
Flare-On 10 Challenge 5: where_am_i
By Genwei Jiang (@binjo)

Overview
The where_am_i.exe program is a repurposed in-memory dropper, which is named as STONEBRIDGE in
Mandiant, that executes the �nal payload in a newly created Explorer.exe process through Asynchronous
Procedure Call (APC). The STONEBRIDGE employs multiple staged shellcodes and di�erent crypto algorithms
to archive the execution of its payload. The repurposed where_am_i.exe is intended for the player to �nd
the encrypted �ag and the decryption routine, only debug skills and a bit of PE structure knowledge are
required to solve the challenge.
As a typical Windows malware analysis work�ow, we will analyze the sample using the FLARE VM of Windows
10 as our primary virtual machine. All the tools mentioned in this solution are available in the default
installation.

Static Analysis
Before diving into executing the sample, it is generally be�er using static analysis tools to gain insights of the
sample,
· Detect It Easy, for identifying PE architecture, packer, entropy, sections etc.
· CFF Explorer, for viewing PE structure, extracting resource
· FLOSS, for extracting strings
· CAPA, for inspecting capabilities of the sample
Based on the output of these tools, the sample appears to be a MFC application wri�en in C++, that is signed
and contains resources. The FLOSS extracted strings are not very interesting, but the CAPA tells of a
capability of data encryption using RC4, RWXmemory allocation and runtime linking. These capabilities ring a
bell of possible shellcode execution.
The summary of identi�ed capabilities as follows:

Page 1 of 22

https://attack.mitre.org/techniques/T1055/004/
https://attack.mitre.org/techniques/T1055/004/
https://github.com/mandiant/flare-vm/
https://github.com/horsicq/Detect-It-Easy/
https://ntcore.com/?page_id=388
https://github.com/mandiant/flare-floss
https://github.com/mandiant/capa/

Figure 1. CAPA Summary

The -vv option of CAPA outputs the details of the matched rules, that includes the virtual address of interest.

Figure 2. CAPA RC4 rule match output

By looking at the disassembly or decompilation at the virtual address 0x448733, we can determine the code
is indeed a RC4 decryption routine. Checking the cross reference to this address, we're lucky to �nd only one
reference and further analyze the function can determine this is the 1st stage of the sample, at virtual
address 0x448650. In essence, the sample loads and decrypts an embedded resource of type bitmap into
executable heap memory. The sample reads the resource name from the �le o�set 0x3e0, a DWORD value
0x1. The sample reads two DWORD values, 0x6012adda and 0x1e8fc667 from the �le o�set 0x3f0. The
DWORDs are part of a RC4 key. The RC4 key is 256 bytes long, with hex value of 67 c6 8f 1e da ad 12 60 00 00
... (the remaining are all null bytes).

Page 2 of 22

Figure 3. RC4 key at �le o�set 0x3f0

At this point, let's follow the call and jump into dynamic analysis.

Figure 4. First stage code in IDA

Dynamic Analysis
As we analyzed in static analysis, the sample allocates RWXmemory and executes the next stage shellcode.
One can use a debugger of choice to analyze the sample from the speci�c virtual address. But for this
sample, we may �rst execute the sample and check logs in Process Monitor and Process Explorer, which both
are generally useful for understanding the malware execution:
· Process Monitor, for monitoring �le system, registry, process/thread activity and network connections
· Process Explorer, for displaying information of running process
Upon execution of the sample, a dialog box displayed with a message that appears the full path of the
executable.

Page 3 of 22

https://learn.microsoft.com/en-us/sysinternals/downloads/procmon
https://learn.microsoft.com/en-us/sysinternals/downloads/process-explorer

Figure 5. Dialog of execution

The events of Process Monitor do not look too interesting , except the creation of a new Explorer.exe
process.

Figure 6. Process Monitor - Process Tree

Page 4 of 22

The where_am_i.exe process exits shortly, so we can a�ach a debugger to the newly created
Explorer.exe process and poke around a bit. As the message box pops, the call stack reveals the thread
originated from the ntdll!RtlDispatchAPC call, the virtual address starts with 0x11 and 0x54 are most
interesting, as these might be the injected payload or another shellcode.

I prefer using WinDbg and the following is the call stack output of command ~*k when a�ached.

0:001> ~*k

0 Id: 1614.1450 Suspend: 1 Teb: 0022e000 Unfrozen

ChildEBP RetAddr

00 000df490 75ee4a43 win32u!NtUserWaitMessage+0xc

01 000df4d0 75ee4934 user32!DialogBox2+0x102

02 000df500 75f41aeb user32!InternalDialogBox+0xd9

03 000df5cc 75f40881 user32!SoftModalMessageBox+0x72b

04 000df728 75f41347 user32!MessageBoxWorker+0x314

05 000df7b0 75f4117e user32!MessageBoxTimeoutW+0x197

06 000df7e4 75f40e95 user32!MessageBoxTimeoutA+0xae

07 000df804 005410da user32!MessageBoxA+0x45

WARNING: Frame IP not in any known module. Following frames may be wrong.

08 000df894 005417f7 0x5410da

09 000df8d4 005418d9 0x5417f7

0a 000df8e8 00111293 0x5418d9

0b 000df92c 00110514 0x111293

0c 000df944 7779d5b9 0x110514

0d 000df99c 77784e4b ntdll!RtlDispatchAPC+0x615a9

0e 000dfd04 77776391 ntdll!KiUserApcDispatcher+0x4b

0f 000dfd10 00000000 ntdll!LdrInitializeThunk+0x11

1 Id: 1614.d0c Suspend: 1 Teb: 00249000 Unfrozen

ChildEBP RetAddr

00 0048ff40 777bdce9 ntdll!DbgBreakPoint

01 0048ff70 774300c9 ntdll!DbgUiRemoteBreakin+0x39

02 0048ff80 77777b1e KERNEL32!BaseThreadInitThunk+0x19

03 0048ffdc 77777aee ntdll!__RtlUserThreadStart+0x2f

04 0048ffec 00000000 ntdll!_RtlUserThreadStart+0x1b

Table 1. Call stack of threads

Checking the relevant disassembly code at virtual address 0x5410da and memory of the parameter reveals
an interesting hint, Heard there's RC6 somewhere, is that true?. Poking around those virtual addresses starts
with 0x11 and 0x54, you may �nd codes likely a shellcode starting from 0x110000. Keep these virtual
addresses and o�sets in mind, as we will observe them in a debugger.

0:003> ub 0x5410da

005410c1 56 push esi

005410c2 ff1510e05400 call dword ptr ds:[54E010h]

005410c8 8b3528e15400 mov esi,dword ptr ds:[54E128h]

005410ce 6a00 push 0

005410d0 68942c5500 push 552C94h

005410d5 57 push edi

005410d6 6a00 push 0

005410d8 ffd6 call esi

Page 5 of 22

0:003> ln poi(54E128h)

Browse module

Set bu breakpoint

(75f40e50) user32!MessageBoxA | (75f40ea0) user32!MessageBoxExA

0:003> db 552C94h

00552c94 46 4c 41 52 45 2d 4f 4e-20 31 30 3a 20 77 68 65 FLARE-ON 10: whe

00552ca4 72 65 5f 61 6d 5f 69 3f-00 00 00 00 66 6c 61 72 re_am_i?....flar

00552cb4 65 00 00 00 43 3a 5c 55-73 65 72 73 5c 50 75 62 e...C:\Users\Pub

00552cc4 6c 69 63 5c 00 00 00 00-48 65 61 72 64 20 74 68 lic\....Heard th

00552cd4 65 72 65 27 73 20 52 43-36 20 73 6f 6d 65 77 68 ere's RC6 somewh

00552ce4 65 72 65 2c 20 69 73 20-74 68 61 74 20 74 72 75 ere, is that tru

00552cf4 65 3f 00 00 c0 00 00 00-00 00 00 00 00 00 00 00 e?..............

Table 2. Disassembly code and memory content

At this point, we've found out:
● There's RC4 involved in decrypting the 1st stage shellcode
● Process injection of �nal payload in Explorer.exe
● Likely has another stage of shellcode
● Found a hint: Where is the RC6

This is a perfect scenario for using Time Travel Debugging(TTD), that once a sample execution recording trace
�le is created, we can play it back and forth within WinDbg. There are pros and cons of using TTD:

● Pros
○ The utility is built into the system of Windows 10 and above, namely tttracer.exe
○ Step back and forth without executing the sample again, great for collaboration with

colleagues
● Cons

○ Slow down execution
○ Large disk storage may be required

While there's less help information of tttracer.exe online, the command line options are similar to the
ones used in standalone utility of TTD. We can generate a full trace of the sample by using tttracer.exe
-children where_am_i.exe, run as an administrator. The -children option instructs the tracer to follow
the child process and generate the trace �le. The output �les are where_am_i01.run, explorer01.run
and corresponding log �les.

Page 6 of 22

https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/time-travel-debugging-ttd-exe-command-line-util

Figure 7. Output of �tracer.exe

Having the .run tracing �le generated and opened in WinDbg, all the live debug commands are available as
one may use to be. We can set breakpoints at speci�c API, virtual address or simply g to the previous address
we found.

Page 7 of 22

Figure 8. First stage shellcode entry point

Shortly a�er step over some instructions of the 1st stage shellcode, it appears the control �ow is obfuscated
and o�sets are calculated using sequences of opcodes like mov, add, sub, xor and etc. It becomes tedious to
single step in/over opcodes.

Page 8 of 22

Figure 9. Graph view of the shellcode

Tracing into/over commands like pa would be helpful in certain cases, the debugger data model and ability of
using LINQ with the debugger objects provides much more power to the user. For example, one can query
the api usage of kernel32!VirtualAllocStub like the following:

dx -g @$cursession.TTD.Calls("kernel32!VirtualAllocStub").Select(r > new {TimeStart = r.TimeStart,
TimeEnd = r.TimeEnd, Function = r.Function, FunctionAddress = r.FunctionAddress, ReturnAddress
= r.ReturnAddress, ReturnValue = r.ReturnValue})

Page 9 of 22

https://www.timdbg.com/posts/whats-the-data-model/
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/using-linq-with-the-debugger-objects

Figure 10. LINQ query of VirtualAllocStub call

The example shows the occurrence of allocating RWXmemory for the �rst stage shellcode of size 0x6c44,
and the ReturnValue is 0x107a0000.
Inspired by the Axel Souchet's codecov plugin, I've included the script for API tracing in Appendix, which
helps to get all of the APIs called within speci�ed address range. The script in essence queries the call
instructions and �nds the referenced API name. Despite the obfuscated control �ow hinders analyzing, we
can infer the full code logic based on the API calls, which loads another resource and injects into the
Explorer.exe process through kernel32!QueueUserAPC call. The TimeStart values are useful for time
traveling back and forth.

Figure 11. API trace list of 1st stage shellcode

The resource appears to be a bitmap of name as DWORD value 0x2, that is speci�ed in the �le o�set 0x3e8.

Time travel to the moment of writing shellcode into target process through
kernel32!WriteProcessMemory call, we will see the target remote address is 0x110000, local bu�er

Page 10 of 22

https://github.com/0vercl0k/windbg-scripts/blob/master/codecov/codecov.js

address is 0x107b0031 and the size is 0x1512f. The address 0x107b0000 is allocated RWXmemory from the
previous VirtualAlloc call, and appears in the next stage shellcode.

Figure 12. WriteProcessMemory

By checking the memory read and write access at address 0x107b0000, it appears at the beginning of
execution the content was indeed a copy of resource 0x2, at the end of execution the content is decrypted
as above.
Time travel back to the last writing operation on the address 0x107b0000, and checking the return address
of the last call, to identify if there is a decrypt routine.

Page 11 of 22

Figure 13. Resource decryption in TTD

Looks like we found a routine of decrypting at virtual address 0x107a29c5, would this be the RC6 one
referenced in the hint?

Page 12 of 22

Checking the heap memory write access at address 0x108f3d00, it appears the call originated from
0x107a5832.

Figure 14. Check origin of memory write in TTD

Tracing into the call would be useful to understand the code logic, be alarmed the output may over�ow the
maximum lines of WinDbg UI, best redirect the output into a local �le instead.
The call 0x107a4dde appears to be responsible for initializing the bu�er pointed by address 0x108f3d00,
using the parameter 0xbaadbeef.

Page 13 of 22

Figure 15. Trace log of 0x107a4dde
While the log �le will be large, you may �nd some constant value of 0xb7e15163 and 0x9e3779b9 referenced
at the beginning, and the loop pa�ern of round counter 0x24. By googling these constants, hopefully you �nd
this rc6_initl code snippet a good reference. I'm no crypto expert, but the function of 0x107a4dde looks like a
variant of RC6 key initializer, the key is the dword value 0xbaadbeef read from �le o�set 0x3fc. The function
at virtual address 0x107a29c5 is the RC6 decrypt routine.

At this point, we've found out:
● The RC6 initialize routine at virtual address 0x107a4dde
● The RC6 decrypt routine at virtual address 0x107a29c5
● The RC6 key is 0xbaadbeef read from the �le o�set 0x3fc

Now we can turn to the trace �le of Explorer.exe to �gure out if the �ag is hidden there.

Page 14 of 22

https://github.com/cantora/avr-crypto-lib/blob/master/rc6/rc6.c#L54

Figure 16. Shellcode entry point in Explorer.exe

While the shellcode is similar to the 1st stage one that obfuscated control �ow hinders the analysis, with the
insight gained from static analysis, the kernel32!VirtualAllocStub call is a good back tracing point.

Page 15 of 22

Figure 17. Backtrace from the VirtualAllocStub

The shellcode is slightly simpler than the previous one, that executes as an egg-hunter for searching DWORD
value 0xd2a3�95 and decrypting the following payload using a rolling xor. The xor key is hex value 95 � a3 d2
ef 76 42 d9 33 44 48 83 be 22 13 37. The �nal payload is a re�ective loader, that the DOS header stripped, and
PE signature modi�ed to hex value f1 43 13 37 00 00. The entry point of the re�ective loader is transferred
from address 0x110511.

Page 16 of 22

Figure 18. Re�ective loader entry point

The re�ective loader checks the signature of header to be hex value f1 43 and 13 37 00 00, and continues to
allocate RWXmemory based on the following PE structure, right a�er copying section data and before
resolving import tables, a hidden memcpy that copies a chunk data of size 0x500 into the virtual o�set 0x3fc
of the newly allocated RWXmemory at 0x150000.

Figure 19. memcpy data into virtual o�set 0x3fc

The o�set 0x3fc and 0xbaadbeef ring a bell that previously staged shellcode of RC6 decryption. The �ag is
embraced with the hex value ef be ad ba.

Page 17 of 22

Figure 20. Save encrypted �ag into local �le

Once the re�ective loader �nished loading the PE into RWXmemory, �xed the import tables and resolved the
relocation RVAs, the execution switches to the payload’s entry point. The code is straigh�orward that
connects to the pipe \\.\pipe\whereami created by 2nd stage shellcode, retrieves the sample full path
and creates the message box. If the computer user name is �are, and the sample full path contains
C:\Users\Public\, it continues to check if the �le o�set 0x3fc contains DWORD value 0xbaadbeef, the
message box with hint information would reveal.

Let's verify by live debugging the where_am_i.exe, and manipulating the parameters for the RC6 decrypt
routine.

Page 18 of 22

Figure 21. Live debugging solution
Congratulations! The �ag is WheR3_4m_I_fr0m_0TF@flare-on.com

Page 19 of 22

References
1. Time Travel Debugging - TTD.exe command line utility
2. Time Travel Debugging - JavaScript Automation
3. Using LINQWith the debugger objects
4. Axel Souchet's codecov plugin

Appendix
// WinDbg dbgInit.js
// @binjo, 2023-05-04
"use strict";

delete Object.prototype.toString;

const log = host.diagnostics.debugLog;
const logln = p => host.diagnostics.debugLog(p + "\n");

function invokeScript() {
return logln("======= WinDbg init done... =======");

}

function ReadPtr(Addr) {
let Value = null;
let is64 = host.namespace.Debugger.State.PseudoRegisters.General.ptrsize == 8;
try {

if (is64) {
Value = host.memory.readMemoryValues(

Addr, 1, 8
)[0];

} else {
Value = host.memory.readMemoryValues(

Addr, 1, 4
)[0];

}
} catch(e) {
}

return Value;
}

function GetSym(Addr) {
if(Addr == undefined) {

logln("!getsym <addr>");
return;

}

Page 20 of 22

https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/time-travel-debugging-ttd-exe-command-line-util
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/time-travel-debugging-javascript-automation
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/using-linq-with-the-debugger-objects
https://github.com/0vercl0k/windbg-scripts/blob/master/codecov/codecov.js

let dis = host.namespace.Debugger.Utility.Code.CreateDisassembler();
let ins = dis.DisassembleInstructions(Addr);
let addr = ins.First().Operands.Last().ImmediateValue; // get rid of calling address, no need

to care about x64/x86/far/near
let ptr = ReadPtr(addr);
let temp = host.namespace.Debugger.Utility.Control.ExecuteCommand(`.printf"%y",

${ptr.toString(16)}`)[0];
return temp;

}

class __CallItem {
constructor(ts, rva, addr, sym) {

this.TimeStart = ts;
this.RVA = rva;
this.Address = addr;
this.Called = sym;

}

toString() {
return `${this.Called}`;

}
}

class __CallTrace {
constructor(baseAddress, size) {

this.__BaseAddress = baseAddress;
this.__Size = size;
this.__mod_cov = host.currentSession.TTD.Memory(baseAddress, baseAddress + size, "ec");
this.__mod_calls = this.__mod_cov.Where(r => r.Size == 6 && (r.Value & 0xffff) == 0x15ff);

}

*[Symbol.iterator]() {
let mod_calls = this.__mod_calls;
for (var cal of mod_calls) {

var sym = GetSym(cal.Address);
yield new __CallItem(cal.TimeStart, cal.Address - this.__BaseAddress, cal.Address,

sym);
}

}

toString() {
return "TraceCalls";

}
}

let calls = x => host.currentSession.TTD.Calls(x);
let memory = (x, y, z) => host.currentSession.TTD.Memory(x, y, z);

let Traces = {

Page 21 of 22

__mytrace : {},

get TraceCalls() {
if (!(Traces.__mytrace && Traces.__mytrace[this.Name]))

Traces.__mytrace[this.Name] = new __CallTrace(this.BaseAddress, this.Size);
return Traces.__mytrace[this.Name];

},

// dx @$curprocess.Modules[0].TraceInRange(..., ...)
TraceInRange : function (baseAddr, size) {

if (!(Traces.__mytrace && Traces.__mytrace[baseAddr.toString()]))
Traces.__mytrace[baseAddr.toString()] = new __CallTrace(baseAddr, size);

return Traces.__mytrace[baseAddr.toString()];
},

TraceClear : function () {
if (Traces.__mytrace) {

delete Traces.__mytrace;
}
logln("Trace cache cleared...");

}
}

function initializeScript() {
return [

new host.apiVersionSupport(1, 3),
new host.functionAlias(calls, "calls"),
new host.functionAlias(memory, "memory"),
new host.functionAlias(GetSym, "getsym"),
new host.namedModelParent(Traces, "Debugger.Models.Module")

];
}

Table 3. WinDbg helper script

Page 22 of 22

