
Flare-On 10 Challenge 6: FLARESays
By Paul Tarter (@Hefrpidge)

Overview
FlareSay is a polymorphic challenge that uses a custom-built PE to run in both DOS and Windows. The
Windows portion of the challenge is developed as position-independent code to allow the .text section to be
embedded in the DOS header. The DOS portion of the executable takes advantage that every PE includes a
DOS header and can be run in DOS. The DOS portion of the challenge is a game like an older physical game
named Simon Says, where there are four bu�ons and one is supposed to playback the sequence, each level
the sequence increases by one. When one inputs a correct code during the �ash screen, then completes all
the levels, the original PE gets patched with bytes generated throughout gameplay. The generated bytes are
veri�ed when the PE is run in Windows, if the veri�cation is successful, then the bytes are used as a key for a
modi�ed Salsa20 cipher which decrypts the �ag. The �ag is displayed by calling NtRaiseHardError which is
used to display a message box using ntdll. NtRaiseHardErrorwas chosen so that SysWhispers could
be used to dynamically resolve the API and directly make the syscall.

Challenge Walkthrough

Music
For added fun music was added to the challenge. The splash screen uses music from the Contra game. When
playing Contra, a player could enter the “Konami code” at the splash screen and get 30 lives instead of 3

Page 1 of 15



when starting the game. This same sequence needs to be entered to have a successful key generated. Rick
Roll music is played when a player loses, and Mario Brothers Princess Music is played when the player wins.
Reversing how to play music is not necessary for this challenge, but all midis and the sound blaster driver
from the 90s are embedded in this sample. There is still �oating around sound blaster driver development
documentation which was helpful in developing this challenge. I hope the music added some fun to the
game!

Custom PE
Initial execution of FlareSay.exe has the sample doing nothing and immediately exiting. Static analysis
shows that the PE is not linked by normal standards. There are no sections, no data directories are populated
and the AddresssOfEntryPoint �eld points into an abnormally large DOS Stub code.

AddressOfEntryPoint pointing to an abnormally large DOS stub

Static Analysis using IDA Pro
IDA Pro provides the ability to easily analyze a PE’s DOS stub or PE.

Page 2 of 15



IDA Loading Dialog to analyze a DOS stub or PE

Loading IDA Pro with the MS-DOS loader will get you to a good place for statically analyzing the DOS portion.
A�er loading the Portable Executable version, you will need to convert the entry point to code, then analysis
can be performed statically.

Windows Static Analysis

The Windows portion is very straight forward from a high level.

Page 3 of 15



Entrypoint function

Page 4 of 15



The Salsa20 cipher was based on a sample of malware analyzed by the FLARE team that loosely implemented
the algorithm. The original modi�cation found in malware shortened the key to four bytes, allowing for very
easy brute force, The challenge didn’t shorten the key. There is an anti-debug technique built into the Salsa20
that uses the PEB’s debug �ag as a constant for zero. Other numbers are created assuming the debug �ag is
zero. If one runs the sample in debug with the correct key the decryption will still be wrong.

Anti-debug technique that uses the being debugged flag as ZERO

Anti-debug technique source code

DOS Analysis
Most of the challenge lives in the DOS portion of this sample and can just be a ma�er of taking the time to
mark up the IDB enough until one can understand it. The challenge is broken up into a common theme of

Page 5 of 15



game development: GUI Initialization, Splash Screen, Game Initialization, and �nally a game loop. One will
note that there isn’t a standard calling convention when functions are called. The DOS portion was wri�en
100% in 16-bit assembly and to make it more “fun”, I didn’t standardize the calling convention. I don’t cover
DOS analysis using dynamic debugging, but it should be mentioned that DOSBox has a very capable
debugger. To take advantage of the debugger, instead of running dosbox.exe, run
dosbox_with_debugger.exe. This can be found by pulling a release from GitHub
(h�ps://github.com/dosbox-staging/dosbox-staging).

GUI Initialization
Nothing special here, clear a screen, setup cursor, and move onto the splash screen. Marking up the functions
within the beginning starts to help �ll out the IDB because screen and keyboard functions get a lot of use.
Also, it is very quick to notice that one needs to break out their 8086 assembly and DOS API reference. IDA
Pro is nice and marks up interrupts nicely..

Entrypoint for DOS stub

Page 6 of 15

https://github.com/dosbox-staging/dosbox-staging


Splash Screen
The splash screen is a very important portion of the challenge because it is where random is seeded, and to
obtain the correct hash, the seed needs to be correct. The seed will be correct if you luckily have the splash
screen played at minute 10 and 12 seconds of the hour, because random is seeded with the AX register. AL is
seconds, AH is minutes. The other way to get the proper seed is to enter the “Konami Code”, “up, up, down,
down, le�, right, le�, right”. If this code is entered during the splash screen, the input bu�er is hashed and the
result (0x0C0A) will be placed in the AX register to seed the call to random. The hash is a simple right shi� 5
add hash.

Splash screen to enter “Konami Code”

The following function polls for a key press and returns the keypress in AX. The keypress has two portions as
seen below: AH is the scan code and AL is the character. The next image is the logic for checking the “Konami
Code”.

Page 7 of 15



Function to poll for key press

Page 8 of 15



Loop to read key presses during the splash screen

The item to be careful with is overlooking that the register AH is the scan code and AL is the character code.
The logic �rst checks for a ‘\r’ character and will exit the splash screen. The loop then checks for ‘a’ or ‘b’
characters , and lastly there are checks for the scan codes resulting in ‘up’, ‘down’, ‘le�’, or ‘right’. This code
only looks for keypresses of the above, anything else is discarded. The key presses collected in this loop are
then compared against the string HHPPKMKMBA. This string uses a combination of scan codes and character
codes to store the “Konami Code”.

Game Initialization
The game initialization consists of se�ing the initial game play speed, decrypting strings using a simple
single-byte xor key, drawing the initial screen and lastly, popping up a dialog box with the instructions for the
game. The one important note in this area is game speed. The four levels that were de�ned in code were
0,1,2,3: CPU, HARD, MED, EASY. The game initializes to MED and a�er ten levels jumps to HARD. One way to

Page 9 of 15



solve this challenge is ge�ing the computer to play itself and se�ing the initial game speed to 0 will speed up
game play to extremely fast.

Game Play
Game play consists of a loop where the speed is set then the level speed and score is printed to the screen.
The next sequence is generated using random that is seeded by input from the splash screen. The level is
played by the computer and then it is the players turn to play back the level. If a mistake is made, a message
pops up and it is game over. Otherwise, the level is incremented and the loop continues up until the max level
of 128.

Page 10 of 15



Game play loop

If one makes it through the whole game, there is a nice message displayed to the user with a throwback to
Mario Bros video game on Nintendo. When the game is won, FlareSays.exe patches itself with the key that is
needed in the PE (more on this later).

FlareSay.exe game completed

There are two major ways of a�aining the key needed for the �nal challenge. Generate the hash or have the
game play itself. The game playing itself is the easier task, �rst, update the speed of gameplay as shown in
game initialization. In the function test_level, the global sequence is tested against, the sequence is iterated
by waiting for a key press and then testing the input. The push_bu�on function is for display purposes only.
Instead of calling wait_for_key and push_bu�on, just move DL to AL in place of the calls wait_for_key and
push_bu�on.

There is an easter egg where a player can press ‘r’ at any point in the game and get into what I call “Ray Ray
Mode”. This is a mode where my three-year-old daughter can play the game without losing, she loves it. Press
‘r’ to get out of Ray Ray Mode, it starts the level over. So, if one ever gets lost in a level, press ‘r’ twice to start
the level over. It will reset the score for the level, which is the hash input.

The hashing algorithm is a modi�ed version of SDBM, where the algorithm is extended to 128 bits.

Page 11 of 15



Function test_level

Key Patching
If the game is won, the �nal hash is wri�en to the PE. It needs to be in the correct location for the Windows
portion of the application to �nd it. This is the only portion that requires the sample to be run in DOS. IDA pro
does a good job of marking up the DOS calls. FlareSay.exe will scan itself in 16-byte chunks looking for a
16-byte bu�er �lled with the bytes 0xCC. Following the tag there are �ve bytes that are important to the
Windows sample `CALL; POP EAX; RET`, pu�ing the key in EAX. A�er the �ve bytes is where the key goes,
which initially is �lled with null bytes.

Page 12 of 15



Key tag and key

Key tag with CALL POP RETN

Page 13 of 15



Page 14 of 15



Winning
Once you have played FlareSay.exe in DOS mode, won the game, and the binary is patched,you can now
execute the patched executable in Windows. You will now be presented with a nice happy �ag message box:

Challenge Flag

Page 15 of 15


