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Introduction
This document describes the development and deployment of production-grade generative AI
solutions, with a detailed technical comparison of different deployment approaches. Selection of
a deployment approach is a critical choice point for solution builders. The document provides
insights and recommendations to help you shape this decision.

Lessons learned from the field
Since 2022, large enterprises have prioritized experimentation with generative artificial
intelligence (AI). Their experimentation and subsequent pilot deployments have shown the
significant potential of generative AI to drive efficiency gains, enhance quality, and launch
innovative offerings. However, despite their interest in deploying these solutions, only 10% of
enterprises have matured from pilot to production .1

During this period, enterprises discovered that foundation models are prone to hallucination,
struggle to adapt to edge cases like jargon, and amplify biases. As a result, their highest priority
use cases, such as customer support automation, demand a solution beyond the capabilities of
foundation models alone. In fact, an executive at a large healthcare provider noted how their
company avoided "high-value clinical use cases, and only felt confident in deploying generative
AI solutions on efficiency-boosting administrative tasks."

However, recent advances enable more accurate, grounded answers, creating opportunities for
organizations to improve patient outcomes. Those advances require a suite of capabilities to
provide the model with domain-specific context, validate outputs, and ensure consistent
performance. For example, monitoring and evaluation are required to validate performance, and
retrieval augmented generation (RAG) or function calling extends model knowledge and2

enables workflows. Collectively, capabilities like these are critical in deriving value from a
generative AI solution.

To assemble these capabilities, AI solution builders, including AI engineers, product managers,
data scientists, and line of business (LOB) stakeholders, can select services for their specific
use case without full consideration for broader enterprise implications. Use cases that are
developed through this approach can accumulate redundant components and they have limited
governance and weaker cost controls. Further, as new services and capabilities are launched
and updated, organizations with custom implementations can find it challenging to integrate
these advancements. For instance, a technology executive at a B2B software company
described a scenario where their team needed to replace a vector database due to evolving

2 Google: What is Retrieval Augmented Generation
1 Gartner: Let Generative AI Flourish Through Bo�om-Up Innovation
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needs. This replacement required significant rework, led to missed milestones, and ultimately
delayed their project momentum for months. Such practices contribute to slower enterprise
adoption due to mounting technical debt, escalating costs, and poor governance.

To enable deployments at scale, generative AI platforms—like Vertex AI—combine
infrastructure, models, and tooling like orchestration and evaluation. Generative AI platforms
integrate models from multiple providers, infrastructure, developer tools, and agent workflow
frameworks into a single integrated and open platform. Platforms can accelerate development
and deployment, scale to meet demand, and help realize tangible benefits.

Framework to deploy a generative AI solution
Deploying a generative AI solution requires planning for capabilities that support the model
lifecycle to deliver enterprise-grade performance, experience, and management capabilities.
These capabilities are typically deployed in five steps—discover, develop, deploy, operate, and
govern—which are shown in the following diagram:

Figure 1: Gen AI use case deployment framework.

The following sections provide details about each step.
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Discover
Before you develop a generative AI solution, you typically shortlist models for further evaluation.
However, creating a shortlist can be challenging due to a lack of standardized model metrics,
comparison factors, or readily available evaluation tooling. Vendor-provided metrics or
third-party metrics like MMLU, GSM8K, and BIZ-Bench-Hard are useful for pre-filtering, but they
don't directly translate to specialized use cases. For more human-driven comparisons, AI
solution builders must set up sandboxes with access to multiple models that allow them to
compare responses and prompts side-by-side. Initially, they start with basic prompts to test the
feasibility of a use case and then do minor prompt engineering to enhance functionality.

Develop
After a use case has been deemed feasible and a candidate model is selected, the
development phase begins. Generative AI use cases typically require small test datasets like
customer intents and corresponding actions to drive solution evaluation and optimization.
However, at scale, use cases like customer service or knowledge management require access
to often distributed and non-standard enterprise data to generate grounded responses, which
often makes building a dataset the most challenging step of implementation.

For example, consider an executive at a global software company that's developing a contract
search use case. They faced significant challenges, saying "My team encountered difficulty
accessing the contracts. We were unfamiliar with Salesforce, where a portion of the data was
stored. Further, many contracts were located in a separate Oracle solution, complicating the
process. Once we retrieved the contract data, the next challenge was ensuring accurate capture
of the legal context within each contract."

The preceding experience is common and it reveals three key obstacles: sourcing data,
assembling a representative dataset, and finding adequate labeled data. To source data, you
need data connectors to access enterprise systems like CRM and HRIS, prebuilt connections to
databases like MySQL, and feature stores like Vertex AI Feature Store, Feast, and Feathr to3 4

enable the reuse of data. To fill gaps, you could also generate synthetic data from existing,
high-quality datasets. Finally, labeling services like Snorkel or Labelbox can use
semi-supervised learning to label at scale to ensure proper data labels.

4 Google: Introduction to Feature Management
3 Google: Integration Connectors
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After the dataset is ready, you can start building a solution. Building on lessons learned from
experimentation and prototyping, leading enterprises follow a four-step iterative process to
refine a candidate model for production:

1. Infer: After the solution has been improved, it can generate inferences and produce
input-output pairs, associated metadata like timestamps and confidence intervals, and
technical performance such as throughput and utilization of resources like CPU,
memory, and GPU.

2. Evaluate: Using data points from Predict, AI solution builders compute comparative
scores like the following:

○ Output metrics like perplexity, precision, recall, and BERT score

○ Domain-specific metrics like BLEU5

○ Technical metrics like response time

○ Business metrics like CSAT, adoption rate, and TCO

3. Compare: With an evaluation framework for each model, candidate solutions can be
compared to support a decision. If the solution's performance meets expectations, you
move on to deployment. However, if the results are inconclusive, you typically iterate on
enhancements until you develop a solution that meets target outcomes.

4. Enhance: After AI solution builders have identified gaps in model performance like
accuracy or latency, they can improve outcomes by following customization or
augmentation processes. Customization refers to modifying model behavior by changing
inputs, such as through prompt engineering, or updating parameters, such as through
fine-tuning, adapter tuning, and reinforcement learning from human feedback. In
contrast, augmentation adds context to the model in order to improve outputs through
techniques like RAG, customizable re-rankers , function calling , and grounding .6 7 8

8 Grounding is connecting model output to veri�able sources of information.
7 Function calling enhances models with delegation capabilities for tasks like multiplication.
6 Re-rankers recompute search results ordering to tailor them for a particular situation or user.
5 BLEU: a Method for Automatic Evaluation of Machine Translation, Papineni et al, 2002
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Deploy
After the solution is developed, it must be tested for risks like hallucinations, data leakage, and
real-world performance. You typically start by conducting adversarial safety testing to expose9

security vulnerabilities and customer data. This testing also helps you to assess adherence to
privacy standards through legal reviews. In addition, the solution's efficacy should be compared
to existing processes through shadow deployments or A/B testing . After you have completed10 11

security, privacy, and performance reviews, you should deploy to production by using a CI/CD
process.

Operate
After a solution is in production, it can undergo significant performance changes due to
variations in input data. Performance changes necessitate comprehensive monitoring to track
safety metrics, solution performance like task completion rate, and trace logs. Often, evaluations
that are used for solutions are reused and combined with real-world feedback to generate alerts
when solution performance deviates from an expected range. Similarly, as solutions scale to
answer more queries, their technical performance and costs can substantially change. At this
point, usage limits or cost tracking can be implemented to prevent overruns. If you observe
consistent cost issues or performance deviations, you should consider restarting the iterative
development phase to improve outcomes.

Govern
Between the Discover and Operate phases, you will need rigorous governance to manage risks
of bias, harm, and improper use, and to maintain legal and regulatory compliance. To manage
risks, solutions need safety filters to prevent generating harmful or inappropriate answers.
Solutions also need guardrails to limit the scope and prevent unplanned situations, such as
offering clinical advice in a customer service application.

To maintain legal and regulatory compliance, solutions must leverage security technology like
Identity and Access Management (IAM) for permissions, authorization to securely connect
external systems, role-based access controls (RBAC) to regulate information access, and
logging to keep audit records. Additionally, to ensure the traceability and accountability of
models, solutions need to leverage systems for model lineage, experimentation tracking, and
data lineage to create auditable records and enable rollbacks if needed.

11 A/B Testing is a family of techniques to compare the performance of one or more candidates against
an existing champion in a real world se�ing.

10 Shadow deployment is a technique where a model or solution is deployed simultaneously with an
existing model, but its outputs do not a�ect system behavior. Instead they are recorded for future
comparison.

9 Adversarial safety testing is a family of techniques that simulate a�acks or challenging conditions to
expose vulnerabilities and assess a system's defenses.
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Approaches to generative AI solution development
A typical use case for generative AI begins with aligning around a business outcome like cost
reduction, revenue expansion, or experience improvements. As AI solution builders, you can
explore two primary approaches to implementing a generative AI solution: decentralized and
centralized (referred to as platform). In the decentralized approach, you select individual
services from providers to build an end-to-end solution. Alternatively, you might select a platform
like Vertex AI, which typically includes infrastructure, models, and curated tooling in an
integrated package that can serve multiple use cases. The next sections discuss both
approaches in detail.

Decentralized approach
In the decentralized approach, solution builders make selections for every service in the AI
solution stack. For example, some solution builders begin by selecting a model that's fit for their
target use case, typically through a combination of qualitative metrics and quantitative metrics
like LMsys ELO and MMLU. Other solution builders might prefer to begin with the optimal vector
database for their use case or to select an orchestration engine like LangChain as their first
service. The following diagram shows the types of services that are required to enable a
decentralized approach:

Figure 2: Services that are required to enable a decentralized approach (along with open-source
tools).
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The preceding diagram shows the following service requirements:

● Governance: Provides services like guardrails, safety filters, model lineage,
explainability, and data lineage.

● Tooling: Performs services like evaluation, RAG, function calling, monitoring, and agent
services like memory and caching.

● Workflows: Provides services like context augmentation, orchestration, prompt chains,
and prompt libraries.

● Model: Provides services like a model API, fine tuning, distillation, and prompt
engineering.

● Data: Provides services like an API, data lake, data warehouse, and feature store.
● Infrastructure: Provides services like servers, serverless implementation, and load

balancing.

After solution builders select the first service or set of services, they iterate through the
enhance, infer, evaluate, and compare steps that are described in the preceding "Deploy"
section. The solution builders then augment or customize model services like re-rankers. With
each service, you have to understand the API, configure, integrate, and deploy it, and optimize
performance factors like response time. To illustrate these steps, consider a document-search
use case. To build a document search feature, you might take the following steps:

1. Choose a vector database like Pinecone or Pgvector, design a schema, and deploy the
database.

2. Select an embedding model based on performance and cost considerations.
3. Fine-tune the embedding model and use use-case data to optimize performance.
4. Select a chunking strategy to segment the data into smaller, digestible pieces.12

5. Populate the vector database with embeddings and mappings to source content.
6. Select a re-ranker to improve underlying retriever performance and to contextualize

results.
7. Optimize the re-ranker by fine-tuning with labeled data sets.
8. Deploy an end-to-end RAG pipeline to production.

The decentralized approach of selecting and combining individual services lets builders have
fine-grained control over every service. For example, you can adjust re-ranker configurations,
fine-tune the model, or augment context. By combining these optimizations, you can maximize
performance. Therefore, the decentralized approach is well suited for use cases with
demanding performance requirements or organizations that can manage complex deployments.

However, building custom connections and deploying services can be time consuming, whether
for RAG, or other services like function calling. Consequently, when builders use multiple

12 Chunking strategy is a technique for segmenting larger documents into small, manageable pieces like
50 characters that can be vectorized and stored to power more accurate search results.
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external services, development time often compounds. Similarly, switching services is a
significant undertaking and doing so can create more potential failure points. An executive
highlighted this challenge: "In our pilot, we selected a vector database that enabled us to get
going quickly; later, we discovered latency issues when we scaled to the 100,000+ documents
for our use case. We had to start over by setting up a new database and refactoring connections
between the database and model."

In addition, as generative AI solutions scale, the decentralized approach can be a potential
limiter. Consider the scenario where the RAG architecture, initially used for document search, is
now used for a customer service use case. The chunking strategy for RAG, which might
incorporate entire case descriptions in a chunk, now adds extraneous information to the
summary for customer service use cases, which decreases accuracy . Additionally, learnings13

from the document-search use case are only incrementally applicable to a customer service use
case because the latter might require different services or customized optimizations. Different
needs and optimizations limit the efficiency gain for subsequent use cases and might limit the
speed at which generative AI can scale across an enterprise.

Further, when solution builders develop for the customer service use case, they will likely
choose models or tools with a faster response time, leading to a different stack relative to RAG.
This fracturing of the stack can complicate the integration of auditing, cost controls, and
governance frameworks, and lead to partial coverage. Consequently, the decentralized
approach can lead to higher-than-expected TCO, unforeseen risks, and ultimately slower
scaling of generative AI.

Platform approach
In contrast to the decentralized approach, the platform approach begins by selecting a platform.
The platform is usually comprised of infrastructure, models, and curated tools that can serve
multiple use cases. Rather than integrating specific services for every capability like the
decentralized approach, the platform approach provides solution builders with curated features.
The features can be customized for each use case, along with support tools like governance
frameworks to manage scaled implementations.

13 Unveiling the Optimal Chunk Size in Retrieval-Augmented Generation
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The following diagram shows the features that are provided by using a platform approach:

Figure 3: Features provided by a platform like Vertex-AI that enable a centralized approach.

The diagram shows how a platform can combine tooling to provide many of the services that are
selected individually in the decentralized approach. In the diagram, Vertex AI provides services
for governance, tooling, workflows, model, and data, while the infrastructure services are part of
the Google Cloud platform that Vertex AI is built on.

Typically, a platform has several features built in, including the following:

● Model garden: A set of APIs to access models, both open-source and proprietary,
allowing solution builders to explore, select, and integrate models into solutions. A model
garden also facilitates APIs to third-party hosted proprietary models.

● Evaluation: Test datasets, dataset creation tools, experimentation frameworks, and
tracing tools to perform evaluations on multiple models for their use case.

● Infrastructure abstraction: Scale compute, data, and networking on demand and
automatically load balance across services and endpoints.
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● Developer tools: Features to customize and train models, including collaborative
workbenches like Jupyter notebooks, prompt engineering tools, fine-tuning capabilities,
and CI/CD for deployment.

● Workflows: Orchestration of end-to-end processes, combining features like RAG and
function calling to execute complex tasks and processes.

● Agents: Development and management of autonomous software to tackle goals,
combining workflow tooling with memory management and prompt libraries.

● Connectors: Prebuilt integrations with commonly used applications, databases, and
systems of record.

The built-in features can range from turn-key features like end-to-end search to AI primitives like
an embedding model. The breadth and built-in support of these features eliminate the need for
integration, testing, extensive deployment, or custom code. To illustrate, consider the document
search use case that was described in the "Decentralized approach" section. In contrast to the
decentralized approach, you can expect to use built-in features and turn-key features and do the
following:

1. Access a RAG feature.
2. Configure the vector database by using a drop-down list to select a vector dimensionality

and a similarity metric like euclidean.
3. Select the embedding model and fine-tune by using a web-based UI.
4. Configure the re-ranker by connecting user data through a no-code interface to add

context.
5. Deploy the feature to production.

As solution builders, you can leverage the platform approach to add features, configure them,
and test them by using a combination of no-code, low-code, or a unified console. Built-in
platform features are easier to use compared to decentralized services, and they're also
interoperable, eliminating the need for custom connections. Using the platform approach shifts
the focus from creating integrations and tuning features to basic configuration and minor
optimization, which lets you get to production faster. However, the typical tradeoff compared to
the decentralized approach is the loss of fine-grained control over the deployment.

Unlike the decentralized approach, the platform approach lets you quickly learn how to set up
features by leveraging use case templates and reusing common tools, patterns, and processes,
which accelerates time to market. Consider the additional customer service use case that was
described in the "Decentralized approach" section. With the platform approach, instead of
selecting completely different services, an implementation team selects from a set of curated
services, which helps to ensure standardization. Further, using platform tools, solution builders
might configure RAG architectures with a different chunking strategy and make adjustments to
the re-ranker, all while delivering adequate performance. As low-code or no-code tools are
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frequently available within a platform, solution builders need fewer specialized resources, which
accelerates time-to-market.

Platforms can also make integrations easier. For example, an executive at a large health insurer
said, "Our platform integrates directly with our governance process, enabling teams to easily
report standard metrics and manage the approval process from their development platform."
This easy-to-use process fosters developer buy-in and streamlines reviews. Further, this
executive mentioned, "Our most popular feature is our centralized billing. Teams get a single bill
for each project, making budgeting and cost control straightforward." By consolidating financial
information, platforms make cost controls easier and give an enterprise confidence in financial
projections. These deep integrations, which are built in to the platform approach, provide flexible
features, simpler implementation, and integrated governance, which enables enterprises to
implement faster and deploy more use cases to production.
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Comparison of decentralized and platform approaches
The decentralized and platform approaches are two proven approaches to implementing
generative AI solutions. This section contrasts the strengths and weaknesses of each.

Business factors
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Consideration Decentralized approach Platform approach

Time-to-market

Longer, due to the manual
selection, integration, and testing of
individual services.

Shorter, through the use of
pre-integrated features that enable
rapid prototyping and accelerate
deployment.

Scalability

Limited, due to custom services
integrations and deployment,
resulting in higher development and
maintenance costs, and slower
deployments.

High, due to built-in, configurable
features that simplify management
and reduce the need for custom
development.

Flexibility

Higher, allows for best-in-class
services, such as model monitoring
from one vendor with model registry
from an alternate vendor.

Lower, due to pre-selected, built-in
features, constraining last-mile
optimization opportunities.

Customer
support

Inconsistent, because diverse
vendor relationships can result in
varying levels of service quality.

Consistent, because of the
customer support experience from a
single vendor.
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Technical factors
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Consideration Decentralized approach Platform approach

Consistency &
repeatability

Lower, because solution builders
can select, develop, and configure
services, which leads to a lack of
consistency across different
solutions.

Higher, because solution builders
choose from curated features.

Ease of
deployment

More complex, due to the
deployment of individual services
that might not be built for
interoperability.

Easier, due to standardized features
that are designed and maintained to
be interoperable.

Development
complexity

Higher, because services require
custom development, configuration,
and connections.

Lower, due to prebuilt,
interoperable, plug-and-play
features.
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Risk and cost management factors

In summary, the decentralized approach maximizes flexibility by allowing solution builders to
choose different vendors for each service. This flexibility potentially enables better performance
but can also lead to higher costs and reduced standardization. By contrast, the strength of the
platform approach is the abstractions in accessing models, integrating capabilities, and building
end-to-end workflows. The platform approach increases speed and improves scalability,
enabling more solutions to get to production. However, the platform approach might also limit
the tools, capabilities, and control that experienced solution builders seek. These limitations
highlight the importance of selecting the right platform that offers the flexibility to meet your
needs.
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Consideration Decentralized approach Platform approach

Total cost of
ownership
(TCO)

Higher and unpredictable, due to
the technical and operational
overhead of developing,
maintaining, integrating, and
upgrading duplicative models and
services.

Lower and predictable, due to
fewer vendor relationships,
interoperable standardized features,
and lower maintenance costs.

Governance

Manual, including deployment of
guardrails, safety features, and
model management through
individual services.

Integrated, because guardrails,
safety features, model management,
and data lineage are typically
prebuilt.

Vendor lock-in

Minimal, because solution builders
can select services from multiple
vendors, which limits the extent of
migration and reliance on a single
vendor.

Moderate, because solution
builders create most features on a
single vendor's platform, and
therefore migrating to another
platform requires refactoring.

Security

Higher risk, due to the need for
standalone security services and
greater attack surface area from
custom integrations and data in
motion.

Lower risk, due to integrated
solution with out-of-the-box security
features and less attack surface
area due to fewer integration and
less data transit.
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Recommendations for approaching generative AI solution
deployment
The decentralized and platform approaches are distinct ways to implement enterprise
generative AI. The following guidelines can help you to shape this decision.

● Deep technical expertise: Suited for
organizations with experienced AI/ML
teams developing custom solutions.

● Best-in-class performance: Suited to
organizations that seek extensive
customization to improve last-mile
performance and gain a competitive
edge.

● Specialized vendors: Favors
organizations that seek to integrate
specific services and vendors that
might not be compatible with platform
vendors.

● Flexibility: Fits organizations that are
looking to avoid vendor lock-in to
preserve optionality between services,
tools, and vendors.

● Rapid time to market: Suitable when
prioritizing fast implementations and
deployments with prebuilt features.

● Enterprise-wide deployments:
Favors a standard, central framework
for use across multiple business lines.

● Lower TCO: Supports long-term
cost-efficiency with lower maintenance
costs and flexible pricing.

● Scalability: Enables rapid growth,
using features like auto-scaling to
meet demand.

● Large, distributed teams: Fits
geographically dispersed teams by
encouraging standardization and
collaboration.

● Proof-of-concept deployments: Suits
a quick pilot, using low-code or
no-code features for rapid MVP
development.

Organizations that are aiming to maximize performance for a few use cases, and that have
experience implementing AI solutions, should consider the decentralized approach. For most
organizations, particularly those that are prioritizing rapid deployments and scaling, the platform
approach is likely more suitable. Platforms like Vertex AI offer models, infrastructure, and tools
that simplify implementations and accelerate the deployment of use cases. By adopting the
platform approach, organizations can rapidly move proof of concepts to production and realize
the benefits of generative AI.
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