
 AlloyDB for PostgreSQL - Analytical (OLAP) 
 Benchmarking Guide 

 May 2023 

 Disclaimer  1 
 Overview  3 
 Infrastructure Setup  5 

 Setting-up AlloyDB Cluster and Instance  5 
 Provision Client Machine  7 

 Setup of Benchmark Driver Machine (Client)  8 
 Benchmark Cleanup: An important Prerequisite  9 
 TPC-H Benchmark  10 

 Prerequisites  10 
 Initial Benchmarking Setup  10 
 Script to load TPC-H data  12 
 Columnar Engine (CE) Flags  14 
 Running the TPC-H benchmark  23 
 Expected TPC-H Results  27 

 OLAP Atomics Benchmarking  28 
 Setup, Configuration and Tuning  28 
 Queries in OLAP Atomics  32 
 Execute OLAP Atomics  33 
 Expected Results  34 

 AlloyDB OLAP Benchmarking Guide  1 



 Disclaimer 

 This  AlloyDB  for  PostgreSQL  benchmark  guide  provides  best  practices  for  running  an  Online  Analytical  (OLAP) 
 benchmark.  Your  results  may  vary  depending  on  several  factors  including,  but  not  limited  to  the  type  of 
 AlloyDB  instance,  type  of  client  machine  driving  the  benchmark,  region,  zone,  and  network  bandwidth  at 
 the  time  of  tests.  Nothing  in  this  user  guide  should  be  construed  as  a  promise  or  guarantee  about  the  results 
 you’ll derive from measuring the OLAP performance of AlloyDB. 

 AlloyDB OLAP Benchmarking Guide  2 

https://www.lawinsider.com/clause/promise
https://www.lawinsider.com/clause/guarantee


 Overview 

 AlloyDB  for  PostgreSQL  on  Google  Cloud  is  a  relational  database  built  to  give  you  enterprise  grade  reliability, 
 scalability,  and  performance  suitable  for  critical,  enterprise-level  workloads.  AlloyDB  has  state-of-the-art 
 log  and  transaction  management,  dynamic  memory  management,  artificial  intelligence  and  machine 
 learning  integration,  a  built-in  columnar  engine,  and  a  multi-tiered  cache,  and  is  based  on  distributed, 
 scalable  storage.  As  a  whole,  these  features  enable  high  performance  for  your  transactional  (OLTP)  , 
 analytical (OLAP), and hybrid (HTAP) workloads. 

 The  focus  of  this  guide  is  to  provide  a  step-by-step  procedure  to  evaluate  the  analytical  performance  of 
 AlloyDB  which  is  powered  by  the  Columnar  Engine  feature  that  stores  and  manages  data  in  the  columnar 
 format.  The  Columnar  Engine  is  designed  and  optimized  for  the  efficient  storage  and  retrieval  of  column 
 data  for  analytical  workloads  where  the  emphasis  is  on  efficiently  processing  large  volumes  of  data 
 compared  to  row-based  data  storage  and  to  generate  insights,  analysis  and  reporting.  The  analytical  queries 
 execute  substantially  faster  because  the  Columnar  Engine  selectively  accesses  and  processes  only  the 
 columns  of  data  that  are  pertinent  to  the  query,  resulting  in  significant  query  performance  improvements. 
 Users  of  AlloyDB  have  a  choice  of  running  only  transactional  workloads  (disable  Columnar  Engine),  run 
 analytical  queries  along  with  transactional  workloads  (enable  Columnar  Engine  and  allocate  appropriate 
 memory), or run purely analytical workloads on read pools. 

 Relational  database  systems  typically  require  database  administrators  (DBAs)  to  optimize  them  for 
 benchmarking,  which  includes  configuring  the  transaction  log  settings,  establishing  the  right  buffer  pool 
 sizes,  and  tweaking  other  important  database  parameters  (flags)  and  characteristics.  These  settings  would 
 also  vary  depending  on  the  size  and  type  of  the  instance.  AlloyDB  comes  pre-configured  with  optimal 
 Columnar  Engine  settings  for  each  machine  type  and  requires  very  minimal  tuning  to  achieve  an  optimal 
 OLAP performance. 

 This  document  describes  a  step-by-step  procedure  to  deploy  and  configure  the  AlloyDB  cluster,  a  benchmark 
 driving  (client)  machine,  and  provides  best  practices  to  measure  the  performance  of  AlloyDB  using  a  variety 
 of  OLAP  benchmarks,  like  HammerDB  TPROC-H  (derived  from  TPC-H  )  with  different  scale  factors  and  OLAP 
 atomic queries developed internally at Google. 

 Since  HammerDB’s  TPROC-H  implementation  is  a  close  variant  of  the  official  TPC-H  benchmark,  we  will  use 
 the terms TPC-H and TPROC-H interchangeably throughout this user guide. 

 Unless otherwise specified, we used following setup for performance benchmarking: 

 Component  Value 

 AlloyDB Cluster Type  Highly Available 

 AlloyDB Machine Type  16vCPU / 128GB / Storage auto-allocated. 
 Intel® Xeon® Platinum 8373C Processor (Ice Lake) 3rd Generation* 

 AlloyDB OLAP Benchmarking Guide  3 

https://www.hammerdb.com/index.html
https://www.hammerdb.com/docs/ch11s01.html


 Component  Value 

 Database Version  PostgreSQL 14 compatible (14.4) 

 Region  us-central1 (Iowa) 

 AlloyDB Primary zone  us-central1-c  (Auto-selected) 

 AlloyDB Secondary zone  Us-central1-f (Auto-selected) 

 Client VM - Machine Type  E2-standard-32 (Intel-Broadwell) / 128GB /  128 GB persistent disk as 
 boot disk 

 NOTE: A large client machine can help you with faster load of TPC-H 
 database. For power run of TPC-H, you don’t need a large machine. 

 Operating System  : Debian 5.10.162-1, x86_64 GNU/Linux 

 Zone of Client VM  us-central1-c   [same as AlloyDB primary instance] 

 Connectivity  Private IP over VPC 

 Test tools  HammerDB-4.6 
 Psql 

 Workloads  TPC-H benchmark on a 16 vCPU machine with scale-factor of 10, 30 
 and 100. 

 A collection of 11 primitive OLAP queries to measure the decision 
 support capability of the AlloyDB columnar engine. 

 When you deploy AlloyDB, it will be provisioned on either  Intel Cascade Lake or the newer Intel Ice  Lake 
 platform depending on the availability in that region. 

 AlloyDB OLAP Benchmarking Guide  4 

https://cloud.google.com/compute/docs/cpu-platforms#intel_processors


 Infrastructure Setup 

 Setting-up AlloyDB Cluster and Instance 

 1.  Create  or  select  your  GCP  project:  Go  to  https://console.cloud.google.com  and  select  your  project 
 from the drop down menu or create a new one. 

 2.  Follow  these  links  on  the  portal:  “Products  and  Solutions”  →  “All  Products”  →  “Databases”  → 
 “AlloyDB for PostgreSQL”. 

 3.  Click on the following button to create an AlloyDB cluster. 

 4.  Choose "  Highly Available  " for the cluster type and  "  PostgreSQL14  " for the database. 
 For illustration, consider the image below. 

 AlloyDB OLAP Benchmarking Guide  5 

https://console.cloud.google.com/


 AlloyDB OLAP Benchmarking Guide  6 



 5.  Unless  otherwise  specified,  in  this  guide,  we  used  a  16  vCPU  with  128  GB  RAM  as  a  primary  AlloyDB 
 instance  deployed  in  a  highly  available  mode  without  a  readpool.  Note  the  location  of  the  primary 
 zone  and  private  IP  .  These  will  be  used  when  configuring  the  client  machine.  Use  the  illustration 
 below as a guide. 

 6.  Configuring and tuning AlloyDB columnar-engine settings varies depending on the benchmark type 
 and scenario. Those instructions will be covered in a later section. 

 Provision Client Machine 

 Unless  otherwise  specified,  we  used  an  E2-standard-32  VM  with  128  GB  disk  as  a  client  for  the  TPC-H 
 benchmarking. The client VM is created in the  same  zone  as AlloyDB’s primary instance. 

 For  this  analytical  benchmarking  guide,  we  will  be  primarily  using  TPC-H  and  OLAP  atomic  queries,  and  we 
 do  not  need  a  large  client  VM  to  execute  the  benchmarks  (i.e.  queries).  However,  loading  a  large  TPC-H 
 database (especially, scale factor of size 30 or 100) will be faster with a large client machine. 

 Important  :  For  this  exercise,  the  Debian  linux  client  must  be  provisioned  in  the  same  region,  zone,  and  VPC 
 as AlloyDB’s primary instance. Benchmarking tools directly access the AlloyDB instance over private IP. 

 Below  is  a  sample  client  machine  we  provisioned  to  execute  the  TPC-H  benchmark  on  an  AlloyDB  primary 
 instance with 16 virtual CPUs. 

 AlloyDB OLAP Benchmarking Guide  7 



 Setup of Benchmark Driver Machine (Client) 

 This  section  will  guide  you  through  the  steps  of  configuring  the  client  machine  running  on  Google  Cloud, 
 where we will install important tools such as HammerDB and PSQL. 

 AlloyDB OLAP Benchmarking Guide  8 



 Connect  to  the  client  machine  using  the  “gcloud  compute  ssh”  command.  Refer  to  this  documentation  for 
 details “  https://cloud.google.com/sdk/gcloud/reference/compute/ssh  ”. 

 Sample  gcloud  command to connect with the client machine: 

 gcloud compute ssh  --  zone  "<primary zone>"  "<client  machine name>"  --  project  "<google-project>" 

 Install PostgreSQL client 

 You  will  need  a  psql  client  application  to  connect  to  AlloyDB  PostgreSQL.  Use  the  following  command  to 
 install a  postgresql  client that includes a  psql  application  and then ensure you are able to connect. 

 sudo apt  -  get  update 

 sudo apt  install  postgresql  -  client 

 Now  ensure  that  it  works  and  you  are  able  to  connect  to  the  AlloyDB  PostgreSQL.  Use  the  “Private  IP” 
 address of your primary AlloyDB instance. 

 export  PGPASSWORD  =<  password of postgres user  set  during  AlloyDB  instance creation  > 

 export  PGHOST  =<  Private  IP of your  AlloyDB  Primary  Instance  > 

 psql  -  U postgres 

 Install HammerDB-4.6 Driver for TPC-H benchmark 

 For  this  benchmarking  guide,  we  utilized  the  HammerDB-4.6  driver.  Execute  the  following  commands  to 
 install HammerDB driver: 

 mkdir hammerdb 

 pushd hammerdb 

 curl  -  OL 

 https  :  //github.com/TPC-Council/HammerDB/releases/download/v4.6/HammerDB-4.6-Linux.tar.gz 

 Benchmark Cleanup: An important Prerequisite 

 This  step  is  important  if  you  are  planning  to  execute  multiple  benchmarks  in  succession.  Performing  a  proper 
 cleanup  between  each  benchmark  is  a  critical  prerequisite  for  accurate  and  reliable  benchmarking  results. 
 This  includes  deleting  previous  benchmark  data  (i.e.  benchmark  database),  and  rebooting  the  AlloyDB 
 instance  (that  clears  caches  at  database  and  operating  systems  level)  before  running  another  benchmark.  A 
 proper  benchmark  cleanup  ensures  that  residual  effects  from  previous  benchmarks  do  not  affect  the 
 performance  measurements  of  the  new  benchmark.  It  also  helps  to  ensure  consistency  and  repeatability  of 

 AlloyDB OLAP Benchmarking Guide  9 

https://cloud.google.com/sdk/gcloud/reference/compute/ssh


 the  benchmark  results,  which  is  essential  for  making  meaningful  comparisons  between  different  systems  or 
 identifying areas for optimization in hardware, software, or configuration. 

 Follow  the  URL  https://cloud.google.com/alloydb/docs/instance-restart  to  learn  more  about  how  to  reboot 
 an AlloyDB instance. 

 To drop the previous benchmark database, you can use the following psql command from the client 
 machine. 

 psql  -  h  <  Private  IP  >  -  U postgres  -  c  "  DROP  DATABASE  [  IF  EXISTS  ] <database_name>;" 

 TPC-H Benchmark 

 HammerDB  is  a  popular  benchmarking  tool  that  includes  TPC-H  (A  standard  decision  support  benchmarking 
 tool)  implementation  for  evaluating  performance  of  OLAP  support  in  AlloyDB  PostgreSQL.  HammerDB  TPC-H 
 measures  the  performance  of  a  database  system  by  executing  a  set  of  22  standard  queries.  The  TPC-H 
 benchmark  is  a  widely  accepted  industry  standard  benchmark  for  decision  support  systems  that  involves 
 complex queries and large data sets. 

 This  section  provides  a  comprehensive  guide  on  how  users  can  customize  HammerDB  to  execute  the  TPC-H 
 benchmark to gauge the performance of the AlloyDB PostgreSQL database system. 

 Prerequisites 

 A.  You  need  to  run  the  following  steps  from  a  client  (driver)  machine.  Ensure  that  you  have  completed 
 the  setup  steps  listed  in  the  “  Setup  of  Benchmark  Driver  Machine  (Client)  ”  section  (especially 
 installation of the HammerDB utility). 

 B.  Cleanup  :  If  you  are  running  multiple  benchmarks  in  succession,  ensure  you  follow  the  “  Cleanup:  An 
 important Prerequisite  ” section before doing your  subsequent run. 

 Initial Benchmarking Setup 

 Connect to the client machine and execute all the following commands from the  hammerdb/HammerDB-4.6 
 directory. 

 cd hammerdb  /  HammerDB  -  4.6 

 Then create  setup.env  file as follows: 

 AlloyDB OLAP Benchmarking Guide  10 

https://cloud.google.com/alloydb/docs/instance-restart
https://www.tpc.org/tpch/default5.asp


 cat  <<  EOF  >  setup  .  env 

 # Private IP of the AlloyDB primary instance 

 export  PGHOST  =  111.222  .  333.444 

 # Postgres default port address. You do not need to change it unless you use non-default port 

 address. 

 export  PGPORT  =  5432     # default port to connect with  postgres 

 # Set the password that you used during AlloyDB instance creation. 

 export  PGPASSWORD  =  '<postgres_user_password>' 

 # TPC-H Scale Factor (determines the size of the database that we want to build). 

 export  TPCH_SCALE  =  10 

 EOF 

 Edit  the  generated  setup.env  file  and  change  the  above  parameter  values  to  those  that  are  suitable  to  your 
 environment setup. 

 For  the  purpose  of  this  benchmarking  guide,  we  evaluate  the  performance  using  three  important  scale 
 factor (  TPCH_SCALE  ) sizes (i.e. 10, 30 and 100) of  the TPC-H benchmark. 

 In  the  context  of  TPC-H  benchmark,  scale  factor  refers  to  the  size  of  the  data  set  used  in  the  benchmarking 
 process.  The  scale  factor  is  determined  by  the  number  of  rows  in  the  TPC-H  database  tables  and  it 
 represents the volume of data to be processed by TPC-H queries. 

 The  scale  factors  10  ,  30  ,  and  100  represent  data  sets  of  approximate  sizes  20GB  ,  60GB  and  200GB  , 
 respectively.  The  significance  of  trying  these  different  scale  factors  is  to  evaluate  the  performance  of  the 
 database system under varying data volumes and workloads. 

 When  a  database  system  is  tested  with  a  smaller  scale  factor,  such  as  10,  it  may  perform  well  as  the  data  set 
 size  is  relatively  small.  However,  as  the  data  set  size  increases,  the  performance  of  the  database  system 
 may  decrease  due  to  increased  resource  consumption,  buffer  cache  hit  misses,  and  other  processing 
 overheads.  Testing  the  database  system  with  larger  scale  factors,  such  as  30  or  100,  can  help  identify 
 potential  performance  bottlenecks  and  scalability  issues  in  the  database  system  that  may  arise  under  heavy 
 workloads and larger data sets. 

 Furthermore,  testing  with  different  scale  factors  helps  to  evaluate  a  database  system’s  ability  to  scale  with 
 increasing  data  sizes.  This  information  can  be  useful  for  organizations  that  need  to  handle  large  amounts  of 
 data and require a database system that can scale efficiently to meet their needs. 

 NOTE  :  The  number  of  users  (or  clients)  is  set  to  1,  since  this  user  guide  is  only  running  TPC-H  in  power 
 mode  and not the throughput mode. 

 AlloyDB OLAP Benchmarking Guide  11 



 Script to load TPC-H data 

 For  the  TPC-H  benchmark,  a  "  load  step  "  refers  to  the  process  of  populating  the  benchmark  database  with 
 initial data before running the actual performance test. 

 During  this  step,  the  benchmarking  tool  inserts  data  into  the  tpch  database  tables  according  to  the 
 specified  scale  factor.  The  purpose  of  the  load  step  is  to  create  a  realistic  workload  for  the  performance  test 
 and to ensure that the test results are comparable across different systems. 

 After  the  load  step  is  completed,  the  database  is  in  a  consistent  state  with  a  defined  set  of  initial  data, 
 ready to be used for the TPC-H benchmark test. 

 Follow the steps below to load the TPC-H database: 

 1.  Switch to the benchmark home directory. 

 cd hammerdb  /  HammerDB  -  4.6 

 source  ./  setup  .  env 

 2.  Create  build-tpch.sh  file as follows: 

 #!/bin/bash -x 

 source  ./  setup  .  env 

 ./  hammerdbcli  <<  EOF 

 # CONFIGURE PARAMETERS FOR TPC-H BENCHMARK 

 # -------------------------------------- 

 dbset db pg 

 dbset bm tpc  -  h 

 # CONFIGURE POSTGRES HOST AND PORT 

 # -------------------------------------- 

 diset connection pg_host $PGHOST 

 diset connection pg_port $PGPORT 

 # CONFIGURE TPC-H 

 # -------------------------------------- 

 diset tpch pg_tpch_superuser postgres 

 diset tpch pg_tpch_superuserpass $PGPASSWORD 

 diset tpch pg_tpch_user postgres 

 diset tpch pg_tpch_pass $PGPASSWORD 

 diset tpch pg_tpch_dbase tpch 

 AlloyDB OLAP Benchmarking Guide  12 



 # -------------------------------------- 

 diset tpch pg_scale_fact $TPCH_SCALE 

 diset tpch pg_num_tpch_threads  32 

 diset tpch pg_refresh_on  false 

 diset tpch pg_refresh_verbose  false 

 diset tpch pg_degree_of_parallel  8 

 vuset vu  1 

 # logging 

 vuset logtotemp  1 

 vuset timestamps  0 

 vuset unique  0 

 # load and run benchmarking script 

 loadscript 

 buildschema 

 # terminate when completed 

 vudestroy 

 quit 

 EOF 

 3.  Execute the load command as shown below and wait for the command to finish. 

 chmod  +  x  ./  build  -  tpch  .  sh 

 mkdir -p results 

 sudo nohup  ./  build  -  tpch  .  sh  >  results  /  build  -  tpch  .  out  2  >&  1 

 4.  Validate  Load  :  The  load  step  is  an  important  aspect  of  the  TPC-H  benchmark  because  it  affects  the 
 benchmark's  accuracy  and  repeatability.  The  quality  and  consistency  of  the  data  that  is  loaded  into 
 the  database  can  have  a  significant  impact  on  the  performance  measurements,  and  therefore,  it  is 
 important to validate that the load step is executed properly. 

 Use the following commands to validate the load quickly: 

 $  .  ./  setup  .  env 

 $ psql  -  h $PGHOST  -  U postgres 

 postgres  =>  \  l  +  tpch 

                                                                                List  of 

 databases 

        Name       |         Owner         |  Encoding  |  Collate  |     Ctype     |             Access 

 privileges            |     Size     |  Tablespace  |                    Description                

 AlloyDB OLAP Benchmarking Guide  13 



   

 --------------+------------------+----------+---------+---------+---------------------- 

 -----------------+---------+------------+-------------------------------------------- 

  tpch          |  postgres              |  UTF8      |  C  .  UTF  -  8  |  C  .  UTF  -  8  |                    

                      |  ---  GB    |  pg_default  | 

 The  scale  factors  10,  30,  and  100  represent  data  sets  of  approximate  sizes  20GB  ,  60GB  and  200GB  , 
 respectively. Ensure that the size of the  tpch  database  matches the scale factor of your choice. 

 Columnar Engine (CE) Flags 

 AlloyDB’s  Columnar  engine  related  parameters  (flags)  come  with  optimal  settings  and  no  tuning  is  generally 
 required  except  that  the  columnar  engine  is  to  be  enabled.  However,  for  this  user  guide,  updating  them  with 
 proper  values  allows  for  efficient  processing  of  analytical  queries,  reduces  query  response  times  and 
 improves  resource  utilization,  which  are  critical  factors  for  organizations  that  need  to  handle  large  volumes 
 of data and require fast and accurate analysis of that data. 

 Important Flags to Tune 

 The following are the database flags that we tune to enhance the efficacy of OLAP workloads: 

 Database Flag 
 Is 
 AlloyDB 
 Unique? 

 Description  Default 
 Value 

 work_mem  No 

 Increasing the work_mem value can improve the performance 
 of queries that perform a lot of temporary work (like sorting, 
 hashing, bitmap,  etc.  ). If your AlloyDB instance does  not have 
 adequate memory, a very high value of work_mem may cause 
 performance issues.  16MB 

 default_statistics_target  No 

 Increasing the default_statistics value can improve the 
 accuracy of the query planner's estimates, which can lead to 
 better performance for queries that access the column. 
 However, significantly high values can also increase the time it 
 takes to analyze the table.  100 

 google_columnar_engine 
 .enabled  Yes 

 This configuration flag in AlloyDB for PostgreSQL specifies 
 whether the Columnar Engine is enabled or not. The Columnar 
 Engine is a new feature in AlloyDB that can significantly 
 improve the performance of analytical queries.  OFF 

 google_columnar_engine 
 .memory_size_in_mb  Yes 

 This flag in AlloyDB for PostgreSQL specifies the amount of 
 memory that is allocated to the columnar engine. The default 
 value is ~30% of the RAM on the VM, but it can be increased or 
 decreased depending on the needs of your database. 

 ~30% of 
 the 
 RAM 
 size 

 AlloyDB OLAP Benchmarking Guide  14 



 google_columnar_engine 
 .relations  Yes 

 This configuration flag in AlloyDB for PostgreSQL specifies a set 
 of tables and their columns that need to be stored in the 
 columnar format. The columnar format is a more efficient way 
 to store data for analytical queries, so using this flag can 
 improve the performance of those queries. 

 Empty 
 string. 

 Tuning for Scale Factors 10 and 30 

 Since  the  database  sizes  for  scale  factors  10  and  30  are  significantly  smaller  than  available  RAM  (128GB)  on 
 the  16  vCPU  machine  type,  we  can  simply  allow  all  the  entire  tpch  database  (i.e.  all  the  columns  of  all  tpch 
 relations) to be populated in the columnar engine. 

 Below are the simple tuning steps: 

 1.  Open  https://console.cloud.google.com  and  go  to  the  AlloyDB  Primary  Cluster  →  AlloyDB  Primary 
 Instance page. 

 2.  Edit the AlloyDB primary instance and add or update the following  Flags from the UI  : 

 ●  work_mem = 65536 
 ●  default_statistics_target = 200 
 ●  google_columnar_engine.enabled = ON 
 ●  google_columnar_engine.memory_size_in_mb = 30720 
 ●  google_columnar_engine.relations = 

 tpch.public.customer,tpch.public.lineitem,tpch.public.nation,tpch.public.orders,tpch.public. 
 part,tpch.public.partsupp,tpch.public.region,tpch.public.supplier 

 Below is a screenshot for your reference: 

 AlloyDB OLAP Benchmarking Guide  15 

https://console.cloud.google.com/


 3.  Click  on  the  UPDATE  INSTANCE  button  and  then  you  should  see  the  following  screen.  Since  a  few 
 settings  would  require  the  instance  to  restart,  you  must  allow  it  to  restart  by  clicking  the  CONFIRM 
 AND RESTART  button (as shown in the image below). 

 AlloyDB OLAP Benchmarking Guide  16 



 4.  Wait  for  the  restart  operation  to  finish.  It  will  take  a  few  minutes  to  complete  since  the  AlloyDB 
 instance needs to be restarted. 

 5.  Monitor the population of columnar-engine as follows: 

 a.  Confirm  that  google_columnar_engine.enabled  is  set  to  on  .  Use  the  command  psql  -h 
 $PGHOST -U postgres -c "SHOW google_columnar_engine.enabled"  for this purpose. 

 b.  Check  the  status  of  columnar  engine  population  within  the  tpch  database  by  using  the 
 following command. 

 psql  -  U postgres  -  d tpch 

 ... 

 tpch  =>  select  *  from  g_columnar_relations  ;  \  watch  10 

 Note  \watch  10  at  the  end  of  the  SQL  command  which  executes  the  command  every  10 
 seconds.  You  should  observe  the  output  of  this  command  until  it  no  longer  changes.  Once  the 
 output  stops  changing,  specifically,  check  block_count_in_cc=total_block_count  for  every 
 relation,  go  to  the  next  step  for  validation  of  the  output.  Also  as  a  general  rule  of  thumb, 
 ensure that the  total_block_count  matches  block_count_in_cc  for all the relations. 

 c.  Validate the status of columnar engine population as follows: 

 Validation State for Scale Factor = 10 

 Below is the final state of the columnar engine after population was done for scale factor 10: 

 psql  -  U postgres  -  d tpch 

 tpch  =>  select  *  from  g_columnar_relations 

 database_name  |  schema_name  |  relation_name  |  status  |  size  | 

 uncompressed_size  |  columnar_unit_count  |  invalid_block_count  |  block_count_in_cc  | 

 total_block_count  |  auto_refresh_trigger_count  |  auto_refresh_failure_count  | 

 auto_refresh_recent_status 

 ---------------+-------------+---------------+--------+------------+--------------- 

 ----+---------------------+---------------------+-------------------+-------------- 

 -----+----------------------------+----------------------------+------------------- 

 --------- 

 tpch  |  public  |  supplier  |  Usable  |  17275132  | 

 17275132  |  1  |  0  |  2268  | 

 2268  |  0  |  0  |  NONE YET 

 tpch  |  public  |  part  |  Usable  |  140325324  | 

 140325324  |  11  |  0  |  41942  | 

 AlloyDB OLAP Benchmarking Guide  17 



 41942  |  0  |  0  |  NONE YET 

 tpch  |  public  |  region  |  Usable  |  3642  | 

 3642  |  1  |  0  |  1  | 

 1  |  0  |  0  |  NONE YET 

 tpch  |  public  |  nation  |  Usable  |  6048  | 

 6048  |  1  |  0  |  1  | 

 1  |  0  |  0  |  NONE YET 

 tpch  |  public  |  orders  |  Usable  |  1509117771  | 

 1509117771  |  69  |  0  |  278710  | 

 278710  |  0  |  0  |  NONE YET 

 tpch  |  public  |  lineitem  |  Usable  |  4831946995  | 

 4831946995  |  325  |  0  |  1330899  | 

 1330899  |  0  |  0  |  NONE YET 

 tpch  |  public  |  customer  |  Usable  |  276859377  | 

 276859377  |  9  |  0  |  36658  | 

 36658  |  0  |  0  |  NONE YET 

 tpch  |  public  |  partsupp  |  Usable  |  1258041408  | 

 1258041408  |  45  |  0  |  183648  | 

 183648  |  0  |  0  |  NONE YET 

 (  8  rows  ) 

 Alternatively, you can use 

 tpch =>select relation_name, block_count_in_cc, total_block_count, 
 block_count_in_cc=total_block_count from g_columnar_relations order by 1; 

 Validation state for Scale Factor = 30 

 Execute the command  psql -U postgres -d tpch -c  "  select  * from g_columnar_relations  " 
 and verify that the output is columnar-engine population is close to the following numbers: 

 tpch  =>  database_name  |  schema_name  |  relation_name  |  status  |  size  | 

 uncompressed_size  |  columnar_unit_count  |  invalid_block_count  |  block_count_in_cc 

 |  total_block_count  |  auto_refresh_trigger_count  |  auto_refresh_failure_count  | 

 auto_refresh_recent_status 

 ---------------+-------------+---------------+--------+-------------+------------- 

 ------+---------------------+---------------------+-------------------+----------- 

 --------+----------------------------+----------------------------+--------------- 

 ------------- 

 tpch  |  public  |  orders  |  Usable  |  4721850499  | 

 4721850499  |  206  |  0  |  840965  | 

 840965  |  0  |  0  |  NONE YET 

 tpch  |  public  |  partsupp  |  Usable  |  3802494436  | 

 3802494436  |  135  |  0  |  551724  | 

 551724  |  0  |  0  |  NONE YET 

 tpch  |  public  |  customer  |  Usable  |  830579812  | 

 AlloyDB OLAP Benchmarking Guide  18 



 830579812  |  27  |  0  |  109974  | 

 109974  |  0  |  0  |  NONE YET 

 tpch  |  public  |  part  |  Usable  |  423694950  | 

 423694950  |  31  |  0  |  125855  | 

 125855  |  0  |  0  |  NONE YET 

 tpch  |  public  |  supplier  |  Usable  |  52037086  | 

 52037086  |  2  |  0  |  6807  | 

 6807  |  0  |  0  |  NONE YET 

 tpch  |  public  |  nation  |  Usable  |  6062  | 

 6062  |  1  |  0  |  1  | 

 1  |  0  |  0  |  NONE YET 

 tpch  |  public  |  region  |  Usable  |  3551  | 

 3551  |  1  |  0  |  1  | 

 1  |  0  |  0  |  NONE YET 

 tpch  |  public  |  lineitem  |  Usable  |  15045734637  | 

 15045734637  |  983  |  0  |  4025408  | 

 4025408  |  0  |  0  |  NONE YET 

 (  8  rows  ) 

 Tuning for Scale Factor 100 

 The  size  of  the  tpch  database  that  we  load  with  TPCH_SCALE=100  is  approximately  205GB.  This  database 
 size  is  substantially  larger  than  the  size  of  available  RAM  on  the  machine  (128  GB)  of  type  16  virtual  CPUs. 
 We  cannot  therefore  populate  the  columnar  engine  for  the  entire  database.  This  is  where  AlloyDB  Columnar 
 Engine’s  auto  columnarization  comes  into  action.  Now  that  we  must  let  CE  observe  the  workload  first, 
 the  tuning  steps  here  differ  slightly.  After  we  enable  the  Columnar  Engine  ,  we  need  to  execute  the  entire 
 set  of  TPC-H  queries  once.  That  enables  the  recommendation  engine  to  make  suggestions  on  the  optimal 
 values  to  set  for  google_columnar_engine.relations  and  google_columnar_engine. 

 memory_size_in_mb  database flags. 

 Below are the simple tuning steps: 

 1.  Open  https://console.cloud.google.com  and  go  to  the  AlloyDB  Primary  Cluster  ->  AlloyDB  Primary 
 Instance page. 

 2.  Edit  the  AlloyDB  primary  instance  and  add  or  update  the  following  Flags  (refer  Important  Flags  to 
 Tune  to learn more about these flags): 

 ●  work_mem = 65536 
 ●  default_statistics_target = 200 
 ●  google_columnar_engine.enabled = ON 
 ●  google_columnar_engine.memory_size_in_mb = 40960 

 3.  Click  on  the  UPDATE  INSTANCE  button  and  allow  the  AlloyDB  instance  to  restart  by  clicking  the 
 CONFIRM AND RESTART  button. 

 AlloyDB OLAP Benchmarking Guide  19 

https://console.cloud.google.com/


 4.  Wait  for  the  AlloyDB  instance  to  finish  the  update  and  restart  operation.  It  will  take  a  few  minutes  to 
 complete since the AlloyDB instance needs to be restarted. 

 5.  Confirm  that  google_columnar_engine.enabled  is  set  to  on  .  Use  following  command  to  confirm 
 this: 

 psql  -  h $PGHOST  -  U postgres 

 postgres  =>  SHOW google_columnar_engine  .  enabled  ; 

 6.  Reset the columnar engine recommendation by using the following command: 

 psql  -  h $PGHOST  -  U postgres  -  d tpch  -  c  "SELECT 

 google_columnar_engine_reset_recommendation('true')"  ; 

 7.  Observe  workload  :  In  this  step,  you  simply  execute  all  of  the  22  TPC-H  queries  (just  once)  that  will 
 let  Columnar  Engine  observe  the  workload  to  make  optimal  tuning  suggestions.  You  can  create  and 
 execute  the  following  script  to  train  the  engine  (execute  it  from  hammerdb/HammerDB-4.6 
 directory): 

 Create and execute  train-recommendation-engine.sh  script 

 #!/bin/bash -x 

 source  ./  setup  .  env 

 ./  hammerdbcli  <<  EOF 

 # CONFIGURE PARAMETERS FOR TPC-H BENCHMARK 

 # -------------------------------------- 

 dbset db pg 

 dbset bm tpc  -  h 

 # CONFIGURE POSTGRES HOST AND PORT 

 # -------------------------------------- 

 diset connection pg_host $PGHOST 

 diset connection pg_port $PGPORT 

 # CONFIGURE TPC-H 

 # -------------------------------------- 

 diset tpch pg_tpch_superuser postgres 

 diset tpch pg_tpch_superuserpass  $PGPASSWORD 

 diset tpch pg_tpch_user postgres 

 diset tpch pg_tpch_pass  $PGPASSWORD 

 diset tpch pg_tpch_dbase tpch 

 AlloyDB OLAP Benchmarking Guide  20 

http://train-recommendation-engine.sh/


 diset tpch pg_scale_fact $TPCH_SCALE 

 diset tpch pg_num_tpch_threads  1 

 diset tpch pg_degree_of_parallel  8 

 vuset vu  1 

 # logging 

 vuset logtotemp  1 

 vuset timestamps  0 

 vuset unique  0 

 # load tpc-h script and run benchmark 

 loadscript 

 vurun 

 # terminate when completed 

 waittocomplete 

 vudestroy 

 quit 

 EOF 

 8.  Optimal  tuning  suggestion  :  Once  all  the  queries  from  previous  step  finish  to  execute,  run  the 
 following command to find the optimal columnar engine tuning for  tpch  database: 

     psql  -  h $PGHOST  -  U postgres  -  d tpch  -  c  "SELECT 

 google_columnar_engine_recommend('RECOMMEND_SIZE')" 

 a.  This  command  uses  the  recommendation  engine  to  recommend  the  performance  optimal 
 memory size and recommended column. 

 b.  Output  looks like following: 

 (  39454  ,  "tpch.public.customer(c_acctbal,c_address,c_comment,c_custkey,c_mktsegment,c 

 _name,c_nationkey,c_phone),tpch.public.lineitem(l_commitdate,l_discount,l_extendedp 

 rice,l_linestatus,l_orderkey,l_partkey,l_quantity,l_receiptdate,l_returnflag,l_ship 

 date,l_shipinstruct,l_shipmode,l_suppkey,l_tax),tpch.public.orders(o_custkey,o_orde 

 rdate,o_orderkey,o_orderpriority),tpch.public.part(p_brand,p_container,p_name,p_par 

 tkey,p_size,p_type),tpch.public.partsupp(ps_partkey,ps_suppkey,ps_supplycost),tpch. 

 public.supplier(s_address,s_comment,s_name,s_nationkey,s_suppkey)"  ) 

 AlloyDB OLAP Benchmarking Guide  21 



 c.  Note the 2 parts of the above output: 
 i.  First Part  : It is an integer (in this case,  39454  ). This is the recommended value for the 

 google_columnar_engine.memory_size_in_mb  parameter.  However, we can safely 
 disregard this parameter since it requires a restart of AlloyDB and the difference 
 between the new suggested value and the original value we specified (  40960  ) is not 
 significant. 

 ii.  Second  Part  :  A  string  containing  a  list  of  recommended  relations  and  their  important 
 columns 
 "tpch.public.customer(c_acctbal,c_address,c_comment,c_custkey,c_mktsegment,c_n 

 ame,c_nationkey,c_phone),tpch.public.lineitem(l_commitdate,l_discount,l_extend 

 edprice,l_linestatus,l_orderkey,l_partkey,l_quantity,l_receiptdate,l_returnfla 

 g,l_shipdate,l_shipinstruct,l_shipmode,l_suppkey,l_tax),tpch.public.orders(o_c 

 ustkey,o_orderdate,o_orderkey,o_orderpriority),tpch.public.part(p_brand,p_cont 

 ainer,p_name,p_partkey,p_size,p_type),tpch.public.partsupp(ps_partkey,ps_suppk 

 ey,ps_supplycost),tpch.public.supplier(s_address,s_comment,s_name,s_nationkey, 

 s_suppkey)"  . 

 9.  Now go back to the AlloyDB Primary Instance page URL on  https://console.cloud.google.com  , edit 
 the instance and add the following Flag: 

 a.  Set  google_columnar_engine.relations = "<  Second Part  >"  .  For example, with the 
 above output, you would set  google_columnar_engine.relations  = 
 "tpch.public.customer(c_acctbal,c_address,c_comment,c_custkey,c_mktsegment,c_name,c_n 

 ationkey,c_phone),tpch.public.lineitem(l_commitdate,l_discount,l_extendedprice,l_line 

 status,l_orderkey,l_partkey,l_quantity,l_receiptdate,l_returnflag,l_shipdate,l_shipin 

 struct,l_shipmode,l_suppkey,l_tax),tpch.public.orders(o_custkey,o_orderdate,o_orderke 

 y,o_orderpriority),tpch.public.part(p_brand,p_container,p_name,p_partkey,p_size,p_typ 

 e),tpch.public.partsupp(ps_partkey,ps_suppkey,ps_supplycost),tpch.public.supplier(s_a 

 ddress,s_comment,s_name,s_nationkey,s_suppkey)" 

 10.  C  lick on the  UPDATE INSTANCE  button and allow the  AlloyDB instance to restart (if needed) by 
 clicking the  CONFIRM AND RESTART  button.  The AlloyDB  database will restart to pick up the new flag 
 settings. 

 11.  Run the query  SELECT * from g_columnar_relations  regularly,  and wait until values do not 
 change any further. Use the following SQL command with  \watch 10  switch to allow the query to 
 execute in every 10 seconds. 

 psql  -  h  172.20  .  0.209  -  U postgres  -  d tpch 

 ... 

 tpch  =>  SELECT  *  FROM g_columnar_relations  ;  \  watch  10 

 AlloyDB OLAP Benchmarking Guide  22 

https://console.cloud.google.com/


 Observe the output of this command until it no longer changes. Once the output stops changing, 
 ensure that the  total_block_count  matches  block_count_in_cc  for all the relations. The final 
 state of  g_columnar_relations  should be close to the  following: 

 database_name  |  schema_name  |  relation_name  |  status  |  size  |  uncompressed_size  | 

 columnar_unit_count  |  invalid_block_count  |  block_count_in_cc  |  total_block_count  | 

 auto_refresh_trigger_count  |  auto_refresh_failure_count  |  auto_refresh_recent_status 

 ---------------+-------------+---------------+--------+-------------+-------------------+ 

 ---------------------+---------------------+-------------------+-------------------+----- 

 -----------------------+----------------------------+---------------------------- 

 tpch  |  public  |  orders  |  Usable  |  4064416519  |  4064416519  | 

 688  |  0  |  2816904  |  2816904  | 

 0  |  0  |  NONE YET 

 tpch  |  public  |  part  |  Usable  |  1140509489  |  1140509489  | 

 103  |  0  |  419463  |  419463  | 

 0  |  0  |  NONE YET 

 tpch  |  public  |  partsupp  |  Usable  |  1651209445  |  1651209445  | 

 450  |  0  |  1839485  |  1839485  | 

 0  |  0  |  NONE YET 

 tpch  |  public  |  supplier  |  Usable  |  144812152  |  144812152  | 

 6  |  0  |  22687  |  22687  | 

 0  |  0  |  NONE YET 

 tpch  |  public  |  customer  |  Usable  |  2753610591  |  2753610591  | 

 90  |  0  |  366510  |  366510  | 

 0  |  0  |  NONE YET 

 tpch  |  public  |  lineitem  |  Usable  |  31066817949  |  31066817949  | 

 3296  |  0  |  13496579  |  13496579  | 

 0  |  0  |  NONE YET 

 (  6  rows  ) 

 Running the TPC-H benchmark 

 In  this  stage,  we  perform  the  TPC-H  benchmark's  "  Power  Test  "  with  one  client  running  22  TPC-H  queries, 
 monitoring  each  query's  response  time,  and  calculating  a  final  "  Geometric  mean  of  query  times  returning 
 rows  ." 

 What is Power Test in TPROC-H? 

 The  TPROC-H  “  Power  Test”  in  HammerDB  is  a  performance  test  that  measures  the  ability  of  a  database 
 system  to  handle  large-scale  data  warehousing  workloads.  HammerDB  utilizes  a  modified  version  of  TPC-H 
 “power  test”  that  does  not  have  refresh  functions.  In  this  test,  a  single  client  generates  a  series  of  22 
 queries  that  simulate  typical  data  warehousing  operations,  such  as  generating  reports,  analyzing  data,  and 
 performing  complex  joins.  The  test  is  based  on  the  TPC-H  benchmark,  which  is  a  standard  benchmark  used 

 AlloyDB OLAP Benchmarking Guide  23 



 to  evaluate  the  performance  of  database  systems  for  data  warehousing  applications.  The  goal  of  the 
 TPROC-H  Power  test  is  to  measure  the  minimum  query  latency  (or  response  time)  that  can  be  achieved  by  a 
 single  client,  which  provides  an  indication  of  the  overall  performance  and  scalability  of  the  database  system 
 under test. 

 What is “Geometric Mean” Metric? 

 The  geometric  mean  is  a  measure  of  central  tendency  that  is  used  in  the  TPROC-H  benchmark.  It  is 
 calculated  by  taking  the  product  of  all  of  the  query  times  and  then  taking  the  n-th  root  of  the  product, 
 where  n  is  the  number  of  queries.  The  geometric  mean  is  used  in  the  TPROC-H  benchmark  because  it  is  less 
 sensitive  to  outliers  than  the  arithmetic  mean.  The  arithmetic  mean  is  the  average  of  all  of  the  query  times. 
 However,  if  there  is  one  query  that  takes  a  very  long  time,  the  arithmetic  mean  will  be  skewed  by  that 
 query.  The  geometric  mean,  on  the  other  hand,  is  not  as  sensitive  to  such  outliers.  Even  if  one  query  takes  a 
 very  long  time,  the  product  of  all  of  the  query  times  will  not  be  as  affected  by  that  query.  Refer  to  TPC-H 
 official documentation  to learn more about this metric. 

 A  lower  geometric  mean  of  query  times  returning  rows  is  desirable,  as  it  indicates  that  the  database  system 
 can process queries more quickly and efficiently and can handle larger data volumes more effectively. 

 Use  the  following  script  to  execute  the  "  Power  Test  "  benchmark  for  TPROC-H.  This  script  repeats  the  series 
 of  22  queries.  The  first  set  of  the  query  executions  is  intended  to  warm  up  the  database  caches,  while  the 
 second set is used for actual performance measurement. 

 1.  Switch to benchmark home directory: 

 cd hammerdb  /  HammerDB  -  4.6 

 source  ./  setup  .  env 

 2.  Create  run-tpch.sh  script as follows: 

 #!/bin/bash -x 

 source  ./  setup  .  env 

 ./  hammerdbcli  <<  EOF 

 # CONFIGURE PARAMETERS FOR TPC-H BENCHMARK 

 # -------------------------------------- 

 dbset db pg 

 dbset bm tpc  -  h 

 # CONFIGURE POSTGRES HOST AND PORT 

 # -------------------------------------- 

 AlloyDB OLAP Benchmarking Guide  24 

https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf


 diset connection pg_host $PGHOST 

 diset connection pg_port $PGPORT 

 # CONFIGURE TPC-H 

 # -------------------------------------- 

 diset tpch pg_tpch_superuser postgres 

 diset tpch pg_tpch_superuserpass $PGPASSWORD 

 diset tpch pg_tpch_user postgres 

 diset tpch pg_tpch_pass $PGPASSWORD 

 diset tpch pg_tpch_dbase tpch 

 diset tpch pg_scale_fact $TPCH_SCALE 

 diset tpch pg_num_tpch_threads  1 

 diset tpch pg_refresh_on  false 

 diset tpch pg_refresh_verbose  false 

 diset tpch pg_degree_of_parallel  8 

 diset tpch pg_trickle_refresh  1000 

 diset tpch pg_tpch_tspace pg_default 

 diset tpch pg_tpch_gpcompat  false 

 diset tpch pg_tpch_gpcompress  false 

 diset tpch pg_cloud_query  false 

 diset tpch pg_rs_compat  false 

 diset tpch pg_update_sets  1 

 diset tpch pg_total_querysets  1 

 vuset vu  1 

 # logging 

 vuset logtotemp  1 

 vuset timestamps  0 

 vuset unique  0 

 # load tpc-h script and run benchmark 

 loadscript 

 # Warmup run 

 vurun 

 # Measurement run 

 vurun 

 # terminate when completed 

 waittocomplete 

 vudestroy 

 quit 

 EOF 

 3.  Run the script as follows: 

 AlloyDB OLAP Benchmarking Guide  25 



 chmod  +  x  run  -  tpch  .  sh 

 mkdir -p  results 

 sudo nohup  ./  run  -  tpch  .  sh  >  results  /  run  -  tpch  .  out  2  >&  1 

 4.  Below is a sample output of  run-tpch.sh  script obtained  for scenario where Columnar-Engine (CE) is 
 enabled and TPC-H  scale factor  is set to  30  : 

 TPROC  -  H  Driver  Script 

 Script  loaded  ,  Type  "print script"  to view 

 Vuser  1  created  -  WAIT IDLE 

 Failed  to create  virtual  users  :  Could  not  open tempfile  /  tmp  /  hammerdb  .  log 

 Vuser  1  :  RUNNING 

 Vuser  1  :  Executing  Query  14  (  1  of  22  ) 

 Vuser  1  :  query  14  completed  in  9.569  seconds 

 Vuser  1  :  Executing  Query  2  (  2  of  22  ) 

 Vuser  1  :  query  2  completed  in  18.363  seconds 

 Vuser  1  :  Executing  Query  9  (  3  of  22  ) 

 … 

 … 

 Vuser  1  :  query  12  completed  in  4.194  seconds 

 Vuser  1  :  Completed  1  query  set  (  s  )  in  314  seconds 

 Vuser  1  :  Geometric  mean of query times returning rows  (  22  )  is  7.37605 

 Vuser  1  :  FINISHED SUCCESS 

 ALL VIRTUAL USERS COMPLETE 

 TPROC  -  H  Driver  Script 

 jobid  =  642777185F8303E203936333 

 Vuser  1  :  RUNNING 

 Vuser  1  :  Executing  Query  14  (  1  of  22  ) 

 Vuser  1  :  query  14  completed  in  3.086  seconds 

 Vuser  1  :  Executing  Query  2  (  2  of  22  ) 

 Vuser  1  :  query  2  completed  in  14.241  seconds 

 Vuser  1  :  Executing  Query  9  (  3  of  22  ) 

 … 

 … 

 Vuser  1  :  query  12  completed  in  4.271  seconds 

 Vuser  1  :  Completed  1  query  set  (  s  )  in  264  seconds 

 Vuser  1  :  Geometric  mean of query times returning rows  (  22  )  is  6.05468 

 Vuser  1  :  FINISHED SUCCESS 

 ALL VIRTUAL USERS COMPLETE 

 TPROC  -  H  Driver  Script 

 jobid  =  642778545F8303E273233383 

 AlloyDB OLAP Benchmarking Guide  26 

http://run-tpch.sh/


 NOTE:  As  stated  previously,  we  only  evaluate  the  second  round  of  query  execution  when  measuring 
 performance. The initial round serves as a warm-up. 

 Expected TPC-H Results 

 The  table  below  summarizes  the  execution  time  (in  seconds)  for  each  of  the  22  TPC-H  queries.  As  stated 
 previously,  three  distinct  scenarios  with  scale  factors  of  10,  30,  and  100  have  been  explored.  In  each 
 scenario,  the  query  execution  durations  and  geometric  mean  for  all  queries  with  Columnar-Engine  (CE) 
 population  are  presented.  You  should  anticipate  TPC-H  (power  test)  performance  results  similar  to  the 
 following: 

 Query Id  Query Execution Time (in seconds) 

 TPCH_SCALE  = 10  TPCH_SCALE  = 30  TPCH_SCALE  = 100 

 1  4.00  12.36  55.68 

 2  4.78  12.84  68.01 

 3  1.91  5.15  92.17 

 4  0.44  1.24  47.88 

 5  0.86  3.68  8.11 

 6  0.05  0.12  0.44 

 7  0.87  2.75  30.45 

 8  0.59  1.92  237.98 

 9  4.45  15.67  733.11 

 10  1.81  5.41  22.21 

 11  0.83  2.46  75.19 

 12  0.55  1.64  6.09 

 13  4.59  12.75  78.18 

 14  0.38  0.98  3.19 

 15  2.71  5.52  26.14 

 16  1.41  3.63  15.36 

 17  5.96  21.42  140.02 

 18  18.84  56.27  389.47 

 19  0.08  0.23  0.80 

 20  3.76  12.66  3,273.24 

 21  1.64  6.25  494.35 

 22  0.24  0.31  1.08 

 AlloyDB OLAP Benchmarking Guide  27 



 Geometric mean 
 (seconds)  1.23  3.56  38.00 

 OLAP Atomics Benchmarking 

 To  evaluate  and  improve  the  OLAP  capabilities  of  AlloyDB's  Columnar-Engine,  the  engineering  at  Google  has 
 developed  a  custom  benchmark  known  as  OLAP  atomics  ,  which  consists  of  a  collection  of  11  primitive 
 queries  executed  over  a  large  volume  of  data  and  covering  the  fundamental  operations  of  an  OLAP  system. 
 This  set  of  primitive  OLAP  queries  can  perform  the  fundamental  data  manipulation  and  analysis  of  any 
 typical  OLAP  system,  including  selection,  slice-and-dice,  joins,  roll-up  (also  known  as  aggregation  or 
 consolidation), drill-down, etc. 

 Measuring  OLAP  atomics  on  a  database  system  is  important  because  it  can  reveal  performance  bottlenecks 
 at  the  primitive  level.  These  primitive  queries  are  a  valuable  tool  for  ensuring  that  the  OLAP  system  fulfills 
 the requirements for your large-scale data analysis and decision support. 

 For the purposes of this user guide, a TPC-H database with a  scale factor of 30  was utilized. 

 Setup, Configuration and Tuning 

 Before you can execute the OLAP atomic queries, you must perform the database configuration and tuning 
 described in this section. 

 Prerequisites 

 A.  You  need  to  run  the  following  steps  from  a  client  (driver)  machine.  Ensure  that  you  have  completed 
 the  setup  steps  listed  in  the  “  Setup  of  Benchmark  Driver  Machine  (Client)  ”  section  (especially 
 installation of the HammerDB utility). 

 B.  Cleanup  :  If  you  are  running  multiple  benchmarks  in  succession,  ensure  you  follow  the  “  Cleanup:  An 
 important Prerequisite  ” section before doing your  subsequent run. 

 Initial Setup on Client Machine 

 Connect to the client machine and execute the following commands: 

 cd hammerdb  /  HammerDB  -  4.6 

 Then create  setup.env  file as follows: 

 AlloyDB OLAP Benchmarking Guide  28 



 cat  <<  EOF  >  setup  .  env 

 # Private IP of the AlloyDB primary instance 

 export  PGHOST  =  111.222  .  333.444 

 # Postgres default port address. You do not need to change it unless you use non-default port 

 address. 

 export  PGPORT  =  5432     # default port to connect with  postgres 

 # Set the password that you used during AlloyDB instance creation. 

 export  PGPASSWORD  =  '<postgres_user_password>' 

 # TPC-H Scale Factor (determines the size of the database that we want to build). 

 export  TPCH_SCALE  =  30 

 EOF 

 Edit the above file and all the settings (excluding  TPCH_SCALE  , that should remain as 30) to suit your 
 environment. 

 Now, to load the TPC-H database, follow the exact steps outlined in the “  Script to load TPC-H data  ”  section. 
 The load steps are identical to the TPC-H benchmarking. 

 Altering the TPC-H schema 

 For the purpose of OLAP atomics, we only need the  lineitem  and  supplier  tables from  tpch  database (i.e. 
 without any constraints or indices). In this section, we provide minimal instructions to prepare the database 
 for query execution. 

 1.  Connect to the client machine. 

 2.  Connect to the  tpch  database by using  psql -h $PGHOST  -U postgres -d tpch  command. 

 3.  Now run the following commands to drop all the  constraints  and  indices  from  lineitem  and 
 supplier  tables: 

 ---  Drop  constraints  from  lineitem table  : 

 ALTER TABLE lineitem DROP CONSTRAINT IF EXISTS lineitem_pk CASCADE  ; 

 ALTER TABLE lineitem DROP CONSTRAINT IF EXISTS lineitem_partsupp_fk CASCADE  ; 

 ALTER TABLE lineitem DROP CONSTRAINT IF EXISTS lineitem_order_fk CASCADE  ; 

 ---  Drop  all indexes of lineitem table  : 

 DROP INDEX IF EXISTS lineitem_part_supp_fkidx CASCADE  ; 

 AlloyDB OLAP Benchmarking Guide  29 



 DROP INDEX IF EXISTS idx_lineitem_orderkey_fkidx CASCADE  ; 

 DROP INDEX IF EXISTS lineitem_pk CASCADE  ; 

 ---  Drop  constraints  from  supplier table  : 

 ALTER TABLE supplier DROP CONSTRAINT IF EXISTS supplier_pk CASCADE  ; 

 ALTER TABLE supplier DROP CONSTRAINT IF EXISTS supplier_nation_fk CASCADE  ; 

 ALTER TABLE supplier DROP CONSTRAINT IF EXISTS  "2200_127555_1_not_null"  CASCADE  ; 

 ---  Drop  all indexes of supplier table  : 

 DROP INDEX IF EXISTS supplier_nation_fkidx CASCADE  ; 

 ---  Drop  all the tables that are  not  needed  : 

 DROP TABLE customer CASCADE  ; 

 DROP TABLE nation CASCADE  ; 

 DROP TABLE orders CASCADE  ; 

 DROP TABLE part CASCADE  ; 

 DROP TABLE partsupp CASCADE  ; 

 DROP TABLE region CASCADE  ; 

 4.  Verify that you only see the following objects in the  tpch  database after executing the preceding 
 commands: 

 tpch  =>  \  dti  + 

 List  of relations 

 Schema  |  Name  |  Type  |  Owner  |  Table  |  Persistence  |  Size  |  Description 

 --------+----------+-------+----------+-------+-------------+-------+------------- 

 public  |  lineitem  |  table  |  postgres  |  |  permanent  |  31  GB  | 

 public  |  supplier  |  table  |  postgres  |  |  permanent  |  53  MB  | 

 (  2  rows  ) 

 Tuning Columnar Engine 

 Here are the recommended procedures for tuning the AlloyDB columnar engine: 

 1.  Open  https://console.cloud.google.com  and  go  to  the  AlloyDB  Primary  Cluster  ->  AlloyDB  Primary 
 Instance page. 

 2.  Edit  the  AlloyDB  primary  instance  and  add  the  following  flags  (remove  any  other  flags  if  you  see 
 them): 

 ●  google_columnar_engine.enabled = ON 
 ●  google_columnar_engine.memory_size_in_mb = 39322 

 AlloyDB OLAP Benchmarking Guide  30 

https://console.cloud.google.com/


 ●  max_parallel_workers_per_gather = 2 
 ●  max_parallel_workers = 16 

 Below is a screenshot for your reference: 

 3.  Click  on  the  UPDATE  INSTANCE  button  and  allow  the  AlloyDB  instance  to  restart  by  clicking  the 
 CONFIRM AND RESTART  button. 

 4.  Wait  for  the  AlloyDB  instance  to  finish  the  update  and  restart  operation.  It  will  take  a  few  minutes  to 
 complete since the AlloyDB instance needs to be restarted. 

 AlloyDB OLAP Benchmarking Guide  31 



 5.  Connect  to  the  client  machine  and  confirm  that  google_columnar_engine.enabled  is  set  to  on  .  Use 
 following command to confirm this: 

 psql  -  h $PGHOST  -  U postgres 

 postgres  =>  SHOW google_columnar_engine  .  enabled  ; 

 6.  Connect to the  tpch  database by using  psql -h $PGHOST  -U postgres -d tpch  command and 
 then run the following commands to add  lineitem  and  supplier  tables to the columnar-engine. 

 SELECT google_columnar_engine_add  (  'lineitem'  ); 

 SELECT google_columnar_engine_add  (  'supplier'  ); 

 7.  Validation of columnar-engine population: Use the command  psql -h $PGHOST -U postgres -d tpch 
 -c  "  select * from g_columnar_relations  "  and ensure  that the output is similar to following: 

 database_name  |  schema_name  |  relation_name  |  status  |  size  |  uncompressed_size  | 

 columnar_unit_count  |  invalid_block_count  |  block_count_in_cc  |  total_block_count  | 

 auto_refresh_trigger_count  |  auto_refresh_failure_count  |  auto_refresh_recent_status 

 ---------------+-------------+---------------+--------+-------------+-------------------+- 

 --------------------+---------------------+-------------------+-------------------+------- 

 ---------------------+----------------------------+---------------------------- 

 tpch  |  public  |  supplier  |  Usable  |  52051365  |  52051365  | 

 2  |  0  |  6807  |  6807  | 

 0  |  0  |  NONE YET 

 tpch  |  public  |  lineitem  |  Usable  |  15042480452  |  15042480452  | 

 983  |  0  |  4025186  |  4025186  | 

 0  |  0  |  NONE YET 

 (  2  rows  ) 

 Now we are ready to execute the OLAP atomics benchmark. 

 Queries in OLAP Atomics 

 The following table summarizes the customized OLAP queries that are executed on the  tpch  database that 
 we just loaded. The engineering team at Google AlloyDB develops these queries. 

 Scenario Description  Query 
 Query 
 Id 

 AlloyDB OLAP Benchmarking Guide  32 



 Aggregation (count operation) with a filter covering 
 approximately 10% of the large lineitem table. 

 select count(l_orderkey) from lineitem where 

 l_discount = 0;  Q1 

 Aggregation (SUM) on an integer column with a filter 
 covering approximately 10% of the lineitem table. 

 select sum(l_linenumber) from lineitem where 

 l_discount = 0;  Q2 

 Aggregation (SUM) on numeric column with a filter 
 covering approximately 10% of the lineitem table. 

 select sum(l_quantity) from lineitem where 

 l_discount = 0;  Q3 

 Summarization using GROUP BY and 
 AGGREGATION on the entire lineitem table. 

 select count(l_shipmode), l_shipmode from 

 lineitem group by l_shipmode;  Q4 

 Full table scan without any filters  select count(l_comment) from lineitem;  Q5 

 Full table scan with equality predicate (filter) 
 select count(*) from lineitem where 

 l_quantity=25.99;  Q6 

 Sorting of the entire table and presenting the top 
 values 

 select l_orderkey, l_commitdate, l_shipmode 

 from lineitem order by 1,2,3 limit 10;  Q7 

 Full table scan with LIKE predicate 
 select count(*) from lineitem where 

 l_shipinstruct like '%DE%';  Q8 

 LIST based selection on the entire table 
 select count(*) from lineitem where l_tax in 

 (0.01, 0.02, 0.05);  Q9 

 MIX and MAX aggregation on the entire table 
 select min(l_quantity), max(l_discount) from 

 lineitem;  Q10 

 Join with a predicate 
 select count(*) from supplier, lineitem where 

 s_acctbal = l_extendedprice;  Q11 

 Execute OLAP Atomics 

 The execution of OLAP atomic queries is as simple as connecting to the  tpch  database and executing the 
 queries introduced in section  Queries in OLAP Atomics  . 

 It is  recommended  to execute the queries using “  EXPLAIN  ANALYZE  <query> ..  ”  prefix clause, which will 
 display the query plan and execution time. 

 Below is an example of executing Q1 from  tpch  database: 

 tpch  =>  explain analyze  select  count  (  l_orderkey  )  from  lineitem  where  l_discount  =  0  ; 

 QUERY PLAN 

 ------------------------------------------------------------------------------------------------ 

 -------------------------------------------------------------------------- 

 Finalize  Aggregate  (  cost  =  137113.77  ..  137113.78  rows  =  1  width  =  8  )  (  actual time  =  151.708  ..  153.953 

 rows  =  1  loops  =  1  ) 

 ->  Gather  (  cost  =  137113.56  ..  137113.77  rows  =  2  width  =  8  )  (  actual time  =  151.693  ..  153.944  rows  =  3 

 loops  =  1  ) 

 AlloyDB OLAP Benchmarking Guide  33 



 Workers  Planned  :  2 

 Workers  Launched  :  2 

 ->  Partial  Aggregate  (  cost  =  136113.56  ..  136113.57  rows  =  1  width  =  8  )  (  actual 

 time  =  145.574  ..  145.576  rows  =  1  loops  =  3  ) 

 ->  Parallel  Append  (  cost  =  20.00  ..  119102.90  rows  =  6804263  width  =  7  )  (  actual 

 time  =  0.063  ..  145.569  rows  =  5454623  loops  =  3  ) 

 ->  Parallel  Custom  Scan  (  columnar  scan  )  on lineitem 

 (  cost  =  20.00  ..  119098.89  rows  =  6804262  width  =  7  )  (  actual  time  =  0.062  ..  145.565  rows  =  5454623  loops  =  3  ) 

 Filter  :  (  l_discount  =  '0'  ::  numeric  ) 

 Rows  Removed  by  Columnar  Filter  :  54546385 

 Rows  Aggregated  by  Columnar  Scan  :  1904168 

 Columnar  cache search mode  :  native 

 ->  Parallel  Seq  Scan  on lineitem  (  cost  =  0.00  ..  4.01  rows  =  1  width  =  7  )  (  never 

 executed  ) 

 Filter  :  (  l_discount  =  '0'  ::  numeric  ) 

 Planning  Time  :  2.283  ms 

 Execution  Time  :  154.008  ms 

 (  15  rows  ) 

 You should note the  Execution Time  in the above output,  which is significantly faster for  AlloyDB 
 columnar-engine. 

 Expected Results 

 The following table gives a summary of the queries to execute and their expected execution and planning 
 time. 

 Query 
 Id 

 Query To Execute  Execution Time 
 (milliseconds) 

 Planning 
 Time (ms) 

 Q1 
 EXPLAIN ANALYZE SELECT COUNT(l_orderkey) FROM lineitem WHERE 

 l_discount = 0;  154.00  2.28 

 Q2 
 EXPLAIN ANALYZE SELECT SUM(l_linenumber) FROM lineitem WHERE 

 l_discount = 0;  278.00  2.25 

 Q3 
 EXPLAIN ANALYZE SELECT SUM(l_quantity) FROM lineitem WHERE 

 l_discount = 0;  278.00  2.29 

 Q4 
 EXPLAIN ANALYZE SELECT COUNT(l_shipmode), l_shipmode FROM 

 lineitem GROUP BY l_shipmode;  997.00  2.20 

 Q5  EXPLAIN ANALYZE SELECT COUNT(l_comment) FROM lineitem;  206.00  1.90 

 Q6 
 EXPLAIN ANALYZE SELECT COUNT(*) FROM lineitem WHERE 

 l_quantity=25.99;  1.53  2.24 

 Q7  EXPLAIN ANALYZE SELECT l_orderkey, l_commitdate, l_shipmode  1,909.00  1.80 

 Q8 
 EXPLAIN ANALYZE SELECT COUNT(*) FROM lineitem WHERE 

 l_shipinstruct like '%DE%';  276.00  2.33 

 AlloyDB OLAP Benchmarking Guide  34 



 FROM lineitem ORDER BY 1,2,3 LIMIT 10; 

 Q9 
 EXPLAIN ANALYZE SELECT COUNT(*) FROM lineitem WHERE l_tax in 

 (0.01, 0.02, 0.05);  352.00  2.30 

 Q10 
 EXPLAIN ANALYZE SELECT MIN(l_quantity), MAX(l_disCOUNT) FROM 

 lineitem;  364.00  4.40 

 Q11 
 EXPLAIN ANALYZE SELECT COUNT(*) FROM supplier, lineitem 

 WHERE s_acctbal = l_extendedprice;  5,734.00  2.09 

 Authors 

 Nitin Verma, Software Engineer, AlloyDB, Google Cloud 
 Sridhar Ranganathan, Product Manager, AlloyDB, Google Cloud 

 AlloyDB OLAP Benchmarking Guide  35 


