
Flare-On 10 Challenge 9: mbransom
By Jacob Thompson

Challenge Prompt
One of our legacy PCs supporting an old but expensive scienti�c machine seems to have been knocked o�
the network and won’t do anything but play music and display a strange textual message on boot. We’ve
imaged the disk; can you take a look and �gure it out?

Solution

Overview
The ransomware has encrypted the entire C: partition using Blow�sh-256-ECB, placed a decryption program
in the remainder of Track 0, and rewri�en the Master Boot Record. The new MBR checks the partition table
for an active partition. If the �rst one found is unencrypted, the system boots normally. If it is encrypted
(denoted by a 0x01 bit in the active �eld) the MBR instead loads the decryption program from Track 0 into
memory, deobfuscates the decryption program by decrypting it with RC4 using the key
Obfuscation12345, and passes control to the decryption program.

The decryption program displays a ransom note as shown in Figure 1. The decryption program gives a hint
that the correct key consists of 16 hexadecimal digits and displays a 12-character victim ID. Upon typing 16
hex digits and pressing Enter, the program displays an Invalid Key error message. In fact, the victim ID just
serves to restrict the brute force search space: the �rst 12 hex digits of the decryption key must correspond
to the victim ID XOR 0x5 (i.e., 61D2E6E14A75); the last four digits can be totally random. A brute force a�ack
against the remaining 16 bits using the key validation check incorporated into the decryption program is
computationally trivial and produces the full key 61D2E6E14A754ADC. If the user enters this key, the program
decrypts the disk as shown in Figure 2 and then prompts to reboot. The decrypted partition boots FreeDOS
and there is a C:\FLAG.TXT containing the �ag.

Page 1 of 18

Figure 1. A ransom note displays when the system boots.

Figure 2. If the key entered passes the validation check, the decryption program decrypts the disk.

Figure 3. The decrypted partition boots into FreeDOS and contains �ag.txt.

Page 2 of 18

Analyzing the Master Boot Record
A BIOS-based machine boots by loading the master boot record (MBR) from the �rst sector of a disk into
memory and then passing control to the MBR. The MBR has the structure shown in Table 1 and a partition
table entry has the structure shown in Table 2; for more information, see
h�ps://en.wikipedia.org/wiki/Master_boot_record.

Offset Length Description
0 0x1b8 Machine code
0x1b8 0x6 NT disk signature
0x1be 0x10 Primary partition entry 1
0x1ce 0x10 Primary partition entry 2
0x1de 0x10 Primary partition entry 3
0x1ee 0x10 Primary partition entry 4
0x1fe 0x2 Magic number 0xaa55

Table 1. Structure of the master boot record.

Offset Length Description
0 0x1 Active if 0x80
0x1 0x3 Starting address in CHS notation
0x4 0x1 Type
0x5 0x3 Ending address in CHS notation
0x8 0x4 Starting address in LBA notation
0xc 0x4 Length in sectors

Table 2. Structure of a primary partition entry.

To analyze the MBR, it is easiest to �rst extract it from the raw disk image:
$ dd if=hda.img bs=512 count=1 of=mbr.bin

By convention, the MBR executes in real mode and at the address 0000�7c00, so the correct IDA load
se�ings are shown in Figure 4. The �le must also be disassembled as 16-bit code.

Page 3 of 18

https://en.wikipedia.org/wiki/Master_boot_record

Figure 4. Correct IDA load se�ings for the Master Boot Record.

Figure 5 shows that �rst, the machine code jumps to 0000�7C05, to ensure that the CS register is zeroed as
there are many other real-mode aliases of the linear address 0x7C05. Next, the machine code copies itself
from 0000�7C00 to 0000�0600, then jumps to the next instruction in the relocated copy at 0000�061D. This
is necessary because the Volume Boot Record (VBR) from the active partition will also be loaded at
0000�7C00, which would overwrite the MBR. Since the machine code will actually execute from 0000�0600,
it is easiest to close the IDB at this point and reopen it, instructing IDA to use the load address 0000�0600.

Page 4 of 18

Figure 5. The machine code copies itself to 0000�0600 and jumps there.

The code from 0x61D-0x645 (Figure 6) parses all four primary partition entries. If an active partition (status
0x80) is found, it is checked to see if it is encrypted (status 0x81) and if it is unencrypted, the machine code
calls to BIOS to read the Volume Boot Record (�rst sector of the partition) and jumps to the VBR. if the �rst
primary partition found is encrypted, the code passes control to address 0x655.

Page 5 of 18

Figure 6. The machine code �rst locates the �rst active partition and checks whether it is encrypted.

Figure 7 shows that from 0x655-0x690, the machine code queries the BIOS for the number of sectors per
track for the disk. The machine code decrements one from this number (to exclude the MBR which is the �rst
sector of the �rst track) and loads the remainder of the sectors making up the �rst track into the address
0000�1000. As the �rst partition cannot begin before the second track of the disk, the sectors making up the
�rst track (aside from the MBR itself) are unallocated and might be used for other bootloader related
purposes, or as will be shown, for the ransomware decryption program.

Page 6 of 18

Figure 7. The machine code loads the decryption program from Track 0 into the address 0000�1000.

From 0x690-0x6B2, the machine code records the number of bytes (number of sectors multiplied by 512
bytes, the assumed sector size) read from the �rst track. Next, the code �lls a 256-byte array that will come
to be named S, according to the formula S[i] = i (Figure 8).

Page 7 of 18

Figure 8. The machine code records the number of bytes making up the decryption program and begins RC4
key scheduling.

Continuing to follow the machine code, it performs the RC4 key scheduling algorithm using the key
Obfuscation12345 (Figure 9).

Page 8 of 18

Figure 9. Machine code runs the RC4 key scheduling algorithm.

Finally, the code at 0x6D3-0x6FC performs RC4 decryption on the Track 0 contents that were previously
loaded at 0000�1000, and when decryption is complete, the code jumps to 0000�1000 (Figure 10). The code
at that location is the ransomware decryption program.

Page 9 of 18

Figure 10. The machine code performs RC4 decryption of the decryption program and then jumps to the
decryption program.

Analyzing the Decryption Program
Through analysis in the prior section it is known that:

● The decryption program is located in sectors 2 through 63 of the �rst track (as MBR-compatible disks
have, at most, 63 sectors per track)

● The decryption program on-disk is encrypted using RC4 using the key Obfuscation12345.
● The decryption program will be loaded into memory and will execute at address 0000�1000.

The unencrypted code making up the decryption program could be recovered dynamically using a debugger,
or statically by extracting and decrypting it directly from the disk image:

$ dd if=hda.img bs=512 skip=1 count=62 | openssl rc4 -K \
4f62667573636174696f6e3132333435 -out decryptor.bin

As the decryption program produces a ransom note and o�ers to decrypt the disk in exchange for the
correct key, it is likely to contain cryptographic code. Despite not being a PE, the PEiD program’s KANAL
plugin will accept decryptor.bin and identi�es constants related to the Blow�sh algorithm as shown in Figure
11. This could come in great use later.

Page 10 of 18

Figure 11. The decryption program contains constants related to Blow�sh.

As with the MBR, the decryption program can be loaded into IDA. Select Real Mode Pentium with MMX, a
loading o�set of 0x1000, and 16-bit code. Based on the structure of the MBR, the decryption program’s entry
point is right at the beginning of the �le, at 0000�1000. The code performs some initialization of registers and
the screen. As Figure 12 shows, the �rst function call is to 0x1058. The function at 0x1058 prints the * border
around the edges of the screen, prints the ransom note, and loads the victim ID from the location 0x19FC and
prints it to the screen in hexadecimal. Then, the program calls the function 0x1175.

Page 11 of 18

Figure 12. The decryption program performs initialization, and then calls several functions.

The function at 0x1175 calls the function 0x119D four times, with the arguments in BX of 4063, 4304, 4560,
and 4831 (Figure 13). The function 0x119D, in turn, uses the timer and PC speaker to beep the speaker at
1193180/BX Hz (based on 1/12 of the standard 14.31818 MHz motherboard oscillator frequency for the 8254
timer). Using this conversion, the speaker beeps at 293 Hz, 277 Hz, 261 Hz, and 246 Hz. These are the notes
D4, C#4, C4, and B3, which generates the “sad trombone” sound played when the ransom note opens. A�er
playing the sound, the decryption program next calls 0x11BE.

Page 12 of 18

Figure 13. The function 0x1175 generates the "sad trombone" sound.

Function 0x11BE is complex because it is the “main loop” of the decryption program, containing the code to
parse keyboard input and continue prompting the user to enter a digit until the correct encryption key is
entered. It is easier to follow by noting that the function maintains a pointer to an error message in SI so that if
any operation fails, the error message is already loaded. As shown in Figure 14, the function loops on
keyboard input, and the �rst keys checked for are Backspace and ENTER, since they require special handling.
Otherwise, the code branches to 0x121C, which begins a hexadecimal conversion.

Page 13 of 18

Figure 14. The function 0x11BE loops on keyboard input until the user enters the correct decryption key.

Further analysis of the function 0x11BE shows that as displayed in Figure 14, the interesting code, including
the call to function 0x1296, is only reached if the user presses ENTER a�er already having successfully
entered sixteen hexadecimal digits. The function 0x1296 must be a “key validation” function that returns zero
or (as further analysis of 0x11BE demonstrates) a pointer to an error message in AX.

From 0x1296-0x12D3, the key validation function compacts the key input by the user that was stored as
sixteen nibbles at 0x2A4C (likely to make “backspace” functionality and binary to ASCII forma�ing easier) into
eight bytes at 0x2A5C. Next, the function XORs the �rst six bytes of the compacted key together with the
six-byte victim ID at 0x19FC and ensures the result is 0x555555555555. If it is not, the function generates the
message “Invalid Key.” Note that the last four hex digits of the entered key play no role in the “Invalid Key”
message. The function expands the eight-byte compacted key into a sixteen-byte Blow�sh decryption key,
by concatenating onto the original eight bytes, those bytes XOR 0x555555555555 (Figure 15).

Page 14 of 18

Figure 15. The function 0x1296 converts from nibbles to bytes, performs an XOR validation against the victim
ID, then expands from eight to sixteen bytes using another XOR.

From 0x12D3-0x12FE, the key validation function takes the sixteen-byte expanded key that was previously
stored at 0x2A64 and uses it to Blow�sh-256-ECB-encrypt (as could be determined through further analysis
of the functions 0x1674, 0x1573, and 0x1619) the string “Test Str”. The resulting ciphertext is compared to that
stored at 0x19F4 which is: 2E 21 57 82 3E A9 6C 6E. If this point is reached but the ciphertext fails to match,
the error generated is “Incorrect Key.” Otherwise, the key is considered correct.

Page 15 of 18

Figure 16. The function 0x1296 encrypts the string "Test Str" using the derived key, and compares the
ciphertext with a hard-coded value in the program.

Given the information:
● The encryption is Blow�sh-256-ECB and so the key is 16 bytes and the block size is 8 bytes
● The victim ID is 34 87 B3 B4 1F 20.
● The �rst six bytes of the key must be the bytes of victim ID XOR 0x55, or 61 D2 E6 E1 4A 75.

o The message “Invalid Key” means that this check failed and the Blow�sh encryption check was
not even a�empted.

● The last eight bytes of the key are derived from the �rst eight via XOR with 0x55. Therefore, the bytes
at o�sets 8 through 13 the victim ID, and the bytes at o�sets 14 and 15 correspond to the bytes at
o�sets 6 and 7 XOR 0x55.

● Bytes 6 and 7 are unknown and must be brute-forced to match the ciphertext when the string “Test
Str” is encrypted.

o The message “Incorrect Key” means that this ciphertext check was a�empted, but the key did
not match.

Page 16 of 18

A brute force a�ack against the key completes within a few seconds, using a program like the one given in
Figure 17.

$ python3 crack.py
b'61d2e6e14a754adc3487b3b41f201f89'

Since the second half of the key is derived from the �rst XOR 0x55, the key that must actually be entered into
the decryption program is 61D2E6E14A754ADC.

#!/usr/bin/python3
import binascii
import struct
from Crypto.Cipher import Blowfish

VICTIM_ID = b"\x34\x87\xB3\xB4\x1F\x20"
PLAINTEXT = b"Test Str"
CIPHERTEXT = b"\x2E\x21\x57\x82\x3E\xA9\x6C\x6E"

xor_victim_id = b""
for c in VICTIM_ID:

xor_victim_id += struct.pack("B", c ^ 0x55)

for b0 in range(256):
for b1 in range(256):

key = xor_victim_id + struct.pack("BB", b0, b1) \
+ VICTIM_ID + struct.pack("BB", b0 ^ 0x55, b1 ^ 0x55)

cipher = Blowfish.new(key, Blowfish.MODE_ECB)
ct = cipher.encrypt(PLAINTEXT)
if ct == CIPHERTEXT:

print(binascii.b2a_hex(key))
break

Figure 17. Brute force a�ack program to discover the key.

The key 61D2E6E14A754ADC does cause the decryption program to decrypt the C: partition, as shown in
Figure 2.
To assist in further study of the decryption program, a list of functions is given in Table 3.

Offset Description
0x1000 main
0x1058 Display ransom note
0x1163 INT 10H call with preserved registers
0x1175 Play trombone sound
0x1194 Error beep
0x119d Play 1193180 / bx Hz for cx:dx us
0x11be Keep asking for key until it is correct
0x1296 Check whether the entered key is correct
0x130d Update error/status line at bottom of screen
0x132f Decrypt the disk

Page 17 of 18

0x13fd Recalculate the percentage done
0x142b Print the percentage done
0x146d Print the cylinders done
0x14d7 Remove the “encrypted” bit from the “active” field in

the partition table
0x152b Blowfish “F” function on dx:ax
0x1573 Blowfish “encipher” function on pointer to left/right

values in bx
0x15c5 Blowfish “decipher” function on pointer to left/right

values in bx
0x1619 Blowfish “crypt” function taking buffer in bx and pointer

to encipher/decipher in ax
0x1660 Blowfish-ECB decrypt
0x1674 Blowfish “init” function

Table 3. List of functions in the decryption program.

Final Flag
bl0wf1$h_3ncrypt10n_0f_p@rt1t10n_1n_r3al_m0d3@flare-on.com

Page 18 of 18

