
Flare-On 10 Challenge 4: aimbot
By Christopher Gardner (@t00manybananas)

Part 1: Reversing the communication protocol
Aimbot is distributed as a simple .exe �le, which when run self-describes itself as an aimbot for a game called
“Sauerbraten”. The form contains a single bu�on (see Figure 1), which when clicked executes the main
functionality of the program. Sauerbraten is an open source FPS game that is available from
h�p://sauerbraten.org/.

Figure 1: Aimbot GUI

The bu�on clicked function veri�es the MD5 hash of
%PROGRAMFILES(X86)%\\Sauerbraten\\bin64\\sauerbraten.exe, then decodes several resources
into %APPDATA%\BananaBot. It contains the following resources:

Filename Purpose
miner.exe XMRig coinminer
con�g.json XMRig con�g �le
aimbot.dll Aimbot payload

Each of these resources is encrypted using AES-128 with the key yummyvitamincjoy. A�er decoding the
XMRig resources, the sample launches miner.exe and sends an HTTP GET request to
http://127.0.0.1:57328/2/summary, which the XMRig sample is con�gured to listen on. If the
coinminer does not respond to this request, the launcher exits without dropping aimbot.dll.

If the GET request succeeds, the sample executes
%PROGRAMFILES(X86)%\\Sauerbraten\\bin64\\sauerbraten.exe and injects aimbot.dll into the
new process. The injection is achieved by writing the path of aimbot.dll into the process memory space, and
then using CreateRemoteThread to call LoadLibraryA on that path in the context of the new process.

Page 1 of 4

http://sauerbraten.org/


Part 2: The Aimbot DLL
When injected, the DllMain of aimbot.dll starts three threads:

● An aimbot thread, designed for Cube 2: Sauerbraten. This aimbot is fully functional but this thread is
irrelevant to solving the challenge

● An anti-debug thread
● An infostealer thread, which contains the meat of the challenge

The anti-debug thread �rst patches the DbgBreakPoint function of ntdll.dll to return immediately. This
is intended to prevent a debugger from pausing execution when a�aching (it can still a�ach, but may fail to
pause execution upon a�aching). It then executes an anti-debug function in a loop, sleeping a second in
between a�empts and calling ExitProcess if the anti-debug function ever detects a debugger. This
anti-debug function is also used in the infostealer thread, so understanding it is important.
The anti debug function performs the following checks, and computes a constant from some of them:

● Check IsDebuggerPresent and CheckRemoteDebuggerPresent
● Checks to see if a ProcessDebugObject is available for the current process
● Checks the BeingDebugged �ag in the Process Environment Block
● Checks to see if a variety of debugger-related processes are running, and adds the number found to

the constant. All but one of these are debuggers, but explorer.exe is also included in the list so the
constant should be incremented by 1 if no debugger is found. The process names are hashed with a
ROR hash and compared with a hardcoded list

● Adds a constant read from the memory of the parent process (ensures that the process was launched
by aimbot.exe). This makes patching the aimbot DLL non-trivial

● Adds a constant read from the memory of the main module of the process (ensures that the DLL is
running inside sauerbraten.exe)

The computed constant is supposed to be 0x6499f8a9. This constant is used for string decoding in the
infostealer thread, so the rest of the challenge will fail to run if a debugger is detected (if it doesn’t exit
outright). While it is possible to solve this challenge statically, the intended solution is to correctly bypass
these anti-debug checks (and the later environmental checks) to let the challenge run and output the �ag. It
is also possible to patch the binary to bypass some of the anti-debug checks, but some of the anti-debug
checks make this harder.
The infostealer thread begins by sleeping for 5 minutes, and measures the elapsed time to ensure the sleep
was successful. It then creates the directory C:\depot, and checks to see if XMRig is running as described
earlier. However, the request must also return valid content instead of just returning an HTTP 200 status code.
The challenge searches the JSON response from XMRig for the string “version”: “, and uses that and the
following bytes as an AES-128-ECB key to decrypt the next stage. The correct key is “version”: “6.20. If
the start of the decrypted blob is the decryption of this blob was successful, then the challenge executes the
rest of the blob as shellcode.

Page 2 of 4



Part 3: Infostealer shellcode blobs
The next part of the challenge is a series of chained shellcode blobs that try to steal data from a program on
the system (much like an infostealer malware sample), then use some key derived from that programs data to
decrypt the next blob. In essence, all the programs must be installed and setup at least somewhat properly to
decrypt the next stage.

The �rst blob targets Steam, a gaming storefront. The challenge opens C:\Program Files
(x86)\Steam\config\config.vdf (which should be JSON) and searches for the SentryFile key. It copies
the value of that key to C:\depot, and then uses the �rst 16 bytes of the config.vdf �le (which should be
“InstallConfigSt) as an RC4 key for the next blob.

The next blob acts as an infostealer for Discord, a communication pla�orm popular with gamers. It searches
all �les in the directory %APPDATA%\Discord\Local Storage\leveldb for the string dQw4w9WgXcQ; and
if any �les contain that string they are copied into C:\depot. If at least one �le was copied, the challenge
reads the �rst 16 bytes of %APPDATA%\Discord\Origin Bound Certs (which is supposed to be SQLite
format 3\0) and uses that as another RC4 key for the next blob.

The �nal infostealer blob targets Sparrow, a cryptocurrency wallet application. It copies all .db �les found in
%APPDATA%\Sparrow\wallets to C:\depot, and then searches for the �lename of a copied �le in
%APPDATA%\Sparrow\config (which is supposed to be JSON data). If it �nds a �lename as a JSON value, it
extracts the key that value is stored in (which should be recentWalletFiles) and uses that as an RC4 key for the
next blob.
The next blob does not target a program, but instead a�empts to gather all the �les stolen and ex�ltrate them
to a remote server. It concatenates all the �les found in C:\depot into C:\depot\output, and sends that in
a HTTPS POST request to https://bighackies.flare-on.com/stolen. It then interprets the response
as four CRC32 hashes of the data it sent, looking at various o�sets into the data. If all four match, the
Content-Length header of the response is used as an XOR key to decrypt the next blob. Since the response
should contain four CRC32 hashes (each of which is length four), the Content-Length header is expected to
contain 16.
The �nal shellcode blob of the challenge checks a variety of constraints in the running Sauerbraten process. If
all checks pass it puts the �ag into memory and exits the process (via crashing it).
It �rst checks to see if a game is running and is playing on a map whose name starts with spcr and has one
extra character in its name. There is only one map in the stock Sauerbraten install with this pa�ern, spcr2. It
then opens the �le for this map (%%PROGRAMFILES(X86)%%\Sauerbraten\packages\base\spcr2.cfg)
and extracts bytes 0x51 to 0x5a as the �rst bytes of the �ag (which should be computer).
The challenge then checks to see if the player has achieved 1337 kills in the game by shooting exactly 1337
bullets, and that the game has been going on for less than 5 minutes. It also checks to make sure the player is
playing a local game (vs bots). This is either very di�cult or impossible for a player to achieve (even with the
aimbot included in the challenge), but thankfully the key bytes recovered here are easy to pull out statically.
The challenge reads some constant memory from the sauerbraten.exe process and does simple math to

Page 3 of 4



calculate the remaining key bytes. A�er verifying that the CRC32 hash of the �ag is correct it writes the �ag
to the heap, and exits.

The �ag is: computer_ass1sted_ctfing@flare-on.com

Page 4 of 4


