GoogleCloud FL ;\ RE

Flare-On 10 Challenge 6: FLARESays
By Paul Tarter (@Hefrpidge)

Overview

FlareSay is a polymorphic challenge that uses a custom-built PE to run in both DOS and Windows. The
Windows portion of the challenge is developed as position-independent code to allow the .text section to be
embedded in the DOS header. The DOS portion of the executable takes advantage that every PE includes a
DOS header and can be run in DOS. The DOS portion of the challenge is a game like an older physical game
named Simon Says, where there are four buttons and one is supposed to playback the sequence, each level
the sequence increases by one. When one inputs a correct code during the flash screen, then completes all
the levels, the original PE gets patched with bytes generated throughout gameplay. The generated bytes are
verified when the PE is run in Windows, if the verification is successful, then the bytes are used as a key for a
modified Salsa20 cipher which decrypts the flag. The flag is displayed by calling NtRaiseHardError which is
used to display a message box using ntdll. NtRaiseHardError was chosen so that SysWhispers could
be used to dynamically resolve the APl and directly make the syscall.

@ DOSBox 0.74-3, Cpu speed: 3000 cycles, Frameskip 0, Prograrm: DSTUB - *

000000003
[X0o loooookN

Welcome to Flare Says, where the points
don’t matter. Use the arrow keys to play
back the sequence, mess up and you lose?

no0xKWMGo 1oooo 1dK
oxKLM 0011111 14K
PCNMTTTTUK 0000000

Challenge Walkthrough

Music

For added fun music was added to the challenge. The splash screen uses music from the Contra game. When
playing Contra, a player could enter the “Konami code” at the splash screen and get 30 lives instead of 3

Page 10of 15

GoogleCloud FL A RE

when starting the game. This same sequence needs to be entered to have a successful key generated. Rick
Roll music is played when a player loses, and Mario Brothers Princess Music is played when the player wins.
Reversing how to play music is not necessary for this challenge, but all midis and the sound blaster driver
from the 90s are embedded in this sample. There is still floating around sound blaster driver development
documentation which was helpful in developing this challenge. | hope the music added some fun to the
game!

Custom PE

Initial execution of FlareSay.exe has the sample doing nothing and immediately exiting. Static analysis
shows that the PE is not linked by normal standards. There are no sections, no data directories are populated
and the AddresssOfEntryPoint field points into an abnormally large DOS Stub code.

_DOS5 HEADER DosHeader
STUB DosStub

struct | E_MT_HEADERS MtHeader

DWORD Signature
struct IMAGE_FILE_HEADER FileHeader
w struct IMAGE_OPTIONAL_HEADERG4 OpticnalH :a...
enum OPTIOMNAL_MAGIC Magic PEB (20Bh)

BYTE MajorLinkerVersion
BYTE MincrLinkerVersion 1]
DWORD Si Coc 0

| HinitializedData
DWORD ¢ HUninitializedData 1]
DWORD AddressOfEntryPoint 8F40h

AddressOfEntryPoint pointing to an abnormally large DOS stub

Static Analysis using IDA Pro
IDA Pro provides the ability to easily analyze a PE's DOS stub or PE.

Page 2 of 15

GoogleCloud FL A RE

¥ Load a new file x

Load file D:

able executable

type (double-didk to set)

Intel Pentium II
Intel Pentium III
Intel Pentium Pro
Intel F'l"FIﬁUFII |:

Enabled {ernel options 1 | | ‘ernel options 2 | | {ermel options 2

Indicator enabled Processor options

Options
B Lozding options ! 2 segments M Load resources
. Fill segment gaps (e FLAT group Rename DLL entries
5 code segment (£ imports segment M Manual load

IDA Loading Dialog to analyze a DOS stub or PE

Loading IDA Pro with the MS-DOS loader will get you to a good place for statically analyzing the DOS portion.
After loading the Portable Executable version, you will need to convert the entry point to code, then analysis
can be performed statically.

Windows Static Analysis

The Windows portion is very straight forward from a high level.

Page 3 of 15

GoogleCloud F LA RE

__inte4 entry()

{ rax
([rsp+3@h] [rbp-48h] BYREF
R u // [rsp+a@h] [rbp-38h] BYREF
__inte4 parameters[5]; // [rsp+58h] [rbp-28h] BYREF
char response; // [rsp+8@8h] [rbp+8h] BYREF

key = get_config_item(ConfigTypekey);

vs = *(unsigned _ intd& *
vE (unsigned _ intd °
V3 i64;

w7 (vs + _ ROL4 (key hash, 7}) * key_hash;

vB (v6 + _ ROL4 (v7, 7)) ™ v7;

v = (*(unsigned _ int8 *)(v3 - 4) + _ ROL4_ (v8, 7)) ~ vB;
key_hash = (*(unsigned _ int8 *)(w3 - 3) + __ROL4_ (v9, 7)) ™ v9;
==fg

while (1);

if (key_hash

{

flag size = get_flag size();
flag = (_BYTE *)get_config_item(ConfigTypeFlag);
CrapSalsa2@(_key, flag, flag size);

w_text = (const WCHAR *)get config_item(ConfigTypeFlag);

w_caption = (const WCHAR *)get_config item(ConfigTypeTitle);

RtlInitUnicodeString(&us_caption, w_caption);

RtlInitUnicodeString(&us_text, w_text);

parameters[2] = MB_TCONEXCLAMATION;

parameters[@] (__inte4)&us_text;

parameters[1] (__inte4)&us_caption;

parameters[3] = INFINITE;

MNtRaiseHardError(STATUS_SERVICE_NOTIFICATION, 4if i64, (PULONG_PTR)parameters, @, (PULONG)&response);

Entrypoint function

Page 4 of 15

GoogleCloud FL A RE

The Salsa20 cipher was based on a sample of malware analyzed by the FLARE team that loosely implemented
the algorithm. The original modification found in malware shortened the key to four bytes, allowing for very
easy brute force, The challenge didn’t shorten the key. There is an anti-debug technique built into the Salsa20
that uses the PEB'’s debug flag as a constant for zero. Other numbers are created assuming the debug flag is
zero. If one runs the sample in debug with the correct key the decryption will still be wrong.

[(NtCurrentPeb()->BeingDe

+ NtCurrentPeb(
+ 1));

Anti-debug technique that uses the being debugged flag as ZERO

#define ZERO ((PNATIVE_PEE)__readgsqword(0x60))->BeingDebugged
#define ONE (ZERD + 1)

#define TWO (ONE << ONE)
#define THREE (TWO + ONE)
#define FOUR (ONE =< TWO)
#define FIVE {FOUR + ONE)
#define SIX {THREE = Two)
#define SEVEN (TWO =< TWo) - 1)
#define EIGHT ((ONE << THREE))
#define NINE (FOUR * TWO + ONE)
#define TWELVE (THREE * FOUR)
#define SIXTEEN (ONE =< FOUR)
#define FOUR_K {ONE << TWELVE)

key_expanded[0] = key_[0];

key_expanded[1] key_expanded[1] ~ ROTL(key_[©], FOUR);
key_expanded[2] key_expanded[2] ™ ROTL(key_[1], EIGHT);
key_expanded[3] key_expanded[3] ™ ROTL(key_[2], TWELVE);

Anti-debug technique source code

DOS Analysis

Most of the challenge lives in the DOS portion of this sample and can just be a matter of taking the time to
mark up the IDB enough until one can understand it. The challenge is broken up into a common theme of

Page 5 of 15

GoogleCloud F LA RE

game development: GUI Initialization, Splash Screen, Game Initialization, and finally a game loop. One will
note that there isn't a standard calling convention when functions are called. The DOS portion was written
100% in 16-bit assembly and to make it more “fun”, | didn't standardize the calling convention. | don’'t cover
DOS analysis using dynamic debugging, but it should be mentioned that DOSBox has a very capable
debugger. To take advantage of the debugger, instead of running dosbox . exe, run
dosbox_with_debugger .exe. This can be found by pulling a release from GitHub
(https://github.com/dosbox-staging/dosbox-staging).

GUI Initialization

Nothing special here, clear a screen, setup cursor, and move onto the splash screen. Marking up the functions
within the beginning starts to help fill out the IDB because screen and keyboard functions get a lot of use.
Also, it is very quick to notice that one needs to break out their 8086 assembly and DOS API reference. IDA
Pro is nice and marks up interrupts nicely..

eg code

=

; - VIDEO - TOGGLE INTENSITY/BLINKING BIT (Jr, PS, TANDY 18808, EGA, VGA)
; BL = BBh enable background intensity
; = 81h enable blink

; - VIDEO - SET CURSOR CHARACTERISTICS

; CH bits 8-4 = start line for cursor in character cell
; bits 5-6 = blink attribute

; CL bits 8-4 = end line for cursor in character cell

call

call

call

xor

call

mov

int ; DOS - 2+ - QUIT WITH EXIT CODE (EXIT)
_start endp ; AL = exit code

Entrypoint for DOS stub

Page 6 of 15

https://github.com/dosbox-staging/dosbox-staging

GoogleCloud FL ;\ RE

Splash Screen

The splash screen is a very important portion of the challenge because it is where random is seeded, and to
obtain the correct hash, the seed needs to be correct. The seed will be correct if you luckily have the splash
screen played at minute 10 and 12 seconds of the hour, because random is seeded with the AX register. AL is
seconds, AH is minutes. The other way to get the proper seed is to enter the “Konami Code”, “up, up, down,
down, left, right, left, right”. If this code is entered during the splash screen, the input buffer is hashed and the
result (OxOCOA) will be placed in the AX register to seed the call to random. The hash is a simple right shift 5

add hash.

m DO5Box 0.74-3, Cpu speed: 3000 cycles, Frameskip 0, Program: DSTUB — X

1o0
01de
oo 1dK
ooo 14Kl
oooo 1dKl
00000 13X
00000003]
000000004
[X0o 1oooookH|
koooooookN
koooooookN
kooooo 1oDN
[Xx0o000000
[<x 10000100
(KKKKKNKd 10000100
loo1dKWGd 10000140
oooxKWMG0 loooo 14K
oK R001111114K
CNMTTETTMJE0000000

Sl
Sl
dalllllalelaballellalalafalalale
Sl

Splash screen to enter “Konami Code”

The following function polls for a key press and returns the keypress in AX. The keypress has two portions as
seen below: AH is the scan code and AL is the character. The next image is the logic for checking the “Konami
Code”.

Page 7 of 15

GoogleCloud F LA RE

KEYBOARD - CHECK BUFFER, DO NOT CLEAR
IF clear if cha er in buffer
AL aracter
set if no character in buffer

; KEYBOARD - RE CHAR FROM BUFFER, WAIT IF EMPTY

; Return: AH 1 () character

temp_key,

, temp_key

Function to poll for key press

Page 8 of 15

GoogleCloud FL A RE

FE]

FE]

Loop to read key presses during the splash screen

The item to be careful with is overlooking that the register AH is the scan code and AL is the character code.
The logic first checks for a \r’ character and will exit the splash screen. The loop then checks for ‘a’ or ‘b’
characters, and lastly there are checks for the scan codes resulting in ‘up’, ‘down’, ‘left’, or ‘right’. This code
only looks for keypresses of the above, anything else is discarded. The key presses collected in this loop are
then compared against the string HHPPKMKMBA. This string uses a combination of scan codes and character
codes to store the “Konami Code”.

Game Initialization

The game initialization consists of setting the initial game play speed, decrypting strings using a simple
single-byte xor key, drawing the initial screen and lastly, popping up a dialog box with the instructions for the
game. The one important note in this area is game speed. The four levels that were defined in code were
0,1,2,3: CPU, HARD, MED, EASY. The game initializes to MED and after ten levels jumps to HARD. One way to

Page 9 of 15

GoogleCloud FL A RE

solve this challenge is getting the computer to play itself and setting the initial game speed to O will speed up
game play to extremely fast.

Game Play

Game play consists of a loop where the speed is set then the level speed and score is printed to the screen.
The next sequence is generated using random that is seeded by input from the splash screen. The level is
played by the computer and then it is the players turn to play back the level. If a mistake is made, a message
pops up and it is game over. Otherwise, the level is incremented and the loop continues up until the max level
of 128.

Page 10 of 15

GoogleCloud FL ;\ RE

Game play loop

If one makes it through the whole game, there is a nice message displayed to the user with a throwback to
Mario Bros video game on Nintendo. When the game is won, FlareSays.exe patches itself with the key that is
needed in the PE (more on this later).

E DOSBox 0.74-3, Cpu speed: 3000 cycles, Frameskip 0, Program: FLARESAY - x

Score: 9744
Level: 1Z8

THANE YOU MARIO*Y
BUT ODUR PRINCESS IS IN
ANOTHER CASTLE?

FlareSay.exe game completed

There are two major ways of attaining the key needed for the final challenge. Generate the hash or have the
game play itself. The game playing itself is the easier task, first, update the speed of gameplay as shown in
game initialization. In the function test_level, the global sequence is tested against, the sequence is iterated
by waiting for a key press and then testing the input. The push_button function is for display purposes only.
Instead of calling wait_for_key and push_button, just move DL to AL in place of the calls wait_for_key and
push_button.

There is an easter egg where a player can press ‘r’ at any point in the game and get into what | call “Ray Ray
Mode”. This is a mode where my three-year-old daughter can play the game without losing, she loves it. Press
‘r' to get out of Ray Ray Mode, it starts the level over. So, if one ever gets lost in a level, press ‘r’ twice to start
the level over. It will reset the score for the level, which is the hash input.

The hashing algorithm is a modified version of SDBM, where the algorithm is extended to 128 bits.

Page 11 of 15

Google Cloud

1 test_lewvel proc near
1 pusha
xor
xor x
mov ¢ current_lewvel
mo

loc_l@5Fe:

mon dl, g g

call wait

call button

cmp ; RayRay Mode

:
j=z short _ray_ray mode

dl
t loc_1862F

temp_score, dx

c_1@5F0

Key Patching

mony
mon
mon
mon
call
push
mow

mony
mow
rep mov
pop
popa
mon
retn

temp_score

score,

fimal hash

update

=t g fimal hash

Function test_level

If the game is won, the final hash is written to the PE. It needs to be in the correct location for the Windows
portion of the application to find it. This is the only portion that requires the sample to be run in DOS. IDA pro
does a good job of marking up the DOS calls. FlareSay.exe will scan itself in 16-byte chunks looking for a
16-byte buffer filled with the bytes OxCC. Following the tag there are five bytes that are important to the
Windows sample "CALL; POP EAX; RET", putting the key in EAX. After the five bytes is where the key goes,

which initially is filled with null bytes.

Page 12 of 15

GoogleCloud FL A RE

CC €C CC CC CC CC CC CC CC CC CC CC CC CC CC CC

E8 E5 FF FF FF DU 00 00 00 CII'J 00 CID DU 00 00 00
00 00 00 00 38 54 00 00

CA FF FF FF

11 _pop_ret

Key tag with CALL POP RETN

Page 13 of 15

Google Cloud

MoV
mov
call
mov
mow
mov
call
mow
mov

IPEN D FILE WITH HANDLE

CIZ filename

, Tile handle

- READ | FILE WITH HANDLE
= MU 5

lea

mov

mov

cld

repe cmpsh
jnz 5

, Tile_handle

S - 2+ - MOVE FILE READ;

: offset from

FIE

, Tile_handle
, hash

24 W FILE WITH HANDLE

BX = file hand CX = number of bytes to write X -» buffer

Page 14 of 15

GoogleCloud FL A RE

Winning

Once you have played FlareSay.exe in DOS mode, won the game, and the binary is patched,you can now
execute the patched executable in Windows. You will now be presented with a nice happy flag message box:

Winning .

l L Ha%htag_n0_rcd_ald_Th3n_sOme@flare-on.com

.................................

Challenge Flag

Page 15 of 15

