing time.

Using Context Caching
You can use Vertex AI SDK to implement context caching with a long video when prompting a
Gemini model. The below sample illustrates creating a cache and then using it in a subsequent
request to analyze the video content. You can replace video with other multimodal input types.

from vertexai.generative_models import GenerativeModel, Part
from vertexai import caching

MODEL_ID = "gemini-2.0-flash"

Prepare contents
video_file = Part.from_uri("gs://bucket/.../long_video.mp4",
 mime_type="video/mp4")

Create cached content
cache = caching.CachedContent.create(
 model_name=MODEL_ID,
 contents=[video_file],
 ttl=datetime.timedelta(minutes=60))
print(cache.name)

Call Gemini with cached content
model = GenerativeModel.from_cached_content(cached_content=cache)

responses = model.generate_content("""Describe what happens in the
beginning, in the middle and in the end of the video. Also, list the
name of the main character and if he has any problems, list them as
well""")

for response in responses:
 print(response.text, end="")

Multimodal.Tip #7

Leveraging Semantic Cues
For Effective LLM
Instructions

Multimodal.Tip #8

● Enhance your prompting by including natural language cues
that are specific to the task.

● These act as powerful semantic guides, much like nuanced
phrasing influences human comprehension.

● For instance, in a "Yes/No" classification task where uncertainty
might arise, explicitly prompting for an "unmistakable" answer
can encourage the model to bias uncertain responses towards
"No," reducing potential hallucinations.

Working
with Images

Supported
image types

JPEG, PNG, WEBP

Image
Resolution

Maximum image size: 7MB

Image
Token Usage

High/Medium/Default Resolutions:
US/Asia: 40M | EU: 10M

Low Resolutions:
US/Asia: 10M | EU: 3M

Image
Limit

Gemini 2.0 Flash allow up to 3000 images
in a prompt request

Working with Images

Image Requirements

Avoid blurry images.

Rotate images to their proper orientation
before adding them to the prompt.

Images with higher resolution
yield better results.

Working with Images

General recommendations

Add your media first for
single-media prompts
● When there are multiple images in the prompt, enumerate each image with an index, like

“Image 1:” and “Image 2:”.

● You can refer to them later in your prompt or have the model refer to them in the model
response.

image 1 <piano_recital.jpg>
image 2 <family_dinner.jpg>
image 3 <coffee_shop.jpg>

Write a blogpost about my day using image 1 and image 2.
Then, give me ideas
for tomorrow based on image 3.

MM.Image.Tip #1

Detecting Text in Images
For text detection within an image, prompts using a single image generally yield better results
compared to those with multiple images.

IMPORTANT: Higher image resolution generally leads to more accurate text detection.

MM.Image.Tip #2

<instructions>
1. Analyze and Determine document type
(bill, receipt, etc.). Identify key sections
(header, itemized list, footer)
2. Extract the following elements
 - Vendor/Merchant Name
 - Transaction/Issue Date
 - Transaction Details:
 - Items, Quantities, Prices
 - Subtotals (if available)
 - Total Amount
 - Payment Method (if specified)
 - Other relevant details (customer info, order numbers, taxes,
discounts, terms, etc.) under a separate section.
3. Handle the challenges in the document input:
 - Adapt to various document formats & layouts
 - Double-check extracted data
 - Use context for unclear information, note uncertainties
</instructions>
Return extracted information in JSON format.

Your task is to analyze the
given document and extract
structured data from bills,
receipts, and invoices using
following instructions.

You can prompt Gemini for object detection and localization in images and videos using bounding
boxes. The model outputs bounding box coordinates in the [ymin ,xmin ,ymax ,xmax] format.

Handling the bounding box output from
Gemini

● Use JSON for output, by default it returns a
list of objects with each entry containing
"box_2d" and "label".

● Predicted bounding boxes are in
normalized coordinates [1000, 1000].
Rescale the coordinates to outlay bounding
boxes on the original image.

● Output formats should include suffixes like
"Is it possible to use (bbox),
(predicted_label), and (detected_mask)
as the keys?"

For best results, follow these prompt
engineering guidelines:

● Strong prompts also include examples with a
few-shot prompt format. Specify output
format directly if needed.

● Use explicit object references and specify the
desired bounding box format.

● Clearly state the objects you want detected
and provide clear output format instructions
in your prompt to ensure correct triggering.

● Use specific keywords like "detect" and
"pinpoint the bounding boxes" in the
prompt.

Detecting Objects in Images
with 2D bounding boxes

MM.Image.Tip #3

Detecting Objects in Images
with 2D bounding boxes

Let’s put the prompting guidelines for bounding boxes together with an example below:

Detect the bounding boxes of the
handwritten terms and identify the objects
on the castle. If there are more than one
instance of an object, add them to the JSON
list of objects with keys as “box_2d” and
“labels”.

Follow the example below:

[{"box_2d" : [ymin, xmin, ymax, xmax],
“label”: “name of detected object},
{"box_2d" : [ymin, xmin, ymax, xmax],
“label”: “name of detected object}]

[
 {"box_2d": [850, 243, 904, 488], "label": "drawbridge?"},

 {"box_2d": [806, 511, 863, 744], "label": "portcullis?"},

 {"box_2d": [894, 335, 966, 455], "label": "turret?"},

 {"box_2d": [894, 501, 972, 708], "label": "Battlements?"}
]

MM.Image.Tip #3

Handling the points output from Gemini

● Use JSON for output, by default it returns a
list of objects with each entry containing
"point" and "label". The points are in [y, x]
format normalized to (0, 1000).

● Use advanced reasoning to combine points
by adding the following to your prompt;
"Explain how to use each part, put them
in the label field, remove duplicated
parts and instructions"

For best results, follow these prompt
engineering guidelines:

● Points are less cluttered than bounding
boxes and can be sufficient for some use
cases.

● Use temperatures greater than 0 to
reduce repetition e.g. 0.5

● Limit the number of items (e.g., to 10) to
prevent looping and speed up coordinate
decoding.

● Gemini can search and reason about
different views of the same 3D scene.
When searching for objects within a
scene, be as specific as possible to help
guide the model.

Detecting Points and Spatial
Relationships

MM.Image.Tip #4

Precise entity reference via pointing is a key capability for Gemini 2.0 Flash, which features
improved spatial understanding with point prediction and reasoning in 3D space.

Detecting Points and Spatial
Relationships

Let’s put the prompting guidelines for 3D points and spatial relationships together with an
example below:

Point to no more than 10 items in the
image, include spill.

The answer should follow the JSON format
[{“point”:, “label”:}]. The points are in
[y,x] format normalized to 0 - 1000.

Explain how to use each part, put them in
the label field, remove duplicated parts
and instructions.

[
 {"point": [374, 768], "label": "battlement, a defensive parapet at
the top of a wall or tower, typically with alternating indentations or
embrasures for shooting through"},
 {"point": [588, 449], "label": "portcullis, a strong, heavy grating
sliding up and down in vertical grooves, typically at the entrance to
a castle"},
 {"point": [748, 227], "label": "drawbridge, a bridge of which the
whole or a section can be raised or drawn aside to prevent access"},
 {"point": [273, 334], "label": "turret, a small tower on top of a
larger tower or at the corner of a building or wall, typically of a
castle"}
]

MM.Image.Tip #4

Handling the 3D bounding box output from
Gemini

● Use JSON for output, by default it returns a
list of objects with each entry containing
"box_3d" and "label". The bounding boxes
are represented by 9 numbers; center, size
and orientation.

● Specify the output format in your prompt.
For example: “The 3D bounding box
format should be [x_center, y_center,
z_center, x_size, y_size, z_size, roll,
pitch, yaw]”

For best results, follow these prompt
engineering guidelines:

● Using system Instructions is highly
encouraged. As an experimental feature,
system instructions will steer the model
to returning the right bounding boxes

● Be specific. Tell the model exactly what
you need for the output format
(recommended JSON).

● Use temperatures greater than 0 (e.g.,
0.5) to reduce repetition.

● Limit the number of items (e.g. up to 10)
to prevent looping and speed up
decoding.

● Do not be afraid to experiment. You can
experiment with these parameters to find
what works best for your use-case.

Detecting 3D Bounding
Boxes

MM.Image.Tip #5

3D bounding boxes is a new experimental feature from Gemini 2.0 that will continue to
improve in future models. It is represented by nine numbers:

● Metric center - (x, y, z)
● Metric size - (l, w, h)
● Orientation - (roll, pitch, yaw) all in degrees

Detecting 3D Bounding
Boxes

Let’s put the prompting guidelines for 3D bounding box detection together with an example
below:

System Instruction: You are an expert at
detecting 3D bounding boxes. Your output
format is nine numbers represented as
[x_center, y_center, z_center, x_size,
y_size, z_size, roll, pitch, yaw].

Prompt: Detect the 3D bounding boxes of the
handwritten terms and identify the objects
on the castle. Output a json list where
each entry contains the object name in
"label" and its 3D bounding box in
"box_3d". The 3D bounding box format should
be [x_center, y_center, z_center, x_size,
y_size, z_size, roll, pitch, yaw].

[
 {"label": "turret", "box_3d":
[-0.4,2.14,0.23,0.68,0.73,1.35,-36,-2,0]},
 {"label": "turret", "box_3d":
[0.61,2.18,0.28,0.73,0.69,1.38,-36,-4,-3]},
 {"label": "drawbridge?", "box_3d":
[-0.28,1.71,-0.56,0.53,0.22,0.34,-36,0,2]},
 {"label": "battlements?", "box_3d":
[0.14,1.72,-0.61,0.74,0.24,0.39,-36,-1,0]},
 {"label": "portcullis?", "box_3d":
[0.04,1.74,-0.56,0.48,0.21,0.31,-36,0,3]}
]

MM.Image.Tip #5

Guiding the models’ attention

How long will these diapers last before
I run out?

Use the weight shown on the box to
determine the child's age, and use the
total number of diapers in the box.

Divide the total number by how many
diapers the child goes through per day.

The box contains 198 diapers. The box states the diapers
are for a child weighing 22-37 lbs.

The average child in this weight range is likely between
1 and 2 years old.

A 2-year-old typically goes through 6 diapers per day,
therefore, the diapers will last around 33 days (198/6).

MM.Image.Tip #6

Specify the relevant parts of the image you want the prompt to draw information from to ensure
accurate and targeted results.

Optimize outputs by
asking for detailed

MM.Image.Tip #7

Begin your prompt by asking the model to describe and
extract relevant details from the image/video. This improves
understanding and ensures the model incorporates visual
information into its tailored and specific output.

Medical Uses
Models are not suitable for interpreting medical images (e.g., x-rays,
CT scans) or offering medical advice.

People Recognition
Models are not designed to identify non-celebrities in images.

Content Moderation
Models will not respond to images that violate safety policies.

Accuracy
Models may hallucinate or make errors with low-quality, rotated, or
low-resolution images, or when interpreting handwritten text.

These limitations will be updated periodically to reflect ongoing model improvements.

Spatial Reasoning
Models may struggle with precise text or object location in images, and
may only provide approximate object counts. Be as specific as possible to
guide the model.

Things to know

Limitations with Images

Working
with Videos

Supported
formats

FLV, MOV, MPEG, MPEGPS, MPG, MP4, WEBM,
WMV, 3GPP

Sampling
frame rate

Videos are sampled at 1fps. Each video frame
accounts for 258 tokens.

Audio
Encoding

The audio track is encoded with video frames. The
audio is split into 1s chunks (32 tokens each) and
combined with video frames and timestamps (7
tokens each).

Video Requirements

Working with videos

Timestamp localization
● For video timestamp localization, use timestamps in MM:SS format (minutes:seconds).

● Use the same format for questions that ask about a timestamp.

Here are the segments:

0:00-0:13: Rio de Janeiro Introduction - Welcome to the city and its beauty.

0:13-0:20: Famous Landmarks - Explore the well-known beaches and neighborhoods.

0:20-0:35: Exploring the Favelas - Unveiling the hidden community beyond headlines.

0:35-0:49: Favela Beyond the Stereotype - Beyond the struggles, find the life in
favelas.

0:49-0:57: Join Google's Expedition - Experience the favelas through Google's 360°
view.

Break the video into segments based on
similar concepts. For each segment
provide a start and end time (MM:SS), a
brief description, and a concise
summary under 15 words.

Output format:
<start_timestamp-end_timestamp>:
<description> - <summary>

MM.Video.Tip #1

Ask Gemini
to focus on

When summarizing well-known video clips,
instruct the model to "focus on the visual content,
rather than outside knowledge" to avoid hallucinations
caused by relying on external knowledge.

MM.Video.Tip #2

Process long videos
in segments for

● When performing tasks with dense output on long

videos (e.g., dense captioning, chapterization),
split the video into smaller segments and process
each segment with separate API calls.

● This prevents hitting token limits and potentially
oversimplified results.

● Experiment to determine the optimal segment
length for your specific task.

MM.Video.Tip #3

Non-speech sound recognition
The models might make mistakes recognizing sound that's not
speech (background noise).

High-speed motion
Because of the fixed 1 frame per second (fps) sampling rate, the models
might make mistakes understanding high-speed motion in video.

Transcription punctuation:
While Gemini 2.0 Flash offers significantly improved transcriptions compared
to previous models, it's still important to verify that all punctuation is
included.

These limitations will be updated periodically to reflect ongoing model improvements.

Content moderation
The models refuse to provide answers on videos that violate our
safety policies.

Things to know

Limitations with Video

Working
with Audio

For better audio

“Transcribe this audio” can sometimes
return a summary instead of the full
transcription. Adding “do not summarize”
to your prompt can help.

MM.Audio.Tip #1

Add examples for effective
speaker diarization.

MM.Audio.Tip #2

When segmenting audio by speaker labels, provide few-shot examples for better results.

audio <podcast_recording.mp4>

Your task is to analyze the podcast recording and provide
an exact transcription of all of the audio. Be concise and
short, no need to provide chapter summaries.

Format should be as follows:
[speaker 1][00:00-00:10] This is what the speaker said.
[speaker 2][00:11-00:20] This is what the second speaker
said.
[speaker 1][00:21-00:30] This is what the speaker 1 said
next.

These limitations will be updated periodically to reflect ongoing model improvements.

Non-speech sound recognition
The models might make mistakes recognizing sound that's not
speech (background noise).

Things to know

Limitations with Audio

Working with
Documents

Supported
formats

PDF, TXT

Tokenization Each page in PDF is tokenized as an image
and the cost follows Gemini image pricing.

.

Size limit

Up to 1000 pages per PDF is supported (max PDF
size allowed is 50MB per file) and number of pages
allowed is limited to number of images the model
supports. Maximum number of of files per prompt is
3000.

Working with Documents

Document Requirements

Use Digital PDFs
Over Scanned PDFs

MM.Documents.Tip #1

● Gemini can process both native digital and
scanned PDFs. Using native digital PDFs is
generally preferred. For example, when
working with text-heavy documents like
contracts, use PDFs created digitally.

● Native digital PDFs often have higher image
quality, leading to more accurate text
extraction and reducing potential errors.

Split long

Gemini supports PDF files in the prompt.
Each PDF can have up to 1000 pages with
a maximum file size of 50MB. For larger
documents, split them into multiple files.

MM.Documents.Tip #2

Things to know

Accuracy
The models might hallucinate when interpreting handwritten text in
PDF documents.

These limitations will be updated periodically to reflect ongoing model improvements.

Bounding Box Detection
The models aren't precise at locating text or objects in PDFs.
They might only return the approximated counts of objects.

Limitations with Documents

Summary

Multimodal Prompting
with Gemini on Vertex AI

Design multimodal prompts | Generative AI on Vertex AI

Working with Images

1. Enumerate when prompt has multiple images.
2. Use a single image for optimal text detection.
3. You can detect objects in images with bounding boxes in

2D and 3D.

4. Detect 3D points and spatial relationships.
5. Guiding models’ attention by adding hints.
6. Ask for detailed analysis for optimizing

output.

Working with Documents

1. Prefer digital PDFs over scanned PDFs. 2. Split long documents.

Working with Videos

1. Specify timestamp format when localizing videos.
2. Ask Gemini to focus on visual content for

well-known video clips.

3. Process long videos in segments for dense
outputs.

General Multimodal Prompting Strategies

1. Craft clear and concise instructions.
2. Add your media first for single-media prompts.
3. Add examples to the prompt.

4. Break down the task step-by-step.
5. Specify the output format.
6. Use context caching for repeated queries.
7. Use semantic cues in your prompts

Working with Audio

1. Ask Gemini to avoid summarizing for transcription. 2. Add examples for effective speaker
diarization.

https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/design-multimodal-prompts

Every LLM is unique
with its strengths and

weaknesses!

Prompting Strategies

Key things to remember!

Prompting
strategies evolve

(just like LLMs).

Get ready to
experiment!

These techniques are a
great place to start.

Vertex AI Gemini:
Prompting Strategies

Intended Audience GenAI practitioners and prompt engineers using Generative AI on Vertex AI

Scope The scope of this deck is to guide you through a typical prompt engineering
workflow, demonstrating how to create effective prompts and leverage
proven strategies when working with Vertex AI's Gemini 2.0 family of models.

This content will be updated periodically to reflect ongoing improvements.

Additional Resources Generative AI on Vertex AI: Prompt design and engineering

GitHub Repo: Gen AI on Vertex AI

GitHub Repo: Vertex AI Gemini

Migrate to Gemini 2

Release Notes

04/10/2024 General prompting strategies with PaLM and Gemini 1.0 models

10/03/2024 Major updates with Gemini 1.5 including multimodal prompts, and other
features e.g. system instruction, context caching

03/23/2025 Major updates with Gemini 2.0
● Multimodal Live API
● Native tool use: Search as a tool and Code execution
● New modalities: Image generation and speech generation
● Thinking mode: Generate the "thinking process" for stronger

reasoning capabilities.
● The Gen AI SDK provides a unified interface to Gemini 2.0 and

Gemini 1.5 through both the Gemini Developer API and the Gemini
API on Vertex AI. The SDK is generally available in Python. Support for
Go and TypeScript/JavaScript are in Preview, and Java support is in
experimental.

ROADMAP Updates to prompting with long context, function calling, grounding

Last updated: Apr 25, 2025

https://cloud.google.com/vertex-ai/generative-ai/docs/learn/prompts/introduction-prompt-design
https://github.com/GoogleCloudPlatform/applied-ai-engineering-samples/tree/main/genai-on-vertex-ai
https://github.com/GoogleCloudPlatform/generative-ai/tree/main/gemini
https://cloud.google.com/vertex-ai/generative-ai/docs/migrate-to-v2
https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal-live-api
https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/ground-with-google-search
https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/code-execution
https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal-response-generation
https://cloud.google.com/vertex-ai/generative-ai/docs/thinking
https://cloud.google.com/vertex-ai/generative-ai/docs/sdks/overview

Vertex AI Studio

Vertex AI Prompting Strategies

https://console.cloud.google.com/vertex-ai/generative
https://cloud.google.com/vertex-ai/generative-ai/docs/learn/prompts/prompt-design-strategies

