
Flare-On 10 Challenge 7: �ake
By Mike Hunho� (@mehunho�)

Flake is a Python PyQt application that is compiled to native Windows x64 using the open-source Python
compiler named Nuitka. The program implements a variant of the classic game, Snake, where players score
points by guiding a snake on its quest to consume FLARE logos. The snake moves faster as it eats making it
progressively harder, and impossible, to control.

Nuitka is an open source, optimizing Python compiler that “translates Python modules into a C level program
that then uses libpython and static C �les of its own to execute in the same way as CPython does”. The
project can execute compiled and uncompiled Python code together while supporting all Python library
modules and all extension modules freely. Two versions of Nuitka are available: standard and commercial.
Nuitka standard can bundle code, dependencies, and data into a single executable and supports acceleration
while Nuitka commercial additionally protects code, data, and outputs. More information can be found in
Nuitka’s online documentation here.

Nuitka translates even the simplest of Python code into very complex native code. This makes reverse
engineering di�cult but is a nice side e�ect for developers who don’t want users to have access to their
Python source code.

Let’s analyze Flake and see what we can learn about reverse engineering Nuitka-compiled �les along the way.

Basic Static Analysis: flake.exe
We are given three �les:

● flake.exe ~10 MB
● demo_conf.txt <1 KB
● mail.txt <1 KB

We view the contents of mail.txt:

Subject: need your help...

Oliver Shrub, Gardens Department Head, keeps bragging about his high score for this rip off Snake game called
Flake. I'm pretty sure he found a way to cheat the game because there is no way it's possible to score 10,000
points...I mean the game ships with a sketchy TXT file so there must be something fishy going on here.

Can you look at the game and let me know how I can beat Oliver's high score?

Best,

Nox
Shadows Department Head

Page 1 of 30

https://github.com/Nuitka/Nuitka
https://nuitka.net/

We need to �gure out how to beat Oliver Shrub’s high score that Nox claims is impossible to get without
cheating. Let’s view the contents of the �le demo_conf.txt:

WTOh3Rgz17NjWtTfd33llk9w5ZoCQeOQAmegzwI51ZpPfrjdDjOg3Rgkvd0QM6vPDjOi3Rgj7A==

This looks like Base64-encoded data – let’s try to decode it using CyberChef:

Figure 1: Decoding demo_conf.txt in CyberChef

The data doesn’t decode to anything that is human readable – maybe it’s not actually Base64-encoded or
there could be additional layers of encoding. We won’t be able to answer this until we have completed more
analysis.
Let’s take a closer look at the �ake.exe �le. We run strings.exe and notice surprisingly few strings for
such a large �le – this is a good indicator that the �le is compressed, packed, or otherwise obfuscated. We
notice the following group of interesting strings:

Error, couldn't runtime expand target path.
Error, couldn't decode attached data.
Error, could find attached data header.
Error, couldn't allocate memory.
Error, failed to open '%ls' for writing.
Error, couldn't runtime expand spec '%ls'.
NUITKA_ONEFILE_PARENT
%TEMP%\onefile_%PID%_%TIME%
Error, failed to register signal handler.
Error, couldn't launch child

Speci�cally, there appears to be a �le or directory path, %TEMP%\onefile_%PID%_%TIME%, and multiple
error messages describing decompression and execution of a child process.
Opening the �le flake.exe in CFF Explorer and Detect It Easy shows us that the �le has a large resource
section containing high entropy data. This is likely the compressed data mentioned in the �le’s strings:

Page 2 of 30

Figure 2: Viewing �ake.exe in CFF Explorer

Figure 3: Viewing �ake.exe in Detect It Easy

Based on these observations, we infer that the �le flake.exe contains compressed data and, when
executed, decompresses this data to the �le or directory path %TEMP%\onefile_%PID%_%TIME% and
executes it. Let’s see if basic dynamic analysis can con�rm.

Page 3 of 30

Basic Dynamic Analysis: flake.exe
We open Process Monitor, set �lters for CreateFile, WriteFile, and Process Create events generated by
any process named flake.exe, and then execute the �le flake.exe from the console:

Figure 4: Se�ing Process Monitor �lters

A new window opens that displays the game:

Page 4 of 30

Figure 5: Viewing Flake

A�er some trial and error, we determine that the snake can be controlled using our keyboard arrows. As the
snake consumes FLARE logos, we get points, and the snake moves faster until it’s impossible to control:

Page 5 of 30

Figure 6: Viewing Flake "GAME OVER"

It looks like Nox is right that it is impossible to score 10,000 points without cheating. So how can we beat
Oliver’s high score? We see the following message printed to console when the �le flake.exe is executed:
[!] could not find configuration file in directory . - using prod configuration

The program searches its current directory for a con�guration �le but does not see the �le demo_conf.txt.
Let’s check Process Monitor.
Looking through the captured events, we see the program:

● Create the directory
C:\Users\user\AppData\Local\Temp\onefile_1792_133397202283992214

● Write many �les and subdirectories to the newly created directory

Page 6 of 30

● Execute the �le
C:\Users\user\AppData\Local\Temp\onefile_1792_133397202283992214\flake.exe
with process ID (PID) 1800

Figure 7: Viewing "Process Create" event in Process Monitor

Figure 8: Viewing "CreateFile" event in Process Monitor

Let’s refer to the �le
C:\Users\user\AppData\Local\Temp\onefile_1792_133397202283992214\flake.exe as
onefile_flake.exemoving forward to help distinguish it from the original �le flake.exe.

Process Monitor has con�rmed what we learned from our basic static analysis. Next, we should analyze the
�le onefile_flake.exe as it appears to be the second stage of execution. But before we do that, let’s see
if we can learn anything about the missing “con�guration �le” mentioned earlier in the console output.

Identifying the Con�guration File
Based on the message output to the console, the �le flake.exe expects its con�guration �le to be stored in
its working directory. We �lter Process Monitor for CreateFile events generated by the process
flake.exe in its working directory and see that the expected �lename is d3m0_c0nf.txt:

Figure 9: Viewing "CreateFile" events in Process Monitor

This �lename is suspiciously like the existing �lename demo_conf.txt. We also see that the process
identi�er that is linked to the CreateFile event is that of the �le onefile_flake.exe, not the �le
flake.exe.

Page 7 of 30

We change the �lename from demo_conf.txt to d3m0_c0nf.txt, execute the �le flake.exe, and the
following message appears in the console:

[!] configuration file found and decoded with key - using demo configuration

We also notice that our score increases by two points instead of one indicating that the con�guration �le
alters game mechanics. Maybe this is the key to beating Oliver’s high score? We still don’t know the format of
the data stored in the �le d3m0_c0nf.txt but we do know that the �le onefile_flake.exe is responsible
for reading and decoding it. Let’s analyze the �le onefile_flake.exe.

Basic Static Analysis: onefile_flake.exe
We run strings.exe on the �le onefile_flake.exe and see many strings. We search for the string
d3m0_c0nf.txt and �nd an interesting grouping of strings:

u[!] bad configuration file - using prod configuration
u[!] configuration file found and decoded with key - using demo configuration
nnnu[!] could not find configuration file in directory
u - using prod configuration
uXOR-encode d3m0_c0nf.txt with 0x22,0x11,0x91,0xff (I think Nuikta strips Python docstrings during compilation
so no worries about this comment making its way into the wrong hands)

The last string is very interesting:

uXOR-encode d3m0_c0nf.txt with 0x22,0x11,0x91,0xff (I think Nuikta strips Python docstrings during compilation
so no worries about this comment making its way into the wrong hands)

This string reveals two pieces of important information:

● onefile_flake.exe contains Python code that has been compiled using Nuitka
● d3m0_c0nf.txt is encoded using the multi-byte XOR key \x22\x11\x91\x�

Nuitka is an open source, optimizing Python compiler that “translates Python modules into a C level program
that then uses libpython and static C �les of its own to execute in the same way as CPython does”. Reading
Nuitka’s user manual we learn that Nuitka-compiled Python projects can be distributed using standalone or
one�le modes. Nutika one�le mode creates a single binary that extracts itself and all dependencies on the
target, before running the target program. The �le flake.exe is compiled using Nuitka one�le mode based
on the strings, e.g. “NUITKA_ONEFILE_PARENT”, and the behavior that we captured in Process Monitor.

We con�rm that we can execute the �le onefile_flake.exe directly from its directory
C:\Users\user\AppData\Local\Temp\onefile_1792_133397202283992214. We copy the �le
d3m0_c0nf.txt to this directory so that the �le onefile_flake.exe can �nd it. Let’s �gure out how we
can decode the �le d3m0_c0nf.txt.

Decoding d3m0_c0nf.txt
The �le d3m0_c0nf.txt contains the following:

Page 8 of 30

https://github.com/Nuitka/Nuitka
https://nuitka.net/doc/user-manual.html#use-case-4-program-distribution

WTOh3Rgz17NjWtTfd33llk9w5ZoCQeOQAmegzwI51ZpPfrjdDjOg3Rgkvd0QM6vPDjOi3Rgj7A==

Earlier, we tried Base64 decoding the data using CyberChef, but the result was not human readable. We
learned from the leaked Python docstring that there is an additional XOR encoding layer that uses the
multi-byte XOR key \x22\x11\x91\x�.
Let’s recreate this in CyberChef:

Figure 10: Decoding d3mo_c0nf.txt using CyberChef

Success! The �le d3m0_c0nf.txt decodes to the JSON string:

{"0":"FLAKE Ultimate Pro v10 (Demo)","1":5,"2":0,"3":2}

Unfortunately, the JSON does not have human-readable key names, but we can guess some of their
purposes. “0” is likely the game title and “3” is likely the point increase delta, based on our earlier observation
that our score increased by two.

We use CyberChef to change the point increase delta, “3”, from two to 10,000:

Page 9 of 30

Figure 11: Modifying and encoding con�guration using CyberChef

Encoding the modi�ed JSON results in the following Base64-encoded string:

WTOh3Rgz17NjWtTfd33llk9w5ZoCQeOQAmegzwI51ZpPfrjdDjOg3Rgkvd0QM6vPDjOi3Rggoc8SIew=

We store this string in the �le d3m0_c0nf.txt and execute the �le onefile_flake.exe. Immediately we
see that our score increases by 10,000 points instead of two, overtaking Oliver’s high score!

Page 10 of 30

Figure 12: Viewing Flake large point increase

However, we still see “GAME OVER” and the following message is printed to the console:

[!] Snake.length property, not including start length, is 19 but it must equal the final score which is 190000!

This appears to be the result of an anti-cheat mechanism that is triggered if the game ends with a �nal score
that does not match the snake’s length property. Experimenting with the other con�guration values does not
identify a key that a�ects the snake’s length.

Page 11 of 30

Investigating the Anti-Cheat Mechanism
We search the strings output of the �le onefile_flake.exe for strings containing “snake” and see the
following groups of interesting strings:

uSnake.__init__
uSnake.update
uSnake.shift
uSnake.dump_index
aproperty
uSnake.length
uSnake.head
[...]
aget_flag
acheck_snake_length
ashame
uflag.py
u<module flag>
asnake
aexpected_length

The �rst group of strings appear related to a Python object named Snake. This is based on the �rst string,
“Snake.__init__”, where the Python keyword __init__ identi�es an object’s constructor method. The
other strings indicate additional methods or properties that the Snake object may implement, including a
length property as mentioned in the console message.

The second group of strings appear related to checking the snake length, speci�cally the string
“check_snake_length”. Let’s see if we can pivot into Ghidra using the string “check_snake_length”. We
open Ghidra, load and analyze onefile_flake.exe, and use Ghidra’s “De�ne Strings” window to check for
references to the string “check_snake_length”. We didn't �nd any.

Let’s see where the string is stored. We open Search > For Strings…, run a new search, and �lter for the string
“check_snake_length”. This identi�es that the string is stored in onefile_flake.exe’s resource section:

Figure 13: Searching for "check_snake_length" in Ghidra

Page 12 of 30

We identify that all the strings shown earlier are stored in onefile_flake.exe’s resource section. Using
Ghidra’s “Symbol Tree” window, we search for imports related to resource manipulation:

Figure 14: Searching for imports in Ghidra

We pivot on the import FindResourceA and identify the function FUN_1404BC0E0 that is responsible for
reading and unpacking onefile_flake.exe’s resource section:

Page 13 of 30

Figure 15: Viewing FUN_1404BC0E0 in Ghidra

The data stored in onefile_flake.exe’s resource section appears to store constants used during
execution, based on the string “Error, corrupted constants object” identi�ed in the function
FUN_1404BC0E0. Let’s �gure out how these constants are unpacked and used by the program so that we
can identify how the string “check_snake_length” is referenced.

Advanced Static Analysis: onefile_flake.exe
We rename the function FUN_1404BC0E0 to zUnpackConstants. Taking a closer look at the function
zUnpackConstantswe identify that the �rst eight bytes store a 4-byte CRC32 hash followed by a 4-byte
size of the constants object:

Page 14 of 30

Figure 16: Viewing constants object hash veri�cation in Ghidra

We determine that the hashing used is CRC32 based on the constant 0xEDB88320 that we identify in the
function FUN_1404B9D60:

Page 15 of 30

Figure 17: Viewing FUN_1404B9D60 in Ghidra

Further analysis of zUnpackConstants reveals that following the 8-byte header is one or more constants
blobs. Each blob starts with a variable length ASCII string followed by a 4-byte size of the blob followed by a
2-byte unknown value followed by the blob data. The function zUnpackConstants accepts an ASCII string
as its third argument that it compares to each constants blob name until a match is found. If a match is found,
the function passes a pointer to the matched constants blob and the unknown 2-byte value to the function
FUN_1404B8FB0 at the address 0x1404BC2F1:

Page 16 of 30

Figure 18: zUnpackConstants passing constants blob pointer and unknown 2-byte value to FUN_1404B8FB0

We analyze the function FUN_1404B8FB0 and determine that it is responsible for unpacking each constant
into a speci�ed Python type. The unknown 2-byte value stores the number of constants to unpack. We
rename the function FUN_1404B8FB0 to zUnpackConstantsBlob. Each constant stored in a blob starts
with a single byte that identi�es the constant’s Python type shown at the address 0x1404B8FFC:

Figure 19: Viewing constant type identi�er usage at 0x1404B8FFC in Ghidra

For example, each of the following strings starts with an “a” or “u”:

aget_flag
acheck_snake_length
ashame
uflag.py
u<module flag>
asnake
aexpected_length

Page 17 of 30

We identify the code in zUnpackConstantsBlob that handles unpacking the “a” and “u” Python types and
�nd that the corresponding constants are unpacked into Python Unicode objects via the function
PyUnicode_DecodeUTF8 shown at the address 0x1404B96D9:

Figure 20: Viewing "a" and "u" unpacking at 0x1404B96D9 in Ghidra

The function zUnpackConstantsBlob stores each newly created Python object into an array that is passed
as the function’s second argument:

Figure 21: Viewing zUnpackConstantsBlob parameters in Ghidra

This array is passed to the function zUnpackConstantsBlob from the function zUnpackConstants. The
function zUnpackConstants has many cross references. We follow the cross reference from the address
0x140004DE5 and see that the array used to store Python objects belonging to the constants blob named
“Crypto.Cipher.ARC4” is located in onefile_flake.exe’s data section at the address 0x14050A550:

Figure 22: Viewing call to zUnpackConstants at 0x140004DE5 in Ghidra

We see that the Python objects stored in this array are referenced by other code in the program. Therefore,
by parsing the constants blobs we can determine where the resulting Python objects are stored and

Page 18 of 30

https://docs.python.org/3/c-api/unicode.html#c.PyUnicode_DecodeUTF8

referenced. This is exactly what we need to help us identify where the string “check_snake_length” is
used by the program.

Parsing the Constants Blobs
Using what we learned from our analysis of the functions zUnpackConstants and
zUnpackConstantsBlob, let’s write a Python script to unpack the constants blobs. First, we write
onefile_flake.exe’s resource section to a �le using CFF Explorer’s “Resource Editor”:

Figure 23: Writing one�le_�ake.exe resource section to �le using CFF Explorer

The �rst iteration of our Python script prints the name, size, and number of constants for each constants blob
to help us be�er understand what is being stored:

import io
import sys
import struct

def read_uint32(bio):
return struct.unpack("<I", bio.read(4))[0]

def read_uint16(bio):
return struct.unpack("<H", bio.read(2))[0]

def read_utf8(bio):
bs = b""
while True:

bs += bio.read(1)
if b"\x00" in bs:

break
return bs[:-1].decode("utf-8")

def main():
with open(sys.argv[1], "rb") as f_in:

bs = f_in.read()

bio = io.BytesIO(bs)
Page 19 of 30

hash_ = read_uint32(bio)
size = read_uint32(bio)

print(f"hash: {hex(hash_)}")
print(f"size: {hex(size)}")

while bio.tell() < size:
blob_name = read_utf8(bio)
blob_size = read_uint32(bio)
blob_count = read_uint16(bio)

print(f"name: {blob_name}, size: {hex(blob_size)}, count: {hex(blob_count)}")

bio.seek(bio.tell() + (blob_size - 2))

if __name__ == "__main__":
main()

Which produces the following output:

hash: 0x5b855ecc
size: 0x3fd88a
name: .bytecode, size: 0x377242, count: 0x12a
name: , size: 0x2e5, count: 0x57
name: Crypto.Cipher.ARC4, size: 0xaa7, count: 0x3c
name: Crypto.Cipher._EKSBlowfish, size: 0xb4f, count: 0x35
name: Crypto.Cipher._mode_cbc, size: 0x17f9, count: 0x5b
name: Crypto.Cipher._mode_ccm, size: 0x32de, count: 0xb9
name: Crypto.Cipher._mode_cfb, size: 0x19a3, count: 0x5d
name: Crypto.Cipher._mode_ctr, size: 0x2420, count: 0x78
[...]
name: PIL._version, size: 0x81, count: 0xb
name: PIL, size: 0x75f, count: 0x24
name: PIL.features, size: 0x1531, count: 0x86
name: __main__, size: 0xecb, count: 0x101
name: flag, size: 0x1b8, count: 0x24
name: tkinter-preLoad, size: 0xbc, count: 0x11

Each blob name appears to correspond to a Python module e.g. the constants blob named
“Crypto.Cipher.ARC4” likely stores constants related to PyCryptodome’s ARC4 module. Additionally, the
following module names stand out:

● __main__
● flag

Python’s __main__ is the �rst user-speci�ed Python module that is executed. We don’t know what the �ag
module does, but earlier we identi�ed strings related to “ge�ing” a �ag that were stored near the strings
related to checking the snake length. Let’s extend our Python script to write the __main__ and �ag constants
blobs to �les named __main__.bin and flag.bin, respectively:

[...]
while bio.tell() < size:

blob_name = read_utf8(bio)
blob_size = read_uint32(bio)
blob_count = read_uint16(bio)

Page 20 of 30

https://www.pycryptodome.org/src/cipher/arc4
https://docs.python.org/3/library/__main__.html#what-is-the-top-level-code-environment

print(f"name: {blob_name}, size: {hex(blob_size)}, count: {hex(blob_count)}")

if blob_name == "__main__" or blob_name == "flag":
with open(f"{blob_name}.bin", "wb") as f_out:

f_out.write(bio.read(blob_size - 2))
else:

bio.seek(bio.tell() + (blob_size - 2))
[...]

We run strings.exe on the �le __main__.bin and see many strings related to core game logic, including the
con�guration �le related strings that we analyzed earlier:

u[!] bad configuration file - using prod configuration
u[!] configuration file found and decoded with key - using demo configuration
nnnu[!] could not find configuration file in directory
u - using prod configuration
uXOR-encode d3m0_c0nf.txt with 0x22,0x11,0x91,0xff (I think Nuikta strips Python docstrings during compilation
so no worries about this comment making its way into the wrong hands)

We run strings.exe on the �le flag.bin and see, among others, strings related to checking the snake’s
length, including our target string “check_snake_length”:

aARC4
anew
adecrypt
adecode
uutf-8
alength
aprint
uCrypto.Cipher
aARC4
aget_flag
acheck_snake_length
ashame
uflag.py
u<module flag>
asnake
aexpected_length
aactual
aexpected

Let’s expand our Python script to unpack the �ag module’s constants:

import io
import sys
import struct

def read_uint8(bio):
return struct.unpack("<B", bio.read(1))[0]

def read_uint16(bio):
return struct.unpack("<H", bio.read(2))[0]

def read_uint32(bio):
return struct.unpack("<I", bio.read(4))[0]

def read_utf8_size_1(bio):

Page 21 of 30

return bio.read(1).decode("utf-8")

def read_utf8(bio):
bs = b""
while True:

bs += bio.read(1)
if b"\x00" in bs:

break
return bs[:-1].decode("utf-8")

def read_bytearray(bio):
bs = b""
while True:

bs += bio.read(1)
if b"\x00" in bs:

break
return bs[:-1]

def decode_blob(bio, count):

container = []

for i in range(count):
type_ = chr(read_uint8(bio))

if type_ in ('a', 'u'):
o = read_utf8(bio)

elif type_ == 'l':
o = read_uint32(bio)

elif type_ == 'w':
o = read_utf8_size_1(bio)

elif type_ == 'T':
sub_count = read_uint32(bio)
o = tuple(decode_blob(bio, sub_count))

elif type_ == 'c':
o = read_bytearray(bio)

elif type_ == 'b':
size = read_uint32(bio)
o = bio.read(size)

else:
raise ValueError(f"unhandled type {type_}")

container.append(o)

return container

def main():
with open(sys.argv[1], "rb") as f_in:

bs = f_in.read()

bio = io.BytesIO(bs)

hash_ = read_uint32(bio)
size = read_uint32(bio)

#print(f"hash: {hex(hash_)}")
#print(f"size: {hex(size)}")

while bio.tell() < size:
blob_name = read_utf8(bio)
blob_size = read_uint32(bio)
blob_count = read_uint16(bio)

#print(f"name: {blob_name}, size: {hex(blob_size)}, count: {hex(blob_count)}")
Page 22 of 30

if blob_name == "flag":
decoded = decode_blob(bio, blob_count)
for idx, o in enumerate(decoded):

print(f"{idx}: {o}")
else:

bio.seek(bio.tell() + (blob_size - 2))

if __name__ == "__main__":
main()

The big addition here is the Python function decode_blob. Starting with the types “a” and “u” we implement
unpacking code for each constant type used by the �ag module. This includes:

● “a” and “u”: unpack Python Unicode object (see address 0x1404B96D9)
● “l”: unpack Python Integer object (see address 0x1404B93A6)
● “w”: unpack Python Unicode object (see address 0x1404B965F)
● “T”: unpack Python Tuple object containing one or more Python objects (see address 0x1404B9054)
● “c”: unpack Python Bytes object (see address 0x1404B9605)
● “b”: unpack Python Bytes object (see address 0x1404B968C)

Which results in the following output:

0: 0
1: dk
2: append
3: i
4: 1
5: ARC4
6: new
7: decrypt
8: (b"\xbbh\xd5P\x88\xc3$\x1bM\xdc\xc2\x9d\x89\xaafGx\xa6\xdb\x82\x02\xc6V\xce\xbb\x95@\x7f'*`\xee\xc0i",)
9: decode
10: ('utf-8',)
11: length
12:
b'Z#^$Rlbod,oaoewl!rqkqgqpx.#jnv#moaoqekmc!qwesv#hdldpi.#mr"&`!`vp!kw$lwpp!grq`n#pig#bhlbh!q`ksg#sik`l!kp$$f"'
13: dm
14: b'\x01\x02\x03\x04'
15: 4
16: print
17: __doc__
18: __file__
19: __spec__
20: origin
21: has_location
22: __cached__
23: Crypto.Cipher
24: ('ARC4',)
25:
(b'T\x00\xc6\x88g\xf9_nx}\x91]X\xb2^g[\xf40\x860\xe4D\x19\xea\x94\x136\x97m\xc9\xd8\xb9r?(\xe8\xea\r3\x92\x8e\xa
9\x03\xef\xa8\x8e\x9d\xb7\x83',)
26: get_flag
27: check_snake_length
28: shame
29: flag.py
30: <module flag>
31: ('snake', 'expected_length')
32: ('xk', 'k', 'c', 'dk', 'i', 'b', 'p')

Page 23 of 30

33: ('actual', 'expected', 'xk', 'em', 'dm', 'i', 'b')
34:

We now know the index and value of each constant used by the �ag module, including our target string
“check_snake_length”. We also know that the function zUnpackConstants accepts parameters
including the name of the target constants blob and the address where the resulting Python objects are
stored. Let’s see if we can identify where the �ag module’s Python objects are stored and referenced.

Analyzing the flag Module’s Python Objects
We search for the string “flag” in Ghidra:

Figure 24: Searching for "�ag" in Ghidra

By analyzing the cross references to the string “flag” we identify a call to the function zUnpackConstants
at the address 0x14048840E that is responsible for unpacking the �ag module’s constants:

Figure 25: Viewing call to zUnpackConstants at 0x14048840E in Ghidra

We now know the address 0x14052F740 where the �ag module’s Python objects are stored. Using the results
of our Python script we can set the data type at this address to an array of 35 pointers to help us identify how
each Python object is referenced:

Page 24 of 30

Figure 26: Changing data type at 0x14052F740 to void*[35] in Ghidra

Page 25 of 30

We see that our target string “check_snake_length” (index 27) and the Tuple ('snake',
'expected_length') (index 31) are passed as arguments to the function FUN_1404BCD10 at the address
0x14048849F.
Further inspection of the function FUN_1404BCD10 reveals that it creates a new Python Code object via the
CPython function PyCode_NewWithPosOnlyArgswhere the function name is check_snake_length and
the parameter names are snake and expected_length. We rename FUN_1404BCD10 to
zCreateCodeObject.
We see that the check_snake_length Code object is stored at the address 0x14052F870. We rename the
address 0x14052F870 to g_check_snake_length_co:

Figure 27: Viewing "check_snake_length" Code object creation in Ghidra

By analyzing g_check_snake_length_co’s cross references we identify that it is passed as an argument to
the function FUN_1404A2520 at the address 0x14048764C. Further inspection of the surrounding function,
FUN_1404875F0, shows that the string “length” (index 11) is passed as an argument to the function
FUN_1404A1DB0 at the address 0x140487688.
We analyze the function FUN_1404A1DB0 and see the string "'%s' object has no attribute ‘%s’".
This indicates that the function FUN_1404A1DB0may be used to retrieve a Python object’s a�ribute by name
and we rename the function to zGetPythonObjectAttribute. We direct our analysis back to the function
FUN_1404875F0.
We see that the Python object returned by the function zGetPythonObjectAttribute is passed to the
function FUN_1404A7B10 at the address 0x14048769B. The value that is returned by the function
FUN_1404A7B10 determines whether a True or False Python object is returned by the function
FUN_1404875F0:

Page 26 of 30

https://docs.python.org/3/c-api/code.html#c.PyCode_NewWithPosOnlyArgs

Figure 28: Viewing FUN_1404875F0's return value in Ghidra

We now know that the function FUN_1404875F0 returns a True or False Python object, references the
check_snake_length Code object, and calls the function zGetPythonObjectAttribute to retrieve a
Python object a�ribute named length. This appears to be the code that is responsible for verifying that the
snake’s length property equals our �nal score.
Let’s see if we can identify the second argument that is passed to the function FUN_1404A7B10 at the
address 0x14048769B.
Starting at the address 0x140487607 we see that both the local variables plVar5 and plVar4 are initialized
from an array of pointers passed as the third argument to the function FUN_1404875F0:

Figure 29: Viewing plVar4 and plVar5 initialization in Ghidra

We know from our earlier analysis that the check_snake_length Code object is created with two
parameters named snake and expected_length. We rename the local variables plVar4 and plVar5 to
x_snake_object and x_expected_length_object, respectively, to con�rm our suspicion that the
function FUN_1404875F0 is responsible for checking the snake’s length:

Page 27 of 30

Figure 30: Renaming plVar4 and plVar5 in Ghidra

Let’s use x64dbg to determine if changing whether the function FUN_1404875F0 returns a True or False
Python object allows us to bypass the snake length veri�cation.

Advanced Dynamic Analysis: onefile_flake.exe
We load the �le onefile_flake.exe into x64dbg and set a breakpoint at the address 0x14048769B
(0x13FD9769B a�er rebasing). We continue execution, play the game until the score displays 20,000,
immediately lose, and see that our breakpoint is hit!

Figure 31: Viewing program state at breakpoint in x64dbg
Optionally, we can con�rm that the second argument to the function zComparePythonObjects is the
Python object that stores our �nal score. We trick the program into converting the Python object into a C

Page 28 of 30

long by forcing it to call the CPython function PyLong_AsLong and passing our target object as the �rst
argument. We resolve the address of PyLong_AsLong using the x64dbg symbols window:

Figure 32: Resolving PyLong_AsLong address using x64dbg

We set the register RIP to the address of PyLong_AsLong, move the value stored in the register RDX to the
register RCX, and select Debug > Execute till return. We see that register RAX contains the value 0x4E20, or
20,000, our �nal score just as we expected.
We restart the program, repeat our previous steps to hit the breakpoint at the address 0x14048769B
(0x13FD9769B a�er rebasing), and step over the function call. We see that the register RAX contains the value
zero:

Figure 33: Viewing return value in x64dbg

We change the value stored in the register RAX to one which forces the function FUN_13FD975F0 to return a
True Python object and see that the game accepts our score!

Page 29 of 30

https://docs.python.org/3/c-api/long.html#c.PyLong_AsLong

Figure 34: Viewing Flake "NEW TOP PLAYER"

We have beat Oliver Shrub’s high score and retrieved the �ag:

n0Pe_N0t_T0dAy_Nu1TkA@flare-on.com

Page 30 of 30

