
Flare-On 10 Challenge 3: mypassion
By Moritz Raabe (@m_r_tz)

Introduction
This challenge requires reverse engineers to recover structures, understand shellcode, deal with inlined
functions and optimized code, and keep tabs on execution requirements of a program.
This writeup focuses on the key components and does not describe all functionality in detail. The main
analysis tools we use are IDA Pro, capa, FLOSS, and CyberChef – all run within FLARE VM.

Basic Analysis
The binary’s strings don’t provide much insight beyond a fewWindows API names and a fun PDB path. Using a
PE viewer, we see that this is a 64-bit executable with a sizable .data section. From FLOSS’ output we obtain
two interesting strings: capture_the_flag and RUECKWAERTSINGENIEURWESEN.
capa identifies multiple interesting capabilities as shown in Figure 1. These include obfuscation and
encryption, file system activities, and process manipulation.

+--+--+
| CAPABILITY | NAMESPACE |
|--+--|
contain obfuscated stackstrings (5 matches)	anti-analysis/obfuscation/string/stackstring
hash data with CRC32 (2 matches)	data-manipulation/checksum/crc32
encode data using XOR (3 matches)	data-manipulation/encoding/xor
create new key via CryptAcquireContext	data-manipulation/encryption
encrypt or decrypt via WinCrypt	data-manipulation/encryption
encrypt data using AES via WinAPI	data-manipulation/encryption/aes
encrypt data using RC4 PRGA	data-manipulation/encryption/rc4
hash data via WinCrypt	data-manipulation/hashing
initialize hashing via WinCrypt	data-manipulation/hashing
contains PDB path	executable/pe/pdb
contain a resource (.rsrc) section	executable/pe/section/rsrc
query environment variable	host-interaction/environment-variable
set environment variable	host-interaction/environment-variable
get common file path	host-interaction/file-system
enumerate files on Windows	host-interaction/file-system/files/list
write file on Windows (3 matches)	host-interaction/file-system/write
shutdown system	host-interaction/os
create process on Windows	host-interaction/process/create
terminate process (2 matches)	host-interaction/process/terminate
link function at runtime on Windows (2 matches)	linking/runtime-linking
parse PE header (3 matches)	load-code/pe
+--+--+

Figure 1: capa results for the challenge program

Before we explore the file’s disassembly, we start the program and observe its run-time activities.
Unfortunately, that does not provide any useful results.

Page 1 of 9

https://github.com/mandiant/capa
https://github.com/mandiant/flare-floss
https://github.com/gchq/CyberChef
https://github.com/mandiant/flare-vm

Advanced Analysis
We disassemble the file in IDA Pro and quickly see why that is. Spoiler: this program has multiple stages and
we’ll cover them one by one here.

Stage 1
The program expects a command-line argument and performs various checks on it. We also see the program
initializes various structures on the stack.
The main function moves a shellcode buffer into newly allocated memory and executes it. The protection
flags for the memory allocation are read from the user input (the flag value should be 0x40 meaning
PAGE_READWRITE_EXECUTE). Furthermore, the shellcode bytes are modified at offset 0x41. The modified
byte, like the prior instructions, should be 0x45 instead of 0x43 as seen in the file on disk (see Figure 2).

Figure 2: Shellcode before byte modification from command line argument

Analyzing the modified shellcode, we see that it decodes a string and compares it to a substring of the
user-provided command line argument. The expected string is brUc3. The result of the comparison is not
used directly but becomes relevant later. This applies to various data recovered along the way, so we cover
them all as encountered.

The main function sets up another large structure on the stack containing data and various function pointers.
This structure is passed to a function call at the end of the main routine. Figure 3 shows part of the recovered
structure assignment in the decompiler view.

Page 2 of 9

Figure 3: Decompilation of the recovered initial structure

For stage 1 to succeed, a working command line argument is: 0A#P_R@brUc3E

Stage 2
In the stage 2 function the program extracts a substring of the command line argument embedded within
slash (/) characters. The first part of the substring is parsed as an integer. The following string is used as the
name of a file that’s created in the module’s directory. The file’s data stems from the program’s .data section
and also contains user provided information.

The program uses the Windows crypto API to initialize an AES key and decrypts an embedded buffer. The
program executes the buffer as shellcode. Like before a pointer to the large structure is passed to the
function. Figure 4 shows how to decrypt the shellcode buffer using CyberChef.

Page 3 of 9

Figure 4: CyberChef recipe to AES decrypt data

We load this file into IDA via File – Load File – Additional binary file… and select settings like shown in Figure 5.

Figure 5: Loading the shellcode into IDA Pro

So far, a working command line argument is: 0A#P_R@brUc3E/0file.bin/

Stage 3
To help IDA disassemble the code properly, we navigate to the newly created segment and edit it via Edit –
Segments – Edit Segments as shown in Figure 6.

Page 4 of 9

Figure 6: Editing the segment attributes to analyze the code properly

This stage gets the next part between slash characters from the command line argument. To continue
executing the code expects a number (base 4) that must be equal to the length of the string following it.
Before the shellcode calls a function configured via the large context structure it sleeps for the parsed
number in seconds.
So far, a working command line argument is: 0A#P_R@brUc3E/0file.bin/1A/

Stage 4
In this function the fourth part of the command line argument is compared against characters from a
substructure of the context. Starting at the second character the string must be pizza.

The function then reads the file that the program created in stage 2. Recovering the fields from the stage 4
and stage 2 functions, we obtain a structure definition like shown in Figure 7.

Page 5 of 9

Figure 7: Recovered structure

The magic value must be 0x11333377. The XOR decoded expected filename is pr.ost. To pass these checks,
we update the command line to: 0A#P_R@brUc3E/1337pr.ost/

Before writing the structure in stage 2 the function modifies part of the data. The modification adds a byte
based on the current day of the month plus a hardcoded offset 0xF1. In stage 4 the program bytewise
subtracts the first character from the command line part from the buffer. The respective command line
character must therefore fit the following formula: <day> + 0xF1 = <day_character>, so e.g., for the 20th, 20 +
0x1F = 0x33, which is the character 3.

The TickCount field is furthermore used to verify that more than 8 seconds have passed between writing
the file and reading it. So, the Sleep call argument in stage 3 needs to be adjusted accordingly.
The modified data is then written to newly allocated memory and a pointer to the data is stored in the large
context structure.

One way to pass the checks is to update the command line to:
0A#P_R@brUc3E/1337pr.ost/20AAAAAAAA/<day_character>pizza/

Stage 5
Using the debugger, we see that the function called first allocates a shellcode buffer that obtains the fifth
command line argument part. Characters from the command line argument are then used to complete a
shellcode template.

We write an IDAPython script or use the debugger to obtain the shellcode template frommemory. One way
to identify the missing bytes is to load the shellcode into IDA with placeholder values. Some of the
disassembly may not make sense, but we can fix that along the way.

Page 6 of 9

Figure 8 shows the start of the extracted shellcode with placeholder bytes 0xAA. Inspecting the function, we
see resemblance to code that manually resolves API functions like GetProcAddress. We can also deduce
this from the way the program calls the shellcode and uses its return value.

Figure 8: Start of shellcode with highlighted placeholder opcode bytes

For the shellcode to work, we add the expected values as shown in Figure 9.

Figure 9: Start of shellcode with corrected opcode bytes

Substituting all required bytes we recover six command-line argument characters. There’s a second shellcode
block to analyze similarly. From the context and after recovering the shellcode template, we see that the code
is supposed to get the address of kernel32.dll. Replacing the missing bytes, we obtain the remaining
argument part characters.

Updating the command line, we get:
0A#P_R@brUc3E/1337pr.ost/20AAAAAAAA/<day_character>pizza/AMu$E`0R.fAZe/

Stage 6
The stage 6 function translates the command-line input part using a substitution cipher. The result is
expected to match the string FLOSS decoded for us: RUECKWAERTSINGENIEURWESEN. The program stores
this string in the context structure and writes it to the console.

Page 7 of 9

The command line now is:
0A#P_R@brUc3E/1337pr.ost/20AAAAAAAA/<day_character>pizza/AMu$E`0R.fAZe/YPXEKCZXYI
GMNOXNMXPYCXGXN

Stage 7
This function ensures the 7th command line argument part matches a string concatenated from prior stages.
The expected string is ob5cUr3. The program then calls a function to manipulate the read file data that was
written to memory in stage 4. The function resembles the RC4 algorithm, but both key-scheduling and
pseudo-random generation algorithms execute twice. What a nice twist since people noted that FLARE On
challenges often just use RC4.

In the stage 7 function, Capa successfully recognizes the CRC32 checksum algorithm. The checksummust
match a value from the context structure, which stems from the file buffer read in stage 4. The program then
AES decrypts another encoded buffer using the SHA256 hash of the command line argument (ob5cUr3) as a
key. Figure 10 shows the CyberChef recipe to decrypt the data and shows that the data is again 64-bit
shellcode. The shellcode is copied to a newly allocated memory and executed.

Figure 10: CyberChef recipe to AES decrypt another shellcode buffer

We load the additional binary file and change the respective segments like done above to end up with stage 8
and the command line:
0A#P_R@brUc3E/1337pr.ost/20AAAAAAAA/<day_character>pizza/AMu$E`0R.fAZe/YPXEKCZXYI
GMNOXNMXPYCXGXN/ob5cUr3/

Page 8 of 9

Stage 8
The stage 8 shellcode compares the 8th command line argument part to characters from a structure. The
argument is supposed to be fin. The final command line is:

0A#P_R@brUc3E/1337pr.ost/20AAAAAAAA/<day_character>pizza/AMu$E`0R.fAZe/YPXEKCZXYI
GMNOXNMXPYCXGXN/ob5cUr3/fin/

Running the program with the final command line opens an HTML page containing an image (see Figure 11)
and a hidden message (not shown here).

Figure 11: Image embedded in the HTML file

Plus, the program writes the challenge flag to the console: b0rn_t0_5truc7_b4by@flare-on.com

Page 9 of 9

