Google Cloud

Flare-On 10 Challenge 3: mypassion
By Moritz Raabe (@m r tz)

Introduction

FLARE

This challenge requires reverse engineers to recover structures, understand shellcode, deal with inlined

functions and optimized code, and keep tabs on execution requirements of a program.
This writeup focuses on the key components and does not describe all functionality in detail. The main
analysis tools we use are IDA Pro, capa, FLOSS, and CyberChef - all run within FLARE VM.

Basic Analysis

The binary’s strings don’t provide much insight beyond a few Windows APl names and a fun PDB path. Using a
PE viewer, we see that this is a 64-bit executable with a sizable .data section. From FLOSS’ output we obtain
two interesting strings: capture_the_flag and RUECKWAERTSINGENIEURWESEN.

capa identifies multiple interesting capabilities as shown in Figure 1. These include obfuscation and
encryption, file system activities, and process manipulation.

Q
>
g
e
o
=
=
=
=]
=

—_——

NAMESPACE

contain obfuscated stackstrings (5 matches)
hash data with CRC32 (2 matches)

encode data using XOR (3 matches)

create new key via CryptAcquireContext

encrypt or decrypt via
encrypt data using AES
encrypt data using RC4
hash data via WinCrypt
initialize hashing via

WinCrypt
via WinAPI
PRGA

WinCrypt

contains PDB path

contain a resource (.rsrc) section
query environment variable

set environment variable

get common file path

enumerate files on Windows

write file on Windows (3 matches)
shutdown system

create process on Windows
terminate process (2 matches)

link function at runtime on Windows (2 matches)
parse PE header (3 matches)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-

anti-analysis/obfuscation/string/stackstring
data-manipulation/checksum/crc32
data-manipulation/encoding/xor
data-manipulation/encryption
data-manipulation/encryption
data-manipulation/encryption/aes
data-manipulation/encryption/rc4
data-manipulation/hashing
data-manipulation/hashing
executable/pe/pdb
executable/pe/section/rsrc
host-interaction/environment-variable
host-interaction/environment-variable
host-interaction/file-system
host-interaction/file-system/files/list
host-interaction/file-system/write
host-interaction/os
host-interaction/process/create
host-interaction/process/terminate
linking/runtime-linking

load-code/pe

Figure 1: capa results for the challenge program

Before we explore the file’s disassembly, we start the program and observe its run-time activities.
Unfortunately, that does not provide any useful results.

Page 10f 9

https://github.com/mandiant/capa
https://github.com/mandiant/flare-floss
https://github.com/gchq/CyberChef
https://github.com/mandiant/flare-vm

GoogleCloud FL A RE

Advanced Analysis

We disassemble the file in IDA Pro and quickly see why that is. Spoiler: this program has multiple stages and
we’ll cover them one by one here.

Stage 1

The program expects a command-line argument and performs various checks on it. We also see the program
initializes various structures on the stack.

The main function moves a shellcode buffer into newly allocated memory and executes it. The protection
flags for the memory allocation are read from the user input (the flag value should be 0x40 meaning
PAGE_READWRITE_EXECUTE). Furthermore, the shellcode bytes are modified at offset Ox41. The modified
byte, like the prior instructions, should be 0x45 instead of 0x43 as seen in the file on disk (see Figure 2).

loc_14001EA40:

Figure 2: Shellcode before byte modification from command line argument

Analyzing the modified shellcode, we see that it decodes a string and compares it to a substring of the
user-provided command line argument. The expected string is brUc3. The result of the comparison is not
used directly but becomes relevant later. This applies to various data recovered along the way, so we cover
them all as encountered.

The main function sets up another large structure on the stack containing data and various function pointers.

This structure is passed to a function call at the end of the main routine. Figure 3 shows part of the recovered
structure assignment in the decompiler view.

Page 2 of 9

Google Cloud

strcpy_s(Destination.argv, ©xleeuie4, argv[1]);

Destination
Destination

Destination

Destination
Destination

.field 108 = (

int64)vi17;

.GetTickCount = (__inté4)Ge
Destination. (1
Destination.
Destination.
Destination. _
.ReadFile = (__inté64
Destination. i
Destination.
Destination.
.VirtualAlloc = (__

.free = (__int64)free;
Destination.
Destination.
Destination.
Destination.
Destination.
Destination.
Destination.
Destination.

GetProcAddress

LoadLibraryW = (__

GetModuleFileNameW = (‘ ModuleFileNamel;
CreateFileW = (__int64 :

WriteFile = (__
Sleep = (__
ExitProcess = (__

GetStdHandle = (__int64)GetStdHandle;
strtol = (__inté4)strtol;

field 388 = (__int64)sub_140001600;
field 390 = (__int64)sub_148802F00;
field_398 = (__int64)sub_140002C00;
field_3A@ = (__int64)sub_140002D20;
field 3A8 = (__int64)sub_140002DBO;
field 3B = (__int64)sub_1400018B0;

(
(
(
(
(
(

sub_140e013Ee((__int64)&Destination);

Figure 3: Decompilation of the recovered initial structure

For stage 1to succeed, a working command line argument is: 0A#P_R@brUc3E

Stage 2

FLARE

In the stage 2 function the program extracts a substring of the command line argument embedded within
slash (/) characters. The first part of the substring is parsed as an integer. The following string is used as the
name of a file that’s created in the module’s directory. The file’s data stems from the program'’s .data section
and also contains user provided information.

The program uses the Windows crypto API to initialize an AES key and decrypts an embedded buffer. The
program executes the buffer as shellcode. Like before a pointer to the large structure is passed to the
function. Figure 4 shows how to decrypt the shellcode buffer using CyberChef.

Page 3 of 9

Recipe

AES Decrypt

Key
0dfe66dd3948566a8671d42378133c4... EXT

v Mode

capture_the_f.. UTF8 ¥ CBC
Input Output
Hex Hex

Google Cloud

Input + O35 § =

D7C@A8236343B215969DF91C3E4F48D38021BDE431638D7543797C3A2A16F7877887C63D251D165384448C
22@574D5671319CD2A4F5A6E4863928E60B7F@1ES@8BAFABCCDB249B13C5628B967D88FFFF8359155@FD28
315A48E64289D1C5CEL129BCRAI32F7EEED2AECAB25A4131 2FCFE8B48CB3DA22CI97A52E7ADS3C2B3ACEC3Y
91CB358E@D8IE1FER454087B5BD5978C23CB195ECBRETBECAADA32D372687C5CI3EF2EAI9469D81020700
c7083780

mc 352 = 1 Tr Raw Bytes ¢ LF

B0m® e

48895c241048897424185748832c20488b8108016000488bd9c7400803000000488b81080100008b5008FF
919603000041b804 48c74424 bc8488d542430488bfoff9380030000488b4c2430ba
200000008bT8ff93880300003bc77412488b8b080100208b4908FF9358030000ebBc69cfe8030008TFI350
939869488bceff9368639898488bcbff93b9636969488b5c2438488b7424494883:42651’cﬂ

Output

Figure 4: CyberChef recipe to AES decrypt data

FLARE

We load this file into IDA via File — Load File — Additional binary file... and select settings like shown in Figure 5.

Loading segment

Loading offset 0x690000

File offset in bytes 0x0

Number of bytes 0x0

(in paragraphs)

(0 means maxmimum)

Figure 5: Loading the shellcode into IDA Pro

So far, a working command line argument is: QA#P_R@brUc3E/0file.bin/

Stage 3

To help IDA disassemble the code properly, we navigate to the newly created segment and edit it via Edit -
Segments — Edit Segments as shown in Figure 6.

Page 4 of 9

GoogleCloud FL A RE

W Change segment attributes X

Segment name shellcode_stage3
Segment class CODE
Start address

End address

Combination Public Color DEFAULT
Alignment Byte

Segment bitness Segment permissions
Move adjacent segments @ 16-bit E

B Disable addresses @ 32-hit Write
O o64-bit Read

OK Cancel Help

Figure 6: Editing the segment attributes to analyze the code properly

This stage gets the next part between slash characters from the command line argument. To continue
executing the code expects a number (base 4) that must be equal to the length of the string following it.
Before the shellcode calls a function configured via the large context structure it sleeps for the parsed
number in seconds.

So far, a working command line argument is: 0A#P_R@brUc3E/0file.bin/1A/

Stage 4

In this function the fourth part of the command line argument is compared against characters from a
substructure of the context. Starting at the second character the string must be pizza.

The function then reads the file that the program created in stage 2. Recovering the fields from the stage 4
and stage 2 functions, we obtain a structure definition like shown in Figure 7.

Page 5 of 9

GoogleCloud FL A RE

file_struc

Magic dd ?

XorKey dd
XorEncodedFilename

field 9 db 3
Byte@x1F dd :
TickCount dd ?

field 38 dd ?
field_3C db
Systemtime SYSTEMTIME ?

Data db 174135 dup(?)

Figure 7: Recovered structure

The magic value must be 0x11333377. The XOR decoded expected filename is pr.ost. To pass these checks,
we update the command line to: 0A#P_R@brUc3E/1337pr.ost/

Before writing the structure in stage 2 the function modifies part of the data. The modification adds a byte
based on the current day of the month plus a hardcoded offset OxF1. In stage 4 the program bytewise
subtracts the first character from the command line part from the buffer. The respective command line
character must therefore fit the following formula: <day> + OxF1 = <day_character>, so e.g., for the 20", 20 +
Ox1F = Ox33, which is the character 3.

The TickCount field is furthermore used to verify that more than 8 seconds have passed between writing
the file and reading it. So, the Sleep call argument in stage 3 needs to be adjusted accordingly.

The modified data is then written to newly allocated memory and a pointer to the data is stored in the large
context structure.

One way to pass the checks is to update the command line to:
OA#P_R@brUc3E/1337pr.ost/20AAAAAAAA/<day_character>pizza/

Stage 5

Using the debugger, we see that the function called first allocates a shellcode buffer that obtains the fifth
command line argument part. Characters from the command line argument are then used to complete a
shellcode template.

We write an IDAPython script or use the debugger to obtain the shellcode template from memory. One way
to identify the missing bytes is to load the shellcode into IDA with placeholder values. Some of the

disassembly may not make sense, but we can fix that along the way.

Page 6 of 9

GoogleCloud F LA RE

Figure 8 shows the start of the extracted shellcode with placeholder bytes OxAA. Inspecting the function, we
see resemblance to code that manually resolves API functions like GetProcAddress. We can also deduce
this from the way the program calls the shellcode and uses its return value.

hort loc_780067A
ax, dword ptr [rcx
dword ptr [rax+rcx

Figure 8: Start of shellcode with highlighted placeholder opcode bytes

For the shellcode to work, we add the expected values as shown in Figure 9.

mov
mov
mov
test
jz

ort loc_78067A
mov 'ZM!

ax, Ll

s
cmp [rcx], ax

jnz hort loc_780@7A
movsxd rax, dword ptr [rcx

Figure 9: Start of shellcode with corrected opcode bytes

Substituting all required bytes we recover six command-line argument characters. There’s a second shellcode
block to analyze similarly. From the context and after recovering the shellcode template, we see that the code
is supposed to get the address of kernel32.dll. Replacing the missing bytes, we obtain the remaining
argument part characters.

Updating the command line, we get:
OA#P_R@brUc3E/1337pr.ost/20AAAAAAAA/<day_character>pizza/AMuSE "OR.fAZe/

Stage 6

The stage 6 function translates the command-line input part using a substitution cipher. The result is
expected to match the string FLOSS decoded for us: RUECKWAERTSINGENIEURWESEN. The program stores
this string in the context structure and writes it to the console.

Page 7 of 9

GoogleCloud FL ;\ RE

The command line now is:
OA#P_R@brUc3E/1337pr.ost/20AAAAAAAA/<day_character>pizza/AMuSE "OR.fAZe/YPXEKCZXYI
GMNOXNMXPYCXGXN

Stage 7

This function ensures the 7" command line argument part matches a string concatenated from prior stages.
The expected string is ob5cUr3. The program then calls a function to manipulate the read file data that was
written to memory in stage 4. The function resembles the RC4 algorithm, but both key-scheduling and
pseudo-random generation algorithms execute twice. What a nice twist since people noted that FLARE On
challenges often just use RCA4.

In the stage 7 function, Capa successfully recognizes the CRC32 checksum algorithm. The checksum must
match a value from the context structure, which stems from the file buffer read in stage 4. The program then
AES decrypts another encoded buffer using the SHA256 hash of the command line argument (ob5cUr3) as a
key. Figure 10 shows the CyberChef recipe to decrypt the data and shows that the data is again 64-bit
shellcode. The shellcode is copied to a newly allocated memory and executed.

Recipe Bma Input + O3 m =

47661E879DECA4C909BDSD1AR4F39319E6333FDBAG12DS9ABFE409B7163DD8225F530BD9525EA27C6EBFEES
3607FF5DFS1B67EASA3ADA3880038FBEA77BCEDR116D27AF211CA9B192520C992A41A7F89F4432091BB07
8B81576B374195422B46CFE279B7CB207ABDSE65D2657893805D249DA3689A6106E7CDD24D34FDBSEILEF
HEX ~ B5F874375CE960A4503335826F7EESF2A5762558699B9C57EASBC84A4BBCC37EQEFD86B74A6A88CDFCI9A
9645DDF1BA3B6674B1FBD7CAB75DE79FE3F493FE35A2C819BCCB3DC2BFCOFF132B202C937998CB251E353
v Made AAB2652D1DBE@49701306F1BEB25B10285C205275CB00C56A0B2144904078D4122FD8D580CE3B8D99426D6
capture_the_f.. UTF8 ~ CBC FSD23DAB61580945B@5174538E98634AE12524E4DD35@51FAD7F4806476631B6F52AA5CAC3BB3CIDE7A56A
8D84F2ABE65BE85A9ADSF4A34D1964B1AA924CBB56A3479DB4F3D67C4C0O79D1DB23544BA9522A43BEBSD6
S7EB310B9C4C4A9A51ACS1BD18D1221C85A18CCEEF1A49B3B6FFDSC3622AE57929462482DD32B307FD8YE

AES Decrypt

Key
4d9332e6a35090fea78dca3decd8e7s...

E:;: :;u‘ 7©2DB46DED11B2C3CE4CES6F36827C7D52D8COF3D131C3428A39B54E9A24613D60FE7B1ED7DA2518980C1
C64F0@45E8DI666E59373F4BO797FLAE8320D71CF228242233D3E6C7296E761E6A351C7ELI4E3F54750226
1739FB561942AF89A1B5EBE742A9E7CB18@EB58B2DEDD3A79AA2EFE4A73F8F37F13COF3188CC7CC4FD301A8

Disassemble x86 HCDR2AANBACICOA7ACOA0CONECNOOCOrAACOAIACaTESNAICOCAACQECENACCEORIADENAGA2ATRINACT2EAETE
mc 1920 = 1 Tr Rew Bytes & L

Bit mode Compatibility

64 Full x86 architecture Output B rD M o

Code Segment (CS) Offset (IP) 48895C2418 MOV QWORD PTR [RSP+18],RBXce

16) 4889742420 MOV QWORD PTR [RSP+20],RSIce
55 PUSH RBP cr
57 PUSH RDIcx

Show instruction hex 4156 PUSH RST cr
488BEC MOV RBP,RSPcx
4881EC80000000 SUB RSP,0000000000000080 cr
|:| Show instruction position 488B8108010000 MOV RAX,QWORD PTR [RCX+20800108]c
488BD9 MOV RBX,RCXcr
C7400808000000 MOV DWORD PTR [RAX+@81.80000808 =

Figure 10: CyberChef recipe to AES decrypt another shellcode buffer

We load the additional binary file and change the respective segments like done above to end up with stage 8
and the command line:

OA#P_R@brUc3E/1337pr.ost/20AAAAAAAA/<day_character>pizza/AMuSE "OR.fAZe/YPXEKCZXYI
GMNOXNMXPYCXGXN/ob5cUr3/

Page 8 of 9

GoogleCloud FL ;\ RE

Stage 8

The stage 8 shellcode compares the 8" command line argument part to characters from a structure. The
argument is supposed to be fin. The final command line is:

OA#P_R@brUc3E/1337pr.ost/20AAAAAAAA/<day_character>pizza/AMuSE "OR.fAZe/YPXEKCZXYI
GMNOXNMXPYCXGXN/ob5cUr3/fin/

Running the program with the final command line opens an HTML page containing an image (see Figure 11)
and a hidden message (not shown here).

Figure 11: Image embedded in the HTML file

Plus, the program writes the challenge flag to the console: bOrn_t@_5truc7_b4by@flare-on.com

Page 9 of 9

