GoogleCloud FL A RE

Flare-On 10 Challenge 9: mbransom
By Jacob Thompson

Challenge Prompt

One of our legacy PCs supporting an old but expensive scientific machine seems to have been knocked off
the network and won’t do anything but play music and display a strange textual message on boot. We've
imaged the disk; can you take a look and figure it out?

Solution

Overview

The ransomware has encrypted the entire C: partition using Blowfish-256-ECB, placed a decryption program
in the remainder of Track O, and rewritten the Master Boot Record. The new MBR checks the partition table
for an active partition. If the first one found is unencrypted, the system boots normally. If it is encrypted
(denoted by a 0x01 bit in the active field) the MBR instead loads the decryption program from Track O into
memory, deobfuscates the decryption program by decrypting it with RC4 using the key
Obfuscation12345, and passes control to the decryption program.

The decryption program displays a ransom note as shown in Figure 1. The decryption program gives a hint
that the correct key consists of 16 hexadecimal digits and displays a 12-character victim ID. Upon typing 16
hex digits and pressing Enter, the program displays an Invalid Key error message. In fact, the victim ID just
serves to restrict the brute force search space: the first 12 hex digits of the decryption key must correspond
to the victim ID XOR Ox5 (i.e., 61D2E6E14A75); the last four digits can be totally random. A brute force attack
against the remaining 16 bits using the key validation check incorporated into the decryption program is
computationally trivial and produces the full key 61D2E6E14A754ADC. If the user enters this key, the program
decrypts the disk as shown in Figure 2 and then prompts to reboot. The decrypted partition boots FreeDOS
and thereisa C: \FLAG. TXT containing the flag.

Page 10f 18

GoogleCloud FL ;\ RE

(U]

Machine View

HEE

MBRANSOM

Your hard driwve contents hawe been
encrypted. Don"t take it personally.
It"=s _jJust business and money to us.

Send 1 BTC to 21894md 70 jIlguldhwhatecver
or run out and buy SZE,.EEE in gift
Ccards . Either waygy., confirm it by
going to CREDACTED 1 ~onion and
giving us money and this victim ID.

We' 11 giwve you back a decryption key
consisting of 16 hex characters.

Uictim ID: 3I2487B3IB11FZ0
Decryption Hey

Figure 1. A ransom note displays when the system boots.

(C]

Machine View

HEE

HMEBRANSOM

Tour hard driwe contents hawe been
encrypted. Don"t take it personally.
It"= jJust business and money to us.

Send 1 BTC to 218549md7C0 jlguldhwhatecvenr
or run out and buy SZE,.EEE in gift
Ccard=s . Either way., confirm it by
going to CTREDACTED 1 ~onion and
giving us money and thi=s victim ID.

We” 11 giwve you back a decryption key
consisting of 16 hex characters.

Uictim ID: I3487B3IB21FZ0
Decryption Hey HADEZEOELYAa7SaAalDcC

Decrypt ing
-

o ERETFEY

Figure 2. If the key entered passes the validation check, the decryption program decrypts the disk.

@

Machine View

HEE

(C) Copyright 1995-2012 Pasquale J. Villani and The FreeDDS Project.
111 Rights Reserved. This is free software and comes with ABSOLUTELY NO
ARRANTY: you can redistribute it andsor modify it under the terms of the
GNU General Public License as published by the Free Software Foundation:
either version 2, or (at your option) any later wversiom.

: HD1, Pril 11, CHS= 0-1-1, start= O MB, size= 503 MB

[FreeCom version 9.85%a - WATCOMC - XM3_Swap [Jul 10 2021 19:28:061
Nodir

Uolume in drive C is FLAREON

Uolume Serial Number is 1170-1A1F

Directory of C:\

SYS 46,485 05-14-21 3:
COM 85,480 07-10-21 11:
BAT 0 05-26-23 6:
TXT 64 ©5-26-23 6:
1 filets) 132,029 butes
0 dir(s) 528,023,552 bytes
i\>type flag.txt

-lﬂuf1$h73ncrgpt10n70f7p@rt1t1@n71n7r35limﬂdSBflare—nn.cnm

Figure 3. The decrypted partition boots into FreeDOS and contains flag.txt.

Page 2 of 18

GoogleCloud FL ;\ RE

Analyzing the Master Boot Record

A BIOS-based machine boots by loading the master boot record (MBR) from the first sector of a disk into
memory and then passing control to the MBR. The MBR has the structure shown in Table 1and a partition
table entry has the structure shown in Table 2; for more information, see
https://en.wikipedia.org/wiki/Master_boot_record.

Offset Length Description

0 0x1b8 Machine code

0x1b8 0x6 NT disk signature

Ox1be 0x10 Primary partition entry 1
Ox1ce 0x10 Primary partition entry 2
Ox1de 0x10 Primary partition entry 3
Oxlee 0x10 Primary partition entry 4
Ox1fe 0x2 Magic number Oxaa55

Table 1. Structure of the master boot record.

Offset Length Description

0 0x1 Active if 0x80

0x1 0x3 Starting address in CHS notation
0x4 Ox1 Type

0x5 0x3 Ending address in CHS notation
0x8 0x4 Starting address in LBA notation
Oxc 0x4 Length in sectors

Table 2. Structure of a primary partition entry.

To analyze the MBR, it is easiest to first extract it from the raw disk image:

S dd if=hda.img bs=512 count=1 of=mbr.bin
By convention, the MBR executes in real mode and at the address 0000:7c00, so the correct IDA load
settings are shown in Figure 4. The file must also be disassembled as 16-bit code.

Page 3 of 18

https://en.wikipedia.org/wiki/Master_boot_record

% . Load a new file

Google Cloud

Load file \lwmware-host\Shared Folders\Do_Mot_Scan'mbr 1.bin as

Binary file

Processor type (double-dick to set)

Intel Pentium Pro (P&) with MMX
Intel Pentium protected with MMX

Intel Pentium real with MM

MetaPC (disassemble all opcodes)

S0636p I
B30536p
| 80586
metapc
W

A Intel 860 processors
Angalysis

Loading segment 0x00000000
Enabled
Loading offset 0x00000000 Indicator enabled

Options

Loading options Create segments

Fill segment gaps Create FLAT group
Load as code segment Create imports segment

Cance

Kernel options 1| |Kernel options 2| |Kernel options 3

Processor options

Load resources

Rename DLL entries
Manual load

Help

Figure 4. Correct IDA load settings for the Master Boot Record.

FLARE

Figure 5 shows that first, the machine code jumps to 0000:7CO05, to ensure that the CS register is zeroed as
there are many other real-mode aliases of the linear address Ox7C05. Next, the machine code copies itself
from 0000:7C00 to 0000:0600, then jumps to the next instruction in the relocated copy at 0000:061D. This

is necessary because the Volume Boot Record (VBR) from the active partition will also be loaded at

0000:7C00, which would overwrite the MBR. Since the machine code will actually execute from 0000:0600,
it is easiest to close the IDB at this point and reopen it, instructing IDA to use the load address 0000:0600.

Page 4 of 18

Google Cloud

; Attributes:
sub_7Cee

sub_7Cee

; Attributes:

sub_7CB8s5

sub_7C8s5

jmp near ptr BN

=== 5 UB R O
noreturn
proc near
jmp far
endp
=== 5 UB R O
noreturn
proc near
sti
cld
wor ax,
Mo ds,
Mo es,
Mo b,
Mo =i,
Mo di,
Mo X,
rep movsw
endp
db ®BEh

UT INE ===

ptr sub_7CBS

b
Geeh
18ah

Figure 5. The machine code copies itself to 0000:0600 and jumps there.

FLARE

The code from Ox61D-0x645 (Figure 6) parses all four primary partition entries. If an active partition (status
0x80) is found, it is checked to see if it is encrypted (status Ox81) and if it is unencrypted, the machine code
calls to BIOS to read the Volume Boot Record (first sector of the partition) and jumps to the VBR. if the first
primary partition found is encrypted, the code passes control to address Ox655.

Page 5 of 18

GoogleCloud FL ;\ RE

j =============== 5 U B ROUTINE =======================================
sub_61D proc near
Mo =i, ; Tirst primary partition entry
loc_G2@: ; CODE XREF: sub_61D4+Fj
test byte ptr [si], 80h ; is the active bit set?
jnz short loc_633 ; jump if it's active
add si, 1éh ;3 move on to the next ane
cmp =i, ; already past the fourth?
jbe short loc_628 ; no, parse this cne
moy si, offset aMoActivePartit ; "No active partition”
jmp short loc_84A ; couldn't find any active partition
loc_633: ; CODE XREF: sub_6lD+61j
test byte ptr [si], 1 ; is it an encrypted partition?
jnz short loc_6855 ; jump if it's encrypted
mow ax, 281h ; it's unencrypted; read the VER
Mo dh, [si+1]
Mo cx, [si+2]
int 13h 3 DISK - READ SECTORS INTO MEMORY
3 AL = number of sectors to read, CH = track, CL = sector
3 DH = head, DL = drive, ES:BX -» buffer to fill
3 Return: CF set on error, AH = status, AL = number of sectors read
jb short loc_s47
jmp b ;5 jump to the VBR from the active partition
loc_G47: ; CODE XREF: sub_61D+26T7
mow zi, offset aDiskError ; "Diszk error”
loc_64A: ; CODE XREF: sub_s1D+1471j
5 sub_61D+5245 ...
mow ah, @th
loc_64C: ;] CODE XREF: sub_61D+3647
lodsh
test al, al

Figure 6. The machine code first locates the first active partition and checks whether it is encrypted.

Figure 7 shows that from Ox655-0x690, the machine code queries the BIOS for the number of sectors per
track for the disk. The machine code decrements one from this number (to exclude the MBR which is the first
sector of the first track) and loads the remainder of the sectors making up the first track into the address
0000:1000. As the first partition cannot begin before the second track of the disk, the sectors making up the
first track (aside from the MBR itself) are unallocated and might be used for other bootloader related
purposes, or as will be shown, for the ransomware decryption program.

Page 6 of 18

GoogleCloud F LA RE

loc_B55: ; CODE XREF: sub s1D4191j

cli

mov =5, ax ; move the stack to 64K so it does not overlap

mowv sp, BFFFE ; with decryption program

sti

mov ds:882h, dx ; save drive number

mov ds:8@eeh, si ; save pointer te partition entry

mov ah, &

xor di, di ; get the number of sectors per track

int 13h ; DISK - DISK - GET CURRENT DRIVE PARAMETERS (XT,AT,XT286,C0NV,PS)
3 DL = drive number
; Return: CF set on error, AH = status code, BL = drive type
3 DL = number of consecutive drives
3 DH = maximum wvalue for head number, ES:DI -» drive parameter

jnb short loc 671

mov =i, offset aDiskError ; "Disk error”

jmp short loc 644

loc_B71: 5 CODE XREF: sub_slD+4D1j

xor ax, ax

mov es, ax

mov al, 2 ; set CL = 2, the starting sector

xchg ax, ox ; CL = 2, the starting secter

and al, 3Fh 3 (sector numbering is cne-based)

dec ax ; excluding the MBR itself

mov di, ax 3 save number of sectors to read

mov ah, cl 3 AH=2 read sectors

cwd ; DX=08

mov dl, ds:882h ; drive number

mov by, 1@e8sh ; destination buffer

int 13h ;3 DISK -

jnb short loc 698

mov si, offset aDiskError ; "Dizk error”

jmp short loc 644

Figure 7. The machine code loads the decryption program from Track O into the address 0000:1000.
From Ox690-0x6B2, the machine code records the number of bytes (number of sectors multiplied by 512

bytes, the assumed sector size) read from the first track. Next, the code fills a 256-byte array that will come
to be named S, according to the formula S[i] = i (Figure 8).

Page 7 of 18

GoogleCloud FL A RE

loc_Bo@: ; CODE XREF: sub BI1D46CT]
chw ; AH=©
test ax, ax ; 1T the BIOS claims zero sectors were read,
jnz short loc_B693 ; but returned success, assume we got the
mow ax, di 3 number of sectors we asked for.
chw ; AH=8
loc_B93: ; CODE XREF: sub BID4761]
xchg ah, al ; AX <<= 9
shl ax, 1 ; (convert from sectors to bytes)
xchg ax, ox ; CX=AX
mow ax, l1l@edh
mow dx, 282h
mow bx, B@84h]
mav di, bx
loc_BAS: ; CODE XREF: sub 61D4+3ELlj
stosw ;3 5[1] = 1
add ax, dx
jnb short loc_BAB
cwd
mav di, bx
jmp short loc GB7

Figure 8. The machine code records the number of bytes making up the decryption program and begins RC4
key scheduling.

Continuing to follow the machine code, it performs the RC4 key scheduling algorithm using the key
Obfuscation12345 (Figure 9).

Page 8 of 18

Google Cloud

loc_BB2:

lodshb
test
jnz

loc_BEBEY:

loc_6BC:
add

xlat
add
wor
Moy
xchg
Moy
mov
Moy
inc
jnz

al, al
short loc_ BBC

short loc_BB2

dl, al
al, dh

dl, al

bx, bx

bl, dl

al, [bx+di]
bl, dh
[bx+di], al
bx, di

dh

short loc_ BB2

cr fme fme dme s

; CODE
.
si, offset albfuscationl23 ;

fme me fwme fme fme

‘]
v
X
‘]
X
‘]
X
‘]

CODE XREF: sub 61D+9D4]
sub_61D+B44

al = *key++

check for ‘@

j += key[i ¥ keylen]
XREF: sub 61D+931]

LI T S S S -
Obfuscationl234

(W3]

CODE XREF: 5uh_ElD+95Tj
j += key[i ¥ keylen]
al = 1
al = 5[1i]
J += 5[i]
bx = j
al «=> 5[]]
bx = 1
5[1i] = al
5
p o+l

3 jump if i < 258

Figure 9. Machine code runs the RC4 key scheduling algorithm.

FLARE

Finally, the code at Ox6D3-0x6FC performs RC4 decryption on the Track O contents that were previously
loaded at 0000:1000, and when decryption is complete, the code jumps to 0000:1000 (Figure 10). The code
at that location is the ransomware decryption program.

Page 9 of 18

GoogleCloud FL ;\ RE

moY si, leaeh ; Track @ buffer
cwd ; i=j=8
loc_8D7: ; CODE XREF: sub B1D4+D54
inc dh ; +H+Hi
mo al, dh
xlat ;3 al = 5[1]
add dl, al 3 J += 5[1i]
wor b, bx
mow bl, dl ;3 bx =7
mo ah, al
xchg al, [bx+di] 3 S[1] «<=» 5[]
mo bl, dh
Mo [bx+di], al
Mo b, di ;05
add al, ah 3 S[1] + 5[7]
xlat 3 S[S[i] + s[3]1]
Xor [si], al ; XOR keystream with buffer
inc si
loop loc_6D7 3 while(--cx)
Mo si, ds:3aeh ; restore pointer to partition table entry
mow dx, ds:38@82h ; restore drive number in DL
jmp near ptr ; jump to the ransomware decryptor!
sub_G1D endp

Figure 10. The machine code performs RC4 decryption of the decryption program and then jumps to the
decryption program.

Analyzing the Decryption Program

Through analysis in the prior section it is known that:
e The decryption program is located in sectors 2 through 63 of the first track (as MBR-compatible disks
have, at most, 63 sectors per track)
e The decryption program on-disk is encrypted using RC4 using the key Obfuscation12345.
e The decryption program will be loaded into memory and will execute at address 0000:1000.

The unencrypted code making up the decryption program could be recovered dynamically using a debugger,
or statically by extracting and decrypting it directly from the disk image:

$ dd if=hda.img bs=512 skip=1 count=62 | openssl rc4 -K \
4f62667573636174696f6e3132333435 -out decryptor.bin

As the decryption program produces a ransom note and offers to decrypt the disk in exchange for the
correct key, it is likely to contain cryptographic code. Despite not being a PE, the PEID program’s KANAL
plugin will accept decryptor.bin and identifies constants related to the Blowfish algorithm as shown in Figure
11. This could come in great use later.

Page 10 of 18

GoogleCloud FL A RE

ZF) KANAL v2.92 o] B [

File Name: | C:\Users\user\Desktop\decryptor.bin

- BLOWFISH [sbox] :: 00000A4C
t-PI fraction (NIMBUS / BLOWFISH) :: 00000AD4

About Close

Searching...

Figure 11. The decryption program contains constants related to Blowfish.

As with the MBR, the decryption program can be loaded into IDA. Select Real Mode Pentium with MMX; a
loading offset of 0x1000, and 16-bit code. Based on the structure of the MBR, the decryption program'’s entry
point is right at the beginning of the file, at 0000:1000. The code performs some initialization of registers and
the screen. As Figure 12 shows, the first function call is to 0x1058. The function at Ox1058 prints the * border
around the edges of the screen, prints the ransom note, and loads the victim ID from the location Ox19FC and
prints it to the screen in hexadecimal. Then, the program calls the function 0x1175.

Page 11 0of 18

Google Cloud

sub_leae proc near
sti
cld
Mo ax, cs
ma ds, ax
mo es, ax
cli
mo 55, ax
maw sp, BFFFEh
sti
nor dh, dh
push dx
push si
moy ax, 1
int 1@h
Mo ax,
maw bl, 1
int 1@h
call sub_1858
Mo ah, 2
nor b, b
mov dx,
int 1@h
call sub_ 1175
call sub_11BE
pop si
pop dx
push dx
call sub_132F
jnb short loc_1@3B

fme tme fme e

ensure D5 = (5 = 55 = @

place stack at G4KB

save DX, SI on stack for later

clear the screen
- VIDED - SET VIDEO MODE
AL = mode

enable blinking mode

- VIDEO - TOGGLE INTEMSITY/BLINKING BIT
BL = @8h enable background intensity

= @1lh enable blink

- VIDEO - SET CURSOR POSITION
DH,DL = row, column (@,8 = upper left)
BH = page number

Figure 12. The decryption program performs initialization, and then calls several functions.

The function at 0x1175 calls the function 0x119D four times, with the arguments in BX of 4063, 4304, 4560,
and 4831 (Figure 13). The function 0x119D, in turn, uses the timer and PC speaker to beep the speaker at
1193180/BX Hz (based on 1/12 of the standard 14.31818 MHz motherboard oscillator frequency for the 8254
timer). Using this conversion, the speaker beeps at 293 Hz, 277 Hz, 261 Hz, and 246 Hz. These are the notes
D4, C#4, C4, and B3, which generates the “sad trombone” sound played when the ransom note opens. After
playing the sound, the decryption program next calls Ox11BE.

Page 12 of 18

GoogleCloud FL ;\ RE

sub 1175 proc near
mow X,
MoV dx,
MoV b,
call sub
MoV b,
call sub
MoV b,
call sub
] Mo b,
] call sub
retn
sub 1175 endp

; CODE
7
BA128h
4063

119D
4304

119D
4566
119D
4831
119D

XREF: sub_18@8+2Btp

Figure 13. The function Ox1175 generates the "sad trombone" sound.

Function Ox11BE is complex because it is the “main loop” of the decryption program, containing the code to
parse keyboard input and continue prompting the user to enter a digit until the correct encryption key is
entered. It is easier to follow by noting that the function maintains a pointer to an error message in Sl so that if
any operation fails, the error message is already loaded. As shown in Figure 14, the function loops on
keyboard input, and the first keys checked for are Backspace and ENTER, since they require special handling.
Otherwise, the code branches to 0x121C, which begins a hexadecimal conversion.

Page 13 of 18

GoogleCloud FL A RE

il s 5
loc_11CA: 3 no error
xor si, =i
xor ah, ah
int 16h ; KEYBOARD - READ CHAR FROM BUFFER, WAIT IF EMPTY
; Return: AH = scan code, AL = character
cmp al, 8 ; backspace
jnz short loc_11F1 ; jump if not backspace
A J
M
loc_11F1: 3 ENTER?
cmp al, @bh
jnz short loc_120E ; jump if not ENTER
Y A J
THE] lull s (5
hp di, 2AsCh ; were 16 digits entered?
hz short loc_1289 ; jump if < 16 digits loc_128E:
™ mov zi, offset alnvalidCharact ; ' Invalid Character
cmp di, 2AsCh
jnz short loc_121C
Y
push dx
call sub_1298 3 validate key
pop dx
test ax, ax 3 check for erron sub al, 38h ; '@’
jnz short lec_1285 ; jump on error jb short loc_123F
A J A J
M FMZE
retn cmp al, 9
ja short loc_1228

Figure 14. The function Ox11BE loops on keyboard input until the user enters the correct decryption key.

Further analysis of the function Ox11BE shows that as displayed in Figure 14, the interesting code, including
the call to function 0x1296, is only reached if the user presses ENTER after already having successfully
entered sixteen hexadecimal digits. The function 0x1296 must be a “key validation” function that returns zero
or (as further analysis of Ox11BE demonstrates) a pointer to an error message in AX.

From 0x1296-0x12D3, the key validation function compacts the key input by the user that was stored as
sixteen nibbles at Ox2A4C (likely to make “backspace” functionality and binary to ASCII formatting easier) into
eight bytes at Ox2A5C. Next, the function XORs the first six bytes of the compacted key together with the
six-byte victim ID at Ox19FC and ensures the result is 0x555555555555. If it is not, the function generates the
message “Invalid Key.” Note that the last four hex digits of the entered key play no role in the “Invalid Key”
message. The function expands the eight-byte compacted key into a sixteen-byte Blowfish decryption key,
by concatenating onto the original eight bytes, those bytes XOR 0x555555555555 (Figure 15).

Page 14 of 18

Google Cloud

sub_1296 proc near

push si

push di

sub sp, 8

mov si,

mov di, 2A5Ch

mav cx, B8@dh
loc_1224:

lodsw

shl al, cl

or al, ah

stosh

dec ch

jnz short loc_ 1244

mov si, 2A5Ch

mov di,

dec 4
loc_12B5:

lodsw

xor ax, [di]

inc di

inc di

cmp ax, 5555h

jnz short loc_13@84

Loop loc_12BS

mov 51, 2A5Ch

mov di, 2A6dh

mov cl, 4
loc_12C9:

lodsw

stosw

xXor ax, 5555h

mov [di+&], ax

loop loc_12C9

mov ax, leh

push ax

e e ks e e ks

L

CODE XREF: sub_l11BE+3Efp

input key from user as 16 nibbles
key from user as 8 bytes

CODE XREF: sub_1296+164j
get two nibbles in AL, AH

pack them both into AL
store them at di++

key from user as 3 bytes
victim ID (embedded in program) as 8 bytes
cx=3

CODE XREF: sub_1296+294j

ax = userkey[i] ™ wvictimid[i]

each hex digit of the input key from

the user, XOR the wictim ID, must be 8x5

if not, it's a bad key

this only applies toc the first six bytes (12 hex digits)
key from user as 8 bytes

Blowfish decryption key

CODE XREF: sub_l296+3B4j
blowfish_key[i] = userkey[i]

blowfish_key[i+8]=userkey[i]"@x55

for four words or eight bytes

blowfish_key is the userkey, but it is expanded to
16 bytes by XORing each byte in 2nd copy by 8x55

Figure 15. The function 0x1296 converts from nibbles to bytes, performs an XOR validation against the victim
ID, then expands from eight to sixteen bytes using another XOR.

From Ox12D3-0x12FE, the key validation function takes the sixteen-byte expanded key that was previously
stored at 0x2A64 and uses it to Blowfish-256-ECB-encrypt (as could be determined through further analysis
of the functions 0x1674, 0x1573, and 0x1619) the string “Test Str”. The resulting ciphertext is compared to that
stored at Ox19F4 which is: 2E 2157 82 3E A9 6C 6E. If this point is reached but the ciphertext fails to match,
the error generated is “Incorrect Key.” Otherwise, the key is considered correct.

Page 15 of 18

Google Cloud

Mo
push
call
Mo
Mo
MO SW
MO SW
MO SW
MO SW
Mo
Mo
call
Mo
Mo
Mo

jz
Mo

maw
loc_1387:

add
pop
pop
retn

ax,
ax

2864h

sub_1674
5i, offset aTestsStr ; "Test Str

di,

b,
ax,

p

sp

sub_1619

=i,
di,
cx,

repe cmpsw

sp
a

short loc_1366
ax, offset alncorrectkey ; " Incorrect Key
short loc_1387

ax,

ax

short loc_13@7

ax, offset alnvalidKey ;

sp,
di
=i

8

; Blowfish encryption key

; Blowfish init function taking the key

; CODE XREF: sub_1296+631]

; CODE XREF: sub_1296+2717
Invalid Key

; CODE XREF: sub_1296+681]
; sub_1296+6CtT]

FL;\RE

Figure 16. The function 0x1296 encrypts the string "Test Str" using the derived key, and compares the
ciphertext with a hard-coded value in the program.

Given the information:

The encryption is Blowfish-256-ECB and so the key is 16 bytes and the block size is 8 bytes

The victim ID is 34 87 B3 B4 1F 20.

The first six bytes of the key must be the bytes of victim ID XOR 0x55, or 61D2 E6 E14A 75.

o The message “Invalid Key” means that this check failed and the Blowfish encryption check was

not even attempted.

The last eight bytes of the key are derived from the first eight via XOR with 0x55. Therefore, the bytes
at offsets 8 through 13 the victim ID, and the bytes at offsets 14 and 15 correspond to the bytes at

offsets 6 and 7 XOR Ox55.

Bytes 6 and 7 are unknown and must be brute-forced to match the ciphertext when the string “Test

Str” is encrypted.

o The message “Incorrect Key” means that this ciphertext check was attempted, but the key did

not match.

Page 16 of 18

GoogleCloud FL A RE

A brute force attack against the key completes within a few seconds, using a program like the one given in
Figure 17.

S python3 crack.py
b'61d2e6e14a754adc3487b3b411f201f89'

Since the second half of the key is derived from the first XOR 0x55, the key that must actually be entered into
the decryption program is 61D2E6E14A754ADC.

#!/usr/bin/python3

import binascii

import struct

from Crypto.Cipher import Blowfish

VICTIM ID = b"\x34\x87\xB3\xB4\x1F\x20"
PLAINTEXT = b"Test Str"
CIPHERTEXT = b"\x2E\x21\x57\x82\x3E\xA9\x6C\x6E"

xor victim id = b""
for ¢ in VICTIM ID:
xor victim id += struct.pack("B", ¢ * 0x55)

for b0 in range (256) :
for bl in range (256) :
key = xor victim id + struct.pack("BB", b0, bl) \
+ VICTIM ID + struct.pack("BB", b0 ~ 0x55, bl ~ 0x55)
cipher = Blowfish.new(key, Blowfish.MODE ECB)
ct = cipher.encrypt (PLAINTEXT)
if ct == CIPHERTEXT:
print (binascii.b2a_hex (key))
break

Figure 17. Brute force attack program to discover the key.

The key 61D2E6E14A754ADC does cause the decryption program to decrypt the C: partition, as shown in
Figure 2.
To assist in further study of the decryption program, a list of functions is given in Table 3.

Offset Description

0x1000 main

0x1058 Display ransom note

0x1163 INT 10H call with preserved registers
0x1175 Play trombone sound

0x1194 Error beep

0x119d Play 1193180 / bx Hz for cx:dx us

0x11lbe Keep asking for key until it is correct
0x1296 Check whether the entered key is correct
0Ox130d Update error/status line at bottom of screen
0x132f Decrypt the disk

Page 17 of 18

0x13fd

0x142b
Ox146d
0x14d7

0x152b
0x1573

0x15c5
0x1619

0x1660
0x1674

Final Flag

blewf1Sh_3ncrypt10n_0f_p@rt1t10n_1n_r3al_mo@d3@flare-on.com

Google Cloud

Recalculate the percentage done

Print the percentage done

Print the cylinders done

Remove the “encrypted” bit from the “active” field in
the partition table

Blowfish “F” function on dx:ax

Blowfish “encipher” function on pointer to left/right
values in bx

Blowfish “decipher” function on pointer to left/right
values in bx

Blowfish “crypt” function taking buffer in bx and pointer
to encipher/decipher in ax

Blowfish-ECB decrypt

Blowfish “init” function

Table 3. List of functions in the decryption program.

FLARE

Page 18 of 18

