
A Brief Look at Path
MTU Discovery
"DRINK ME" To Get Through the Network

Rick Jones

For more information visit cloud.google.com 1

Disclaimer: In no way, shape, or form should the results presented in this document be
construed as defining an SLA, SLI, SLO, or any other TLA. The author’s sole intent is to offer
helpful examples to facilitate a deeper understanding of the subject matter.

https://aliceinwonderland.fandom.com/wiki/Alice%27s_Adventures_in_Wonderland
https://cloud.google.com/blog/products/devops-sre/sre-fundamentals-sli-vs-slo-vs-sla
https://en.wikipedia.org/wiki/Three-letter_acronym

Introduction
Historically, Google Compute Engine’s networking has specified an uncommon guest instance
vNIC Internet Protocol (IP) Maximum Transmission Unit (MTU) of 1460 bytes. Many other
clouds, most private/corporate/enterprise networks, and the broader Internet have the
standard, albeit still-constraining IP MTU of 1500 bytes as defined from the dawn of Ethernet.
From time to time this difference has caused issues and confusion. While one can now
configure an “industry standard” IP MTU of 1500 bytes for Compute Engine guest instances’
vNICs, and even an MTU up to 8896 bytes, the default MTU remains 1460 bytes and so there
may still be value in a description of how Path MTU discovery is intended to function and
where/how it can go wrong.

The Short Version
IP Path MTU Discovery works by a sender setting the “Don’t Fragment” (DF) bit in the IP
datagram header. When an IP datagram with the DF bit set arrives at a router which would
otherwise have to fragment the datagram to forward it, the datagram is dropped and the
router sends a message back to the datagram’s original sender informing the sender of the
maximum size it may send without needing fragmentation. The sender then adjusts its
outbound packet size accordingly.

This can go wrong when the messages informing senders of maximum sizes are blocked for
administrative reasons, in which case the recourses are to either disable Path MTU discovery
and live with fragmentation, reduce the IP MTU of the sender(s), or if the traffic is TCP, enable
TCP’s Path MTU Black Hole detection heuristics on the sender(s). Of those three, the best is
option four - stop blocking the message informing senders of maximum sizes.

The Long Version

MSS Ain’t MTU
Before we discuss Path MTU Discovery, there is one thing which is very important to get clear.
So let’s do that now.

When this document’s author was taking Physics in high-school, the very wise teacher
wanted to impress upon the students that while there was a relationship between the Mass of
an object and its Weight, they were not the same thing. A similar confusion arises in
networking between MTU (Maximum Transmission Unit) and MSS (Maximum Segment Size).

For more information visit cloud.google.com

2

https://en.wikipedia.org/wiki/Mass
https://en.wikipedia.org/wiki/Weight

The choice of 1460 bytes for the default IP MTU of Cloud Engine guest instances’ vNICs can
add to that confusion.

Maximum Transmission Unit

Networks have both minimum and maximum packet sizes they can support. When Metcalfe et
al. first defined Ethernet back in the mists of time, an Ethernet network would have a
maximum frame size of 1518 bytes . That consists of a 14 byte Ethernet header, 1500 bytes of 1

Ethernet payload/data and 4 bytes of Frame Check Sequence (FCS). So the payload size of
an Ethernet frame is 1500 bytes. You can’t send anything larger in a single, standard 2

Ethernet frame.

Eth. Header Ethernet Payload FCS

14 Bytes Up to 1500 Bytes 4 B

When one goes to send IP datagrams over Ethernet the IP datagram is the Ethernet frame’s 3

payload. So the IP datagram, including the IP header, may be no larger than 1500 bytes . This 4

is then often expressed as the MTU or the IP MTU of the network interface.

Eth. Header IPv4 Header IPv4 Payload FCS

14 Bytes 20 Bytes Up to 1480 Bytes 4 B

The dominance of Ethernet for the data-link/physical network layers has cemented an IP MTU
of 1500 bytes as “the standard.” While other networking technologies with different
maximum frame sizes (e.g. FDDI and Token Ring et al.) have tried to replace Ethernet, and in
so doing change “the standard” IP MTU; to date, none have been successful. Perhaps
someday something will.

4 We are ignoring IP fragmentation for the moment. Patience.
3 Packets at the IP level are formally referred-to as Datagrams.
2 Packets at the Ethernet level are formally referred-to as Frames.

1 We are ignoring things like preambles, Start Frame Delimiter, and inter-frame gaps, and later
developments like IEEE 802.3 and VLAN tagging. We are also ignoring de facto standards such as
Jumbo Frames arising from standards body inertia.

For more information visit cloud.google.com

3

Maximum Segment Size

The Transmission Control Protocol (TCP) provides a byte-stream service to its users, but
operates over a message-oriented network layer , e.g. IP. So, TCP takes the user’s data, 5

bundles (“segments”) it into segments , which TCP then hands to IP to encapsulate in IP 6

datagrams, which then (usually) hands off the IP datagram to Ethernet to be put into an
Ethernet frame. And for reasons which are beyond the scope of this document to discuss in
detail, TCP recognizes the undesirability of IP Fragmentation. So, when TCP establishes a
connection, each end will look at information it has, such as the IP MTU of their respective
network interfaces and use that to compute the maximum quantity of user data each believes
can go into a TCP segment before the IP datagram carrying that TCP segment must be
fragmented. Each TCP communicates this to the other via a Maximum Segment Size (MSS)
TCP Option carried in their respective SYN(chronize) segments.

Remember the IP MTU includes the IP header and the IP payload. An IPv4 header is (usually)
20 bytes . That means for a network with an “industry-standard” IP MTU of 1500 bytes there 7

can be 1480 bytes of what IP considers payload. The entire TCP segment, including TCP
header, is payload to IP, and must fit into that 1480 bytes. A TCP header was (generally) also
20 bytes . So, on a network with an “industry-standard” 1500 byte IP MTU, the TCP MSS 8

Option will be 1460 bytes.

Eth. Header IPv4 Header TCP Header TCP Payload FCS

14 Bytes 20 Bytes 20 Bytes Up to 1460 Bytes 4 B

1460 bytes. Sound familiar? Indeed, that is also the default IP MTU of a Compute Engine
guest instance’s vNIC. So we have the unfortunate coincidence that the IP MTU of a guest
instance in Compute Engine has the same numeric value as the typical TCP MSS on an
industry-standard 1500 byte MTU network…

8 “What about TCP Timestamps?” you may ask. That is also a discussion for another write-up.

7 An IPv6 header is 40 bytes so adjust the math accordingly. Well, the first/fixed one anyway, and
optional headers are beyond the scope of this write-up.

6 Packets at the TCP level are formally referred-to as Segments.
5 See the Evi Nemeth reference at https://en.wikipedia.org/wiki/Layer_8

For more information visit cloud.google.com

4

https://tools.ietf.org/html/rfc793
https://en.wikipedia.org/wiki/Layer_8

Remember it!

So, what about the Physics teacher and impressing upon the students the difference
between Mass and Weight? Well, to ensure the students would remember decades later, at
the beginning of term the teacher had all the students, dressed in their jackets and ties,
stand by their desks and start jumping up and down shouting:

Mass is NOT Weight!

Mass is NOT Weight!

 Mass is NOT Weight!
9

In that vein, and circumstances permitting, if you would please stand where you are and
shout:

MSS ain’t MTU!

MSS ain’t MTU!

MSS ain’t MTU!

Then we can continue :)

Why We Avoid IP Fragmentation
When IP is handed data from above (e.g. from TCP), or receives an IP datagram to forward
which is larger than can fit in the IP MTU of the interface out which IP wishes to send the
datagram, one of its options is to fragment the too-large datagram into two or more IP
datagram fragments. These fragments will then flow through the network(s) and, in theory,
arrive at their final destination. IP at the final destination will reassemble those fragments into
a complete IP datagram of the original size and hand the IP payload up to the higher layer
protocol (e.g. TCP).

Sounds peachy. Ten IP Datagram Fragments. What’s so bad about that?

9 Whether this incident goes any distance in explaining how the author ended-up like he did is left to
the imagination of the reader. It is fortunate that the Physics classroom and lab was in the basement of
the building...

For more information visit cloud.google.com

5

IP is just a “best effort” (aka one-shot) service and does not retransmit. IP datagrams and
thus datagram fragments can be lost, and all the fragments of an IP datagram must arrive at
the destination to be able to reassemble the original IP datagram.

So, if one datagram fragment is lost, the entire, original IP datagram is effectively lost and by
extension the TCP segment is lost, and the bandwidth used to transmit the not-lost
fragments wasted. TCP has to retransmit its segment, perhaps after a retransmission timeout.
An underlying packet loss rate on the network is “amplified” into a much higher
datagram/segment loss rate.

How We Avoid IP Fragmentation
This write-up has already mentioned one of the mechanisms used to avoid IP Fragmentation -
namely the exchange of Maximum Segment Size (MSS) options in the TCP SYN(chronize)
segments used to establish a TCP connection. This method works fine when the traffic is TCP
and both endpoints are on the same network with the same IP MTU. Or when they are on
different networks with the same IP MTU, and joined one network with the other via networks
with the same or larger IP MTU. Or even when one endpoint is on a network with an MTU
smaller than the other.

However, this method isn’t sufficient when the two endpoints are on different networks, joined
one to the other along the way by a network with a smaller MTU. This aggregation of
networks might be referred to as a “dumbbell network” because it is wide (large MTU) on
either end and narrow (small MTU) in the middle. Like the weights on either end of the bar of
a dumbbell.

Endpoint1<->BIGMTUNET1<->Router1<>smallmtunetwork<->Router2<->BIGMTUNET2<->Endpoint2

In this situation, each TCP computes and exchanges an MSS option based on its local IP MTU,
and one side or the other starts sending TCP segments with that much data in them. Let’s
assume Endpoint1 is doing the sending, and the BIGMTUNETs have an IP MTU of 1500 bytes
and the smallmtunetwork has an IP MTU of 1460 bytes.

For more information visit cloud.google.com

6

To Fragment, or Not To Fragment? That’s some question.

Endpoint1 and Endpoint2 have exchanged TCP MSS options of 1460 bytes while establishing a
TCP connection between them. Endpoint1 now sends a full-sized TCP segment containing
1460 bytes of user data. The 20 byte TCP header means TCP hands a 1480 byte segment to
IP. That segment goes out Endpoint1’s interface to BIGMTUNET1 in a 1500 byte IP datagram
(1480 bytes of IP payload and a 20 byte IP header) in a 1518 byte Ethernet frame (14 bytes of
Ethernet header, 1500 bytes of Ethernet data, and 4 bytes of Frame Check Sequence) and is
received by Router1. The network interface on Router1 hands the frame to the driver, the
driver hands the datagram to IP.

IP in Router1 consults its routing tables and determines the IP datagram carrying Endpoint1’s
TCP segment should be routed through smallmtunet. It also notices that smallmtunet has an
IP MTU of 1460 bytes. But the IP datagram carrying Endpoint1’s TCP’s segment is 1500 bytes
in size.

Dilemma. What should IP on Router1 do?

In short, it looks at a flag field in the IP header . Within that part of the header is a single-bit 10

flag known as the “Don’t Fragment” flag or “DF bit”. When that bit is clear (has a value of 0 -
zero) IP on Router1 is supposed to fragment the too-large-to-forward-otherwise IP datagram
into two or more IP datagram fragments and send them along their way on smallmtunetwork.
As we’ve already seen, that has issues.

But TCP in Endpoint1 has another option. Rather than having IP in Endpoint1 send IP
datagrams with the DF bit clear in the IP header, it can have IP set the DF bit in the IP header.
Now when the 1500 byte IP datagram from Endpoint1 arrives at Router1, Router1 sees the DF
bit is set. Instead of fragmenting the IP datagram, Router1 drops it. Wait! Drops it? What good
does that do? That sounds just as bad as losing a fragment. Well, Router1 does something
else as well. When Router1 drops the datagram, it sends a message back to Endpoint1
informing it of this. It does this with an Internet Control Message Protocol (ICMP)
Destination Unreachable, Datagram Too Big message. And within that message is the
maximum IP datagram size Router1 could have forwarded through smallmtunetwork without
fragmentation (e.g. 1460 bytes - as the IP datagram size/MTU, not the TCP MSS!).

When this ICMP message arrives at Endpoint1, TCP is informed, and adjusts its effective MSS
to result in TCP segments carried in IP datagrams no larger than the value carried in the ICMP
message. It will immediately retransmit the data in the segment carried in the datagram

10 “Wait!” you ask, “That’s an IPv4 header. What about IPv6?” IPv6 does not include fragmentation by
routers. All fragmentation is required to be performed by senders. Think of it as part of the Router
Folks’ Revenge. In essence it is as if there is a DF bit in the IPv6 header which is always set.

For more information visit cloud.google.com

7

https://en.wikipedia.org/wiki/IPv4#Header

Router1 had to drop, and will ensure that any further segments TCP sends from Endpoint1 are
sized to avoid fragmentation.

That is Path MTU Discovery. Setting the DF bit in the IP header to force routers along the path
to inform the sender of the maximum IP datagram size the sender may send along that path
without triggering IP fragmentation.

End of story, right? Well…not entirely.

Where Things Go Wrong
Network and other administrators are often concerned about security. Or perhaps more
accurately, how to increase the cost of messing about with their networks to the point
nefarious network ne’er-do-wells won’t bother. We’ve already seen that Path MTU Discovery
relies upon a particular message, an ICMP Destination Unreachable, Datagram Too Big,
being sent by an intermediate device, a router, to the original sender, and that sender then
taking appropriate action.

There are many other sorts of ICMP messages and some of them, such as ICMP Echo
Request/Reply, are considered useful to attackers who want to map-out a target network. So,
it has become somewhat common for network administrators to block ICMP messages. Either
because they heard simply “Block ICMP for security!” and didn’t think it through completely,
or because the block mechanisms available to them are blunt instruments and can block only
all ICMP messages rather than selected ones.

When this happens, it is referred to as an ICMP Black Hole or PMTU (Path MTU) Black Hole.
When ICMP messages are blocked, the sending TCP will not be informed of the Path MTU,
and since the DF bit means “Drop the datagram and send destination unreachable” it means
traffic larger than the Path MTU appears to vanish - a black hole if you will into which (large)
packets disappear never to be seen again.

Mitigations

There are (at least?) three possible mitigations when faced with a PMTU Black Hole which
cannot be properly fixed. The first is to disable Path MTU Discovery by no longer setting the
DF bit in the IP datagram headers. When the traffic needs to be forwarded across the
smaller-MTU link, IP will fragment it. We trust luck and low packet loss rates to enable forward
progress with fragmented traffic.

For more information visit cloud.google.com

8

The second is to reduce the IP MTU of the endpoint(s) to that of the otherwise-smaller-MTU
link along the path. The downside to this is it can become a race to the bottom, needing to
configure ever-smaller MTUs as other, small MTU paths are encountered. Further, it can
reduce performance when TCP has to send smaller segments, even in those cases where the
potentially-but-not-sure-when small MTU path(s) aren’t used. A variation on this theme can
be to set a destination-specific MTU in the senders’ routing tables. This will be considered
along with the interface MTUs on the two endpoints when computing an MSS value for the
exchange of SYNs for TCP.

The third is to enable PMTU Black Hole Detection in TCP. When this is enabled, a sending TCP
will assume that after some number of retransmissions, the packet loss is perhaps the result
of PMTU Black Hole, and will start trying smaller effective MSS values even without seeing an
ICMP Destination Unreachable, Datagram Too Big message. The downside to this is it can
take a few retransmissions to kick-in, and that will mean delays in data transfer.

The fourth of the three things to do… is to fix the PMTU Black Hole in the first place. Consider
that IPv6 doesn’t even specify routers fragmenting and so behaves as if there is a “DF bit”
always set in the IPv6 header. Sometimes it will be suggested that the router simply ignore the
DF bit and fragment anyway. That isn’t a mitigation. It is a kludge.

Where Things Can Still Go Wrong
You may have heard people say things like “All hosts in a subnet” or “All stations in a
broadcast domain ” “must have the same MTU.” There is a reason. Remember earlier where 11

we described Endpoint1 sending a TCP Segment containing 1460 bytes of user data in a 1500
byte IP Datagram across BIGMTUNET1 and that was received by Router1. Well, suppose for a
moment that for some reason, Router1 didn’t have a 1500 byte IP MTU configured on its
interface to BIGMTUNET1. What could happen? Well, if this were a typical Ethernet setup, IP
in Router1 wouldn’t see the 1500 byte IP datagram in the first place, because it wouldn’t have
come-in to Router1 at the “Ethernet” layer in the first place. Router1’s NIC on BIGMTUNET1
wouldn’t have accepted the frame, because the frame was too big for what it had configured
as a maximum frame size. And if IP in Router1 doesn’t see the IP datagram, it has no way to
send an ICMP Destination Unreachable, Datagram Too Big message. And it won’t matter
whether the DF bit is set or not in the IP header.

11 Datalink-layer-speak for “All systems on the same side of a router.”

For more information visit cloud.google.com

9

Acknowledgements

The author would like to thank David Wetherall for his review. He would also like to thank Derek
Phanekham for editing and updating this document for public release.

For more information visit cloud.google.com

10

	Introduction
	The Short Version
	The Long Version
	MSS Ain’t MTU
	Maximum Transmission Unit
	Maximum Segment Size
	Remember it!

	Why We Avoid IP Fragmentation
	How We Avoid IP Fragmentation
	To Fragment, or Not To Fragment? That’s some question.

	Where Things Go Wrong
	Mitigations

	Where Things Can Still Go Wrong

	Acknowledgements

