
AlloyDB Omni for PostgreSQL - Analytical (OLAP)

Benchmarking Guide

Sep 2023

Disclaimer 2
Overview 3

Benchmarking process 3
Infrastructure Setup 6

Provision the server and client VMs 6

Provision Server on GCE 6

Set up filesystem on server 11
Provision Client on GCE 12

Install AlloyDB Omni 13

Allow access from the client VM 13

Update database configuration 14
Start AlloyDB Omni 14

Setup of Benchmark Driver Machine (Client) 15

Install PostgreSQL client 15

Install HammerDB-4.6 Driver for TPC-H benchmark 15

Notes on performance benchmarking 16

Benchmark Cleanup 16

Understanding system performance 17

CPU performance 17

Disk performance 17

Network latency 18

TPC-H Benchmark 18

Prerequisites 18

Initial Setup on Client Machine 18

Script to load TPC-H data 20

Columnar Engine (CE) Flags 22
Important Flags to Tune 22
Tuning for Scale Factors 10 and 30 22
Tuning for Scale Factor 100 24

Running the TPC-H benchmark 28

What is Power Test in TPROC-H? 28
What is the “Geometric Mean” Metric? 28

Expected TPC-H Results 31

OLAP Atomics Benchmarking 32
Setup, Configuration and Tuning 32
Prerequisites 32

Initial Setup on Client Machine 33

Altering the TPC-H schema 33
Tuning Columnar Engine 34

Queries in OLAP Atomics 36
Execute OLAP Atomics 37
Expected Results 38

AlloyDB Omni OLAP Benchmark User Guide 1

Disclaimer

This AlloyDB Omni benchmark guide provides best practices for running On-Line Analytical Processing (OLAP)

benchmarks. Your results may vary depending on several factors including, but not limited to the machine

specifications of your AlloyDB Omni instance, type of client machine driving the benchmark, region, zone,

and network bandwidth at the time of tests. Nothing in this user guide should be construed as a promise or

guarantee about the results you’ll derive from measuring the OLAP performance of AlloyDB Omni.

AlloyDB Omni OLAP Benchmark User Guide 2

https://www.lawinsider.com/clause/promise
https://www.lawinsider.com/clause/guarantee

Overview

AlloyDB Omni is a downloadable edition of AlloyDB, designed to run anywhere — in your data center, on your

laptop, at the edge, and in any cloud. AlloyDB Omni has several components and features, such as

state-of-the-art log and transaction management, dynamic memory management, and a built-in columnar

engine. As a whole, these features enable high performance for your transactional (OLTP), analytical

(OLAP), and hybrid (HTAP) workloads.

The focus of this guide is to provide a step-by-step procedure to evaluate the analytical performance of

AlloyDB Omni, which is powered by the Columnar Engine feature that stores and manages data in a

columnar format. The Columnar Engine is designed and optimized for the efficient storage and retrieval of

column data for analytical workloads where the emphasis is on efficiently processing large volumes of data

compared to row-based data storage and to generate insights, analysis, and reporting. The analytical

queries execute substantially faster because the Columnar Engine selectively accesses and processes only

the columns of data that are pertinent to the query, resulting in significant query performance

improvements. Users of AlloyDB Omni have a choice of running only transactional workloads (disable

Columnar Engine) or run analytical queries along with transactional workloads (enable Columnar Engine and

allocate appropriate memory).

Relational database systems typically require database administrators (DBAs) to optimize them for

benchmarking, which includes configuring the transaction log settings, establishing the right buffer pool

sizes, and tweaking other important database parameters (flags) and characteristics. These settings can also

vary depending on the size and type of the instance. During installation, AlloyDB Omni chooses settings that

are likely to be optimal for the number of CPUs and memory on your system. It requires minimal tuning of

the Columnar Engine to achieve an optimal OLAP performance.

This document describes a step-by-step procedure to deploy and configure the AlloyDB cluster and a

benchmark driving (client) machine, and provides steps to measure the performance of AlloyDB using a

variety of OLAP benchmarks, including HammerDB TPROC-H (derived from TPC-H) with different scale

factors and OLAP atomic queries developed internally at Google.

NOTE: Since HammerDB’s TPROC-H implementation is a close variant of the official TPC-H benchmark, we

will use the terms TPC-H and TPROC-H interchangeably throughout this user guide.

Benchmarking process

We'll go through the following steps to set up and run various OLAP benchmarks.

1. Configure AlloyDB Omni running on a Google Compute Engine (GCE) VM.

2. Setup of a separate benchmark driver client virtual machine running on GCE, where we will install

benchmarking tools.

3. Install HammerDB on the client machine.

4. Run 2 benchmarks, "TPC-H like" and "OLAP atomics", using HammerDB.

Unless otherwise specified, we used the following setup for performance benchmarking:

AlloyDB Omni OLAP Benchmark User Guide 3

https://www.hammerdb.com/index.html
https://www.hammerdb.com/docs/ch11s01.html

Component Value

AlloyDB Omni Machine Type n2-highmem-16

16vCPU / 128GB / 2048GB Persistent Disk

AlloyDB Omni Version 15.2.0
(This is the latest version at the time of writing of this document.)

Region us-central1 (Iowa)

Zone us-central1-a

Client VM — Machine Type E2-standard-32 / 128GB / 128 GB persistent disk as boot disk

NOTE: A large client machine can help you with faster load of TPC-H

database. For power run of TPC-H, you don’t need a large machine.

Operating System: Debian Linux

Zone of Client VM us-central1-a [same as AlloyDB Omni instance]

Connectivity Private IP (same VPC)

Test tools HammerDB-4.6

Psql

Workloads TPC-H benchmark on a 16 vCPU machine with scale-factor of 10, 30

and 100

A collection of 11 targeted OLAP queries

In your own testing, you can run AlloyDB Omni on other platform configurations (as long as they meet these

system requirements). Your benchmarking results will vary based on your specific hardware. Some crucial

factors that can affect performance include the CPU model, number of cores/vCPUs, available memory, disk

performance (IOPS and throughput), and network performance (latency and bandwidth) between the server

and client.

AlloyDB Omni OLAP Benchmark User Guide 4

https://cloud.google.com/alloydb/docs/omni/install#before_you_begin
https://cloud.google.com/alloydb/docs/omni/install#before_you_begin

Infrastructure Setup

Provision the server and client VMs

Note: The next section describes how to provision the VMs through the GCP cloud console. You may skip this

section if running on your own hardware.

Provision Server on GCE

1. Create or select your GCP project: Go to https://console.cloud.google.com and select your project

from the drop down menu or create a new one.

2. Follow these links on the portal: “Products and Solutions” → “All Products” → “Compute Engine”.

3. Click on the following button to create instance to run AlloyDB Omni.

4. Choose a name for your server VM, and select your desired region and zone.

5. Under "Machine Configuration", select "N2" for "Series", and "n2-highmem-16" for the "Machine type".

AlloyDB Omni OLAP Benchmark User Guide 5

https://console.cloud.google.com

6. For best performance, expand "Advanced Configurations" and select "Intel Ice Lake or later".

AlloyDB Omni OLAP Benchmark User Guide 6

7. Under "Boot disk", ensure you are using a Debian 11 image, and have at least 20 GB provisioned for

the boot disk.

8. Under "Observability - Ops Agent", select "Install Ops Agent for Monitoring and Logging". This agent

helps gather system metrics during the benchmark run.

AlloyDB Omni OLAP Benchmark User Guide 7

9. Next, we create a separate disk which will be used by the database. Under "Advanced options" →
"Disks", select "Add new disk".

10. In the sidebar, ensure "Disk type" is set to "SSD persistent disk", and "Size" to "2048" GB. Persistent

disks have per GB and per instance performance limits for the maximum IOPS and throughput that

they can sustain, so we recommend a large disk size for better disk performance.

AlloyDB Omni OLAP Benchmark User Guide 8

https://cloud.google.com/compute/docs/disks/performance#performance_metrics

11. Finally, towards the bottom of the sidebar, ensure "Mode" = "Read/write", "Deletion rule" = "Delete

disk", and use a custom device name "alloydb-disk". Then you may click "Save" to finish the disk

setup.

AlloyDB Omni OLAP Benchmark User Guide 9

12. Now click "Create" at the bottom of the create instance page, and a new VM will begin to be

provisioned for you. Wait until the VM is fully created, which will be indicated by a green check mark

under the "Status" column.

Set up filesystem on server

Connect to the server VM using the “gcloud compute ssh” command. Refer this documentation for details

"https://cloud.google.com/compute/docs/connect/standard-ssh".

Sample command:

gcloud compute ssh --zone "<primary zone>" "<server machine name>" --project "<google-project>"

AlloyDB Omni OLAP Benchmark User Guide 10

https://cloud.google.com/compute/docs/connect/standard-ssh

After connecting to the VM, run the following commands:

sudo mkdir -p /home/$USER/alloydb-data

sudo mkfs.ext4 -m 1 -F "/dev/disk/by-id/google-alloydb-disk"

sudo mount --make-shared -o noatime,discard,errors=panic "/dev/disk/by-id/google-alloydb-disk"

"/home/$USER/alloydb-data"

You can verify that you have formatted and mounted the PD correctly by running lsblk -o

NAME,MOUNTPOINT,FSTYPE,SIZE /dev/disk/by-id/google-alloydb-disk:

$ lsblk -o NAME,MOUNTPOINT,FSTYPE,SIZE /dev/disk/by-id/google-alloydb-disk

NAME MOUNTPOINT FSTYPE SIZE

sdb /home/$USER/alloydb-data ext4 2T

Note the line that says sdb /home/$USER/alloydb-data ext4 2T: It means you have successfully

formatted the PD with an ext4 filesystem, it is accessible through the path /home/$USER/alloydb-data,

and it has 2TB capacity.

Provision Client on GCE

Unless otherwise specified, we used an E2-standard-32 VM (32 vCPUs, 128 GB memory) as a client for the

TPC-H benchmarking. The client VM is created in the same zone as AlloyDB’s primary instance.

For this analytical benchmarking guide, we will be primarily using TPC-H and OLAP atomic queries, and we

do not need a large client VM to execute the benchmarks (i.e. queries). However, a large TPC-H database

(especially, scale factor of size 30 or 100) will load faster with a larger client machine.

Important: For this exercise, the client must be provisioned in the same region, zone, and VPC as AlloyDB

Omni’s primary instance. Benchmarking tools directly access the AlloyDB instance over private IP. This setup

reduces network latency between the server and client.

Below is a screenshot of client machine we provisioned for the purpose of this benchmarking guide.

AlloyDB Omni OLAP Benchmark User Guide 11

https://cloud.google.com/compute/docs/general-purpose-machines#e2_machine_types

Install AlloyDB Omni

Follow the steps in "Install AlloyDB Omni on the VM" to install AlloyDB Omni.

Allow access from the client VM

AlloyDB Omni OLAP Benchmark User Guide 12

https://cloud.google.com/alloydb/docs/omni/quickstart#install

Edit the file /var/alloydb/config/pg_hba.conf. This file controls which clients may connect to the

database, and we need to add an entry for the client. For example, if your client's IP address is 1.2.3.4,

you will add a line at the end of pg_hba.conf like this:

TYPE DATABASE USER ADDRESS METHOD

"local" is for Unix domain socket connections only.

Don't allow any unix socket connections as the alloydbadmin.

local all alloydbadmin reject

local all all md5

IPv4 local connections:

host all all 127.0.0.1/32 trust

IPv6 local connections:

host all all ::1/128 trust

Allow replication connections on localhost, from a user with the replication privilege.

local replication all md5

host replication all 127.0.0.1/32 trust

host replication all ::1/128 trust

host all all 1.2.3.4/32 trust # <-- ENTRY FOR CLIENT

NOTE: In this guide, we use the "trust" setting to simplify the benchmarking setup. However, note that

"trust" bypasses password protection, and should not be used for a production instance.

Update database configuration

Finally, edit the file /var/alloydb/config/postgresql.conf. This file sets the configurations for the

database. The default configuration values are already tuned for your system's vCPU and RAM, but in our

benchmarking, we also set the following values, which are more tuned towards analytical queries:

work_mem=65536

default_statistics_target=200

google_columnar_engine.enabled=on

Start AlloyDB Omni

Now we may restart AlloyDB Omni to pick up the updated configurations:

sudo alloydb database-server stop

sudo alloydb database-server start

If you do not see any errors, that means AlloyDB Omni is running. Verify by connecting to the database

locally:

sudo docker exec -it pg-service psql -h localhost -U postgres

You should see a psql prompt, which means you have successfully connected:

sudo docker exec -it pg-service psql -h localhost -U postgres

AlloyDB Omni OLAP Benchmark User Guide 13

psql (15.2)

Type "help" for help.

postgres=#

Type quit to exit psql.

Setup of Benchmark Driver Machine (Client)

This section will guide you through the steps of configuring the client machine, where we will install

benchmarking tools such as HammerDB.

Connect to the client machine using the “gcloud compute ssh” command.

Sample command:

gcloud compute ssh --zone "<primary zone>" "<client machine name>" --project "<google-project>"

Install PostgreSQL client

You will need a psql client application to connect to AlloyDB Omni. Use the following command to install a

postgresql client that includes a psql application and then ensure you are able to connect.

sudo apt-get update

sudo apt install -y postgresql-client

Now ensure that it works and you are able to connect to the AlloyDB Omni. Use the “Private IP” address of

your AlloyDB Omni instance.

psql -h <Private IP> -U postgres

Install HammerDB-4.6 Driver for TPC-H benchmark

For this benchmarking guide, we utilized the HammerDB-4.6 driver. Execute the following commands to

install HammerDB driver:

mkdir hammerdb

pushd hammerdb

curl -OL

https://github.com/TPC-Council/HammerDB/releases/download/v4.6/HammerDB-4.6-Linux.tar.gz

tar zxvf HammerDB-4.6-Linux.tar.gz

AlloyDB Omni OLAP Benchmark User Guide 14

https://github.com/TPC-Council/HammerDB/releases/download/v4.6/HammerDB-4.6-Linux.tar.gz

NOTE: If your operating system is Non-Debian, perform the following checks to ensure you have all

essential libraries to run hammerdb. For debian, the steps below are optional.

cd HammerDB-4.6

sudo ./hammerdbcli

This puts you in the HammerDB shell. From there, run librarycheck:

HammerDB CLI v4.6

Copyright (C) 2003-2022 Steve Shaw

Type "help" for a list of commands

Initialized SQLite on-disk database /tmp/hammer.DB using existing tables (45,056 KB)

hammerdb> librarycheck

In the output, look for the section that says Checking database library for PostgreSQL, and ensure it

succeeds. Otherwise, fix any errors that show up. On some platforms, you may need to install additional

packages:

Debian-based system: sudo apt-get update && apt-get install -y libpgtcl

Red hat: sudo yum install tcl libpq

If the check was successful, you should see output like this:

~/hammerdb/HammerDB-4.6$./hammerdbcli

HammerDB CLI v4.6

Copyright (C) 2003-2022 Steve Shaw

Type "help" for a list of commands

Initialized new SQLite on-disk database /tmp/hammer.DB

hammerdb>librarycheck

<... snipped ...>

Checking database library for PostgreSQL

Success ... loaded library Pgtcl for PostgreSQL

<... snipped ...>

Notes on performance benchmarking

Benchmark Cleanup

This step is important if you are planning to execute multiple benchmarks in succession. Performing a proper

cleanup between each benchmark is a critical prerequisite for accurate and reliable benchmarking results.

This includes deleting previous benchmark data (i.e. benchmark database), and rebooting the AlloyDB Omni

instance (that clears caches at database and operating systems level) before running another benchmark. A

proper benchmark cleanup ensures that residual effects from previous benchmarks do not affect the

performance measurements of the new benchmark. It also helps to ensure consistency and repeatability of

the benchmark results, which is essential for making meaningful comparisons between different systems or

identifying areas for optimization in hardware, software, or configuration.

AlloyDB Omni OLAP Benchmark User Guide 15

Follow the URL https://cloud.google.com/compute/docs/instances/stop-start-instance to learn more about

how to reboot a GCE VM.

To drop the previous benchmark database, you can use the following psql command from the client

machine.

psql -h <Private-IP> -U postgres -c "DROP DATABASE IF EXISTS <database_name>;"

Understanding system performance

Since AlloyDB Omni can be run on many different environments, it is important to know that the transaction

performance is highly dependent on CPU/Memory/IO/Network latency.

1. When most data fits in memory, it is a CPU bound workload, and more CPUs will get more transaction

performance.

2. When most data can not fit in memory, it becomes an IO bound workload, and more disk

IOPS/throughput will get better query performance.

3. Query latency is affected by network latency between client and server communication. It is

recommended to have the client and server located in the same local network or same zone for

benchmarking purposes.

Before benchmarking, it is useful to be able to characterize system performance of the hardware. In this

section, we list down some commands that can be used to measure:

1. Performance of the CPU

2. Performance of the disk

3. Network latency between client and server

CPU performance

CPU performance can be measured by the sysbench benchmark, see https://github.com/akopytov/sysbench

for installation instructions.

Use the following command to measure cpu performance:

sysbench cpu --cpu-max-prime=10000 --threads=<Number of vCPUs> run

Disk performance

Fio can be used to measure disk performance.

Use the following commands to measure IOPS, throughput and latency.

IOPS

fio --time_based --runtime=60s --ramp_time=2s --ioengine=libaio --direct=1 --name=iops_test

--filename=/mnt/disks/pgsql/fio_test --bs=8k --iodepth=256 --size=4G --readwrite=randrw

--rwmixread=25 --verify=0 --group_reporting=1

AlloyDB Omni OLAP Benchmark User Guide 16

https://cloud.google.com/compute/docs/instances/stop-start-instance
https://github.com/akopytov/sysbench

Write Throughput

fio --name=write_throughput --filename=/mnt/disks/pgsql/fio_test --numjobs=16 --size=4G

--time_based --runtime=60s --ramp_time=2s --ioengine=libaio --direct=1 --verify=0 --bs=256k

--iodepth=256 --rw=randwrite --group_reporting=1

Latency

fio --time_based --runtime=60s --ramp_time=2s --ioengine=libaio --direct=1 --name=latency_test

--filename=/mnt/disks/pgsql/fio_test --bs=256k --iodepth=1 --size=4G --readwrite=randwrite

--verify=0

Network latency

Ping can be used to measure network latency.

ping <IP address> -c 100

TPC-H Benchmark

HammerDB is a popular benchmarking tool that includes a TPC-H (a standard decision support benchmarking

tool) implementation that we use for evaluating performance of OLAP support in AlloyDB PostgreSQL.

HammerDB TPC-H measures the performance of a database system by executing a set of 22 standard

queries. The TPC-H benchmark is a widely accepted industry standard benchmark for decision support

systems that involves complex queries and large data sets.

This section provides a comprehensive guide on how users can customize HammerDB to execute the TPC-H

benchmark to gauge the performance of the AlloyDB PostgreSQL database system.

Prerequisites

A. You need to run the following steps from a client (driver) machine. Ensure that you have completed

the setup steps listed in the "Setup of Benchmark Driver Machine (Client)" section (especially

installation of the HammerDB utility).

B. Cleanup: If you are running multiple benchmarks in succession, ensure you follow the "Benchmark

Cleanup" section before doing your subsequent run.

Initial Setup on Client Machine

Connect to the client machine and execute all the following commands from the hammerdb/HammerDB-4.6

directory.

cd hammerdb/HammerDB-4.6

AlloyDB Omni OLAP Benchmark User Guide 17

https://www.tpc.org/tpch/default5.asp

Then create setup.env file as follows:

cat << EOF > setup.env

Private IP of the AlloyDB primary instance

export PGHOST=111.222.333.444

Postgres default port address. You do not need to change it unless you use non-default port

address.

export PGPORT=5432 # default port to connect with postgres

TPC-H Scale Factor (determines the size of the database that we want to build).

export TPCH_SCALE=10

EOF

Edit the generated setup.env file and change the above parameter values to those that are suitable to your

environment setup.

For the purpose of this benchmarking guide, we evaluate the performance using three important scale

factor (TPCH_SCALE) sizes (i.e. 10, 30 and 100) of the TPC-H benchmark.

In the context of TPC-H benchmark, scale factor refers to the size of the data set used in the benchmarking

process. The scale factor determines the number of rows in the TPC-H database tables and it represents the

volume of data to be processed by TPC-H queries.

The scale factors 10, 30, and 100 represent data sets of approximate sizes 20GB, 60GB and 200GB,

respectively. The significance of trying these different scale factors is to evaluate the performance of the

database system under varying data volumes and workloads.

When a database system is tested with a smaller scale factor, such as 10, it may perform well as the data set

size is relatively small. However, as the data set size increases, the performance of the database system

may decrease due to increased resource consumption, buffer cache hit misses, and other processing

overheads. Testing the database system with larger scale factors, such as 30 or 100, can help identify

potential performance bottlenecks and scalability issues in the database system that may arise under heavy

workloads and larger data sets.

Furthermore, testing with different scale factors helps to evaluate a database system’s ability to scale with

increasing data sizes. This information can be useful for organizations that need to handle large amounts of

data and require a database system that can scale efficiently to meet their needs.

NOTE: The number of users (or clients) is set to 1, since this user guide is only running TPC-H in power

mode and not throughput mode.

AlloyDB Omni OLAP Benchmark User Guide 18

Script to load TPC-H data

For the TPC-H benchmark, a "load step" refers to the process of populating the benchmark database with

initial data before running the actual performance test.

During this step, the benchmarking tool inserts data into the tpch database tables according to the specified

scale factor. The purpose of the load step is to create a realistic workload for the performance test and to

ensure that the test results are comparable across different systems.

After the load step is completed, the database is in a consistent state with a defined set of initial data,

ready to be used for the TPC-H benchmark test.

Follow the steps below to load the TPC-H database:

1. Switch to the benchmark home directory.

cd hammerdb/HammerDB-4.6

source ./setup.env

2. Create build-tpch.sh file as follows:

#!/bin/bash -x

source ./setup.env

./hammerdbcli << EOF

CONFIGURE PARAMETERS FOR TPC-H BENCHMARK

dbset db pg

dbset bm tpc-h

CONFIGURE POSTGRES HOST AND PORT

diset connection pg_host $PGHOST

diset connection pg_port $PGPORT

CONFIGURE TPC-H

diset tpch pg_tpch_superuser postgres

diset tpch pg_tpch_user postgres

diset tpch pg_tpch_dbase tpch

diset tpch pg_scale_fact $TPCH_SCALE

diset tpch pg_num_tpch_threads 32

diset tpch pg_refresh_on false

diset tpch pg_refresh_verbose false

AlloyDB Omni OLAP Benchmark User Guide 19

diset tpch pg_degree_of_parallel 8

vuset vu 1

logging

vuset logtotemp 1

vuset timestamps 0

vuset unique 0

load and run benchmarking script

loadscript

buildschema

terminate when completed

vudestroy

quit

EOF

3. Execute the load command as shown below and wait for the command to finish. During this

command, you may view the contents of results/build-tpch.out in a second terminal to see its

progress.

chmod +x ./build-tpch.sh

mkdir -p results

sudo nohup ./build-tpch.sh > results/build-tpch.out 2>&1

4. Validate Load: The load step is an important aspect of the TPC-H benchmark because it affects the

benchmark's accuracy and repeatability. The quality and consistency of the data that is loaded into

the database can have a significant impact on the performance measurements, and therefore, it is

important to validate that the load step is executed properly.

Use the following commands to validate the load quickly:

$. ./setup.env

$ psql -h $PGHOST -U postgres

postgres=> \l+ tpch

 List of

databases

 Name | Owner | Encoding | Collate | Ctype | Access

privileges | Size | Tablespace | Description

--------------+------------------+----------+---------+---------+----------------------

-----------------+---------+------------+--

 tpch | postgres | UTF8 | C.UTF-8 | C.UTF-8 |

 | --- GB | pg_default |

The scale factors 10, 30, and 100 represent data sets of approximate sizes 20GB, 60GB and 200GB,

respectively. Ensure that the size of the tpch database matches the scale factor of your choice.

AlloyDB Omni OLAP Benchmark User Guide 20

Columnar Engine (CE) Flags

AlloyDB’s Columnar engine related parameters (flags) come with optimal settings and no tuning is generally

required except that the columnar engine is to be enabled. However, for this user guide, updating them with

proper values allows for efficient processing of analytical queries, reduces query response times, and

improves resource utilization, which are critical factors for organizations that need to handle large volumes

of data and require fast and accurate analysis of that data.

Important Flags to Tune

The following are the database flags that we tune to enhance the efficacy of OLAP workloads:

Database Flag

Is

AlloyDB

Unique?

Description
Default

Value

work_mem No

Increasing the work_mem value can improve the performance

of queries that perform a lot of temporary work (like sorting,

hashing, bitmap, etc.). If your AlloyDB instance does not have

adequate memory, a very high value of work_mem may cause

performance issues. 16MB

default_statistics_target No

Increasing the default_statistics value can improve the

accuracy of the query planner's estimates, which can lead to

better performance for queries that access the column.

However, significantly high values can also increase the time it

takes to analyze the table. 100

google_columnar_engine

.enabled Yes

This configuration flag in AlloyDB specifies whether the

Columnar Engine is enabled or not. The Columnar Engine is a

new feature in AlloyDB that can significantly improve the

performance of analytical queries. OFF

google_columnar_engine

.memory_size_in_mb Yes

This flag in AlloyDB specifies the amount of memory that is

allocated to the columnar engine. The default value is ~30% of

the RAM on the VM, but it can be increased or decreased

depending on the needs of your database.

~30% of

the

RAM

size

google_columnar_engine

.relations Yes

This configuration flag in AlloyDB specifies a set of tables and

their columns that need to be stored in columnar format. The

columnar format is a more efficient way to store data for

analytical queries, so using this flag can improve the

performance of those queries.

Empty

string.

Tuning for Scale Factors 10 and 30

Since the database sizes for scale factors 10 and 30 are significantly smaller than available RAM (128GB) on

the 16 vCPU machine type, we can simply allow all the entire tpch database (i.e. all the columns of all tpch

relations) to be populated in the columnar engine.

AlloyDB Omni OLAP Benchmark User Guide 21

1. Connect to the client machine and run the following command to edit important Columnar Engine

flags:

source ./setup.env

psql -U postgres << EOF

ALTER SYSTEM SET google_columnar_engine.memory_size_in_mb=30720;

ALTER SYSTEM SET

google_columnar_engine.relations='tpch.public.customer,tpch.public.lineitem,tpch.public.n

ation,tpch.public.orders,tpch.public.part,tpch.public.partsupp,tpch.public.region,tpch.pu

blic.supplier';

EOF

2. Connect to the server machine and restart the database so it picks up the new settings:

sudo alloydb database-server stop

sudo alloydb database-server start

3. Wait for the restart operation to finish. It can take up to a few minutes to complete.

4. Connect to the client machine and monitor the population of columnar-engine as follows:

a. Confirm that google_columnar_engine.enabled is set to on. Use the command psql -h

$PGHOST -U postgres -c "SHOW google_columnar_engine.enabled" for this purpose.

b. Check the status of columnar engine population within the tpch database by using the

following command.

psql -U postgres -d tpch

...

tpch=> select relation_name, block_count_in_cc, total_block_count,

block_count_in_cc=total_block_count from g_columnar_relations order by 1; \watch

10

Note \watch 10 at the end of the SQL command which executes the command every 10

seconds. You should observe the output of this command until it no longer changes. Once the

output stops changing, specifically, check block_count_in_cc=total_block_count for every

relation, go to the next step for validation of the output. Also as a general rule of thumb,

ensure that the total_block_count matches block_count_in_cc for all the relations.

c. Validate the status of columnar engine population as follows, in particular make sure the final

column is "t" for all rows:

Validation State for Scale Factor = 10

Below is the final state of the columnar engine after population was done for scale factor 10:

AlloyDB Omni OLAP Benchmark User Guide 22

psql -U postgres -d tpch

tpch=> select relation_name, block_count_in_cc, total_block_count,

block_count_in_cc=total_block_count from g_columnar_relations order by 1;

relation_name | block_count_in_cc | total_block_count | ?column?

---------------+-------------------+-------------------+----------

customer | 36657 | 36657 | t

lineitem | 1331456 | 1331456 | t

nation | 1 | 1 | t

orders | 278724 | 278724 | t

part | 42612 | 42612 | t

partsupp | 184108 | 184108 | t

region | 1 | 1 | t

supplier | 2269 | 2269 | t

(8 rows)

Validation state for Scale Factor = 30

relation_name | block_count_in_cc | total_block_count | ?column?

---------------+-------------------+-------------------+----------

customer | 110284 | 110284 | t

lineitem | 4025262 | 4025262 | t

nation | 1 | 1 | t

orders | 841603 | 841603 | t

part | 126433 | 126433 | t

partsupp | 551690 | 551690 | t

region | 1 | 1 | t

supplier | 6805 | 6805 | t

(8 rows)

Tuning for Scale Factor 100

The size of the tpch database that we load with TPCH_SCALE=100 is approximately 205GB. This database

size is substantially larger than the size of available RAM on the machine (128 GB) of type 16 virtual CPUs.

We cannot therefore populate the columnar engine for the entire database. This is where AlloyDB Columnar

Engine’s auto columnarization comes into action. Note that we must let CE observe the workload first,

and the tuning steps here differ slightly. After we enable the Columnar Engine, we need to execute the

entire set of TPC-H queries once. That enables the recommendation engine to make suggestions on the

optimal values to set for google_columnar_engine.relations and google_columnar_engine.

memory_size_in_mb database flags.

Below are the simple tuning steps:

1. Connect to the client machine and run the following command to edit important Columnar Engine

flags:

AlloyDB Omni OLAP Benchmark User Guide 23

psql -U postgres << EOF

ALTER SYSTEM SET google_columnar_engine.memory_size_in_mb=40960;

EOF

2. Connect to the server machine and restart the database so it picks up the new settings:

sudo alloydb database-server stop

sudo alloydb database-server start

3. Wait for the restart operation to finish. It can take up to a few minutes to complete.

4. Confirm that google_columnar_engine.enabled is set to on. Use psql -U postgres -c "SHOW

google_columnar_engine.enabled" command to confirm this.

5. Reset the columnar engine recommendation by using the following command:

psql -U postgres -d tpch -c "SELECT google_columnar_engine_reset_recommendation('true')";

6. Observe workload: In this step, you simply execute all of the 22 TPC-H queries (just once) that will

let Columnar Engine observe the workload to make optimal tuning suggestions. You can create and

execute the following script to train the engine (execute it from hammerdb/HammerDB-4.6

directory):

Create the script train-recommendation-engine.sh with the following content:

#!/bin/bash -x

source ./setup.env

./hammerdbcli << EOF

CONFIGURE PARAMETERS FOR TPC-H BENCHMARK

dbset db pg

dbset bm tpc-h

CONFIGURE POSTGRES HOST AND PORT

diset connection pg_host $PGHOST

diset connection pg_port $PGPORT

CONFIGURE TPC-H

diset tpch pg_tpch_superuser postgres

diset tpch pg_tpch_user postgres

diset tpch pg_tpch_dbase tpch

diset tpch pg_scale_fact $TPCH_SCALE

diset tpch pg_num_tpch_threads 1

AlloyDB Omni OLAP Benchmark User Guide 24

diset tpch pg_degree_of_parallel 8

vuset vu 1

logging

vuset logtotemp 1

vuset timestamps 0

vuset unique 0

load tpc-h script and run benchmark

loadscript

vurun

terminate when completed

waittocomplete

vudestroy

quit

EOF

Execute train-recommendation-engine.sh script as follows:

chmod +x ./train-recommendation-engine.sh

mkdir -p results

sudo nohup ./train-recommendation-engine.sh > results/train-recommendation-engine.out

2>&1

7. Optimal tuning suggestion: Once all the queries from previous step finish to execute, run the

following command to find the optimal columnar engine tuning for tpch database:

 psql -U postgres -d tpch -c "SELECT google_columnar_engine_recommend('RECOMMEND_SIZE')"

a. This command uses the recommendation engine to recommend the performance optimal
memory size and recommended column.

b. Output looks like following:

(39010,"tpch.public.customer(c_acctbal,c_address,c_comment,c_custkey,c_mktsegment,c

_name,c_nationkey,c_phone),tpch.public.lineitem(l_commitdate,l_discount,l_extendedp

rice,l_linestatus,l_orderkey,l_partkey,l_quantity,l_receiptdate,l_returnflag,l_ship

date,l_shipinstruct,l_shipmode,l_suppkey,l_tax),tpch.public.orders(o_custkey,o_orde

rdate,o_orderkey,o_orderpriority,o_shippriority),tpch.public.part(p_brand,p_contain

er,p_name,p_partkey,p_size,p_type),tpch.public.partsupp(ps_partkey,ps_suppkey,ps_su

pplycost),tpch.public.supplier(s_address,s_comment,s_name,s_nationkey,s_suppkey)")

AlloyDB Omni OLAP Benchmark User Guide 25

c. Note the 2 parts of the above output:

i. First Part: It is an integer (in this case, 39010). This is the recommended value for the

google_columnar_engine.memory_size_in_mb parameter. However, we can safely

disregard this parameter as the difference between the new suggested value and the

original value we specified (40960) is not significant.

ii. Second Part: A string containing a list of recommended relations and their important
columns
"tpch.public.customer(c_acctbal,c_address,c_comment,c_custkey,c_mktsegment,c_n

ame,c_nationkey,c_phone),tpch.public.lineitem(l_commitdate,l_discount,l_extend

edprice,l_linestatus,l_orderkey,l_partkey,l_quantity,l_receiptdate,l_returnfla

g,l_shipdate,l_shipinstruct,l_shipmode,l_suppkey,l_tax),tpch.public.orders(o_c

ustkey,o_orderdate,o_orderkey,o_orderpriority,o_shippriority),tpch.public.part

(p_brand,p_container,p_name,p_partkey,p_size,p_type),tpch.public.partsupp(ps_p

artkey,ps_suppkey,ps_supplycost),tpch.public.supplier(s_address,s_comment,s_na

me,s_nationkey,s_suppkey)".

8. Connect to AlloyDB Omni from the client using psql -U postgres -d tpch and run the following

command to set google_columnar_engine.relations = "<Second Part>".

ALTER SYSTEM SET

google_columnar_engine.relations='tpch.public.customer(c_acctbal,c_address,c_comment,c_cu

stkey,c_mktsegment,c_name,c_nationkey,c_phone),tpch.public.lineitem(l_commitdate,l_discou

nt,l_extendedprice,l_linestatus,l_orderkey,l_partkey,l_quantity,l_receiptdate,l_returnfla

g,l_shipdate,l_shipinstruct,l_shipmode,l_suppkey,l_tax),tpch.public.orders(o_custkey,o_or

derdate,o_orderkey,o_orderpriority,o_shippriority),tpch.public.part(p_brand,p_container,p

_name,p_partkey,p_size,p_type),tpch.public.partsupp(ps_partkey,ps_suppkey,ps_supplycost),

tpch.public.supplier(s_address,s_comment,s_name,s_nationkey,s_suppkey)';

Note: The strings in Postgres/AlloyDB Omni use single-quotes, not double-quotes.

9. Connect to the server VM and restart the database so it picks up the new settings:

sudo alloydb database-server stop

sudo alloydb database-server start

10. Run the query SELECT * from g_columnar_relations regularly, and wait until values do not

change any further. Use the following SQL command with \watch 10 switch to allow the query to

execute in every 10 seconds.

psql -U postgres -d tpch

...

tpch=> select relation_name, block_count_in_cc, total_block_count,

block_count_in_cc=total_block_count from g_columnar_relations order by 1; \watch 10

AlloyDB Omni OLAP Benchmark User Guide 26

Observe the output of this command until it no longer changes. Once the output stops changing,

ensure that the total_block_count matches block_count_in_cc for all the relations. The final

state of g_columnar_relations should be close to the following:

relation_name | total_block_count | block_count_in_cc | ?column?

---------------+-------------------+-------------------+----------

customer | 366517 | 366517 | t

lineitem | 13497033 | 13497033 | t

orders | 2816940 | 2816940 | t

part | 419467 | 419467 | t

partsupp | 1840017 | 1840017 | t

supplier | 22686 | 22686 | t

(6 rows)

Running the TPC-H benchmark

In this stage, we perform the TPC-H benchmark's "Power Test" with one client running 22 TPC-H queries,

monitoring each query's response time, and calculating a final "Geometric mean of query times returning

rows."

What is Power Test in TPROC-H?

The TPROC-H “Power Test” in HammerDB is a performance test that measures the ability of a database

system to handle large-scale data warehousing workloads. HammerDB utilizes a modified version of TPC-H

“power test” that does not have refresh functions. In this test, a single client generates a series of 22

queries that simulate typical data warehousing operations, such as generating reports, analyzing data, and

performing complex joins. The test is based on the TPC-H benchmark, which is a standard benchmark used

to evaluate the performance of database systems for data warehousing applications. The goal of the

TPROC-H Power test is to measure the minimum query latency (or response time) that can be achieved by a

single client, which provides an indication of the overall performance and scalability of the database system

under test.

What is the “Geometric Mean” Metric?

The geometric mean is a measure of central tendency that is used in the TPROC-H benchmark. It is

calculated by taking the product of all of the query times and then taking the n-th root of the product,

where n is the number of queries. The geometric mean is used in the TPROC-H benchmark because it is less

sensitive to outliers than the arithmetic mean. The arithmetic mean is the average of all of the query times.

However, if there is one query that takes a very long time, the arithmetic mean will be skewed by that

query. The geometric mean, on the other hand, is not as sensitive to such outliers. Even if one query takes a

very long time, the product of all of the query times will not be as affected by that query. Refer to TPC-H

official documentation to learn more about this metric.

AlloyDB Omni OLAP Benchmark User Guide 27

https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf

A lower geometric mean of query times returning rows is desirable, as it indicates that the database system

can process queries more quickly and efficiently and can handle larger data volumes more effectively.

Use the following script to execute the "Power Test" benchmark for TPROC-H. This script repeats the series

of 22 queries. The first set of the query executions is intended to warm up the database caches, while the

second set is used for actual performance measurement.

1. Switch to benchmark home directory:

cd hammerdb/HammerDB-4.6

source ./setup.env

2. Create run-tpch.sh script as follows:

#!/bin/bash -x

source ./setup.env

./hammerdbcli << EOF

CONFIGURE PARAMETERS FOR TPC-H BENCHMARK

dbset db pg

dbset bm tpc-h

CONFIGURE POSTGRES HOST AND PORT

diset connection pg_host $PGHOST

diset connection pg_port $PGPORT

CONFIGURE TPC-H

diset tpch pg_tpch_superuser postgres

diset tpch pg_tpch_user postgres

diset tpch pg_tpch_dbase tpch

diset tpch pg_scale_fact $TPCH_SCALE

diset tpch pg_num_tpch_threads 1

diset tpch pg_refresh_on false

diset tpch pg_refresh_verbose false

diset tpch pg_degree_of_parallel 8

diset tpch pg_trickle_refresh 1000

diset tpch pg_tpch_tspace pg_default

diset tpch pg_tpch_gpcompat false

diset tpch pg_tpch_gpcompress false

diset tpch pg_cloud_query false

diset tpch pg_rs_compat false

diset tpch pg_update_sets 1

diset tpch pg_total_querysets 1

AlloyDB Omni OLAP Benchmark User Guide 28

vuset vu 1

logging

vuset logtotemp 1

vuset timestamps 0

vuset unique 0

load tpc-h script and run benchmark

loadscript

Warmup run

vurun

Measurement run

vurun

terminate when completed

waittocomplete

vudestroy

quit

EOF

3. Run the script as follows:

chmod +x run-tpch.sh

mkdir -p results

sudo nohup ./run-tpch.sh > results/run-tpch.out 2>&1

4. Below is a sample output of run-tpch.sh script obtained for scenario where Columnar-Engine (CE) is

enabled and TPC-H scale factor is set to 30:

TPROC-H Driver Script

Script loaded, Type "print script" to view

Vuser 1 created - WAIT IDLE

Failed to create virtual users: Could not open tempfile /tmp/hammerdb.log

Vuser 1:RUNNING

Vuser 1:Executing Query 14 (1 of 22)

Vuser 1:query 14 completed in 9.569 seconds

Vuser 1:Executing Query 2 (2 of 22)

Vuser 1:query 2 completed in 18.363 seconds

Vuser 1:Executing Query 9 (3 of 22)

…
…
Vuser 1:query 12 completed in 4.194 seconds

Vuser 1:Completed 1 query set(s) in 314 seconds

AlloyDB Omni OLAP Benchmark User Guide 29

http://run-tpch.sh

Vuser 1:Geometric mean of query times returning rows (22) is 7.37605

Vuser 1:FINISHED SUCCESS

ALL VIRTUAL USERS COMPLETE

TPROC-H Driver Script

jobid=642777185F8303E203936333

Vuser 1:RUNNING

Vuser 1:Executing Query 14 (1 of 22)

Vuser 1:query 14 completed in 3.086 seconds

Vuser 1:Executing Query 2 (2 of 22)

Vuser 1:query 2 completed in 14.241 seconds

Vuser 1:Executing Query 9 (3 of 22)

…
…
Vuser 1:query 12 completed in 4.271 seconds

Vuser 1:Completed 1 query set(s) in 264 seconds

Vuser 1:Geometric mean of query times returning rows (22) is 6.05468

Vuser 1:FINISHED SUCCESS

ALL VIRTUAL USERS COMPLETE

TPROC-H Driver Script

jobid=642778545F8303E273233383

NOTE: As stated previously, we only evaluate the second round of query execution when measuring

performance. The initial round serves as a warm-up.

Expected TPC-H Results

The table below summarizes the execution time (in seconds) for each of the 22 TPC-H queries. As stated

previously, three distinct scenarios with scale factors of 10, 30, and 100 have been explored. In each

scenario, the query execution durations and geometric mean for all queries with Columnar-Engine (CE)

population are presented. You should anticipate TPC-H (power test) performance results similar to the

following:

Query Id Query Execution Time (in seconds)

TPCH_SCALE = 10 TPCH_SCALE = 30 TPCH_SCALE = 100

1 3.968 13.021 40.21

2 2.514 16.964 60.591

3 1.883 5.398 18.325

4 0.452 1.287 32.819

5 1.527 3.476 7.441

6 0.208 0.132 0.371

7 2.03 3.163 17.243

8 0.642 1.982 561.564

AlloyDB Omni OLAP Benchmark User Guide 30

9 4.371 15.826 1510.82

10 1.877 5.543 16.106

11 0.833 2.836 102.489

12 0.546 1.658 5.491

13 5.003 13.971 105.958

14 0.378 1.175 2.581

15 2.96 5.813 20.314

16 1.412 3.921 21.894

17 6.211 22.293 229.619

18 17.704 55.445 263.422

19 0.083 0.258 0.64

20 1.207 23.764 8281.706

21 1.636 6.302 977.062

22 0.186 0.345 0.739

Geometric mean
(seconds) 1.30 3.92 35.8

OLAP Atomics Benchmarking

To evaluate and improve the OLAP capabilities of AlloyDB's Columnar-Engine, the engineers at Google have

developed a custom benchmark known as OLAP atomics, which consists of a collection of 11 primitive

queries executed over a large volume of data and covering the fundamental operations of an OLAP system.

This set of primitive OLAP queries can perform the fundamental data manipulation and analysis of any

typical OLAP system, including selection, slice-and-dice, joins, roll-up (also known as aggregation or

consolidation), drill-down, etc.

Measuring OLAP atomics on a database system is important because it can reveal performance bottlenecks

at the primitive level. These primitive queries are a valuable tool for ensuring that the OLAP system fulfills

the requirements for your large-scale data analysis and decision support.

For the purposes of this user guide, a TPC-H database with a scale factor of 30 was utilized.

Setup, Configuration and Tuning

Before you can execute the OLAP atomic queries, you must perform the database configuration and tuning

described in this section.

Prerequisites

AlloyDB Omni OLAP Benchmark User Guide 31

A. You need to run the following steps from a client (driver) machine. Ensure that you have completed

the setup steps listed in the "Setup of Benchmark Driver Machine (Client)" section (especially

installation of the HammerDB utility).

B. Cleanup: If you are running multiple benchmarks in succession, ensure you follow the "Benchmark

Cleanup" section before doing your subsequent run.

Initial Setup on Client Machine

Connect to the client machine and execute the following commands:

cd hammerdb/HammerDB-4.6

Then create setup.env file as follows:

cat << EOF > setup.env

Private IP of the AlloyDB primary instance

export PGHOST=111.222.333.444

Postgres default port address. You do not need to change it unless you use non-default port

address.

export PGPORT=5432 # default port to connect with postgres

TPC-H Scale Factor (determines the size of the database that we want to build).

export TPCH_SCALE=30

EOF

Edit the above file and all the settings (excluding TPCH_SCALE, that should remain as 30) to suit your

environment.

Now, to load the TPC-H database, follow the exact steps outlined in the Script to load TPC-H data section.

The load steps are identical to the TPC-H benchmarking.

Altering the TPC-H schema

For the purpose of OLAP atomics, we only need the lineitem and supplier tables from tpch database (i.e.

without any constraints or indices). In this section, we provide minimal instructions to prepare the database

for query execution.

1. Connect to the client machine.

2. Connect to the tpch database by using psql -h $PGHOST -U postgres -d tpch command.

AlloyDB Omni OLAP Benchmark User Guide 32

3. Now run the following commands to drop all the constraints and indices from lineitem and

supplier tables:

--- Drop constraints from lineitem table:

ALTER TABLE lineitem DROP CONSTRAINT IF EXISTS lineitem_pk CASCADE;

ALTER TABLE lineitem DROP CONSTRAINT IF EXISTS lineitem_partsupp_fk CASCADE;

ALTER TABLE lineitem DROP CONSTRAINT IF EXISTS lineitem_order_fk CASCADE;

--- Drop all indexes of lineitem table:

DROP INDEX IF EXISTS lineitem_part_supp_fkidx CASCADE;

DROP INDEX IF EXISTS idx_lineitem_orderkey_fkidx CASCADE;

DROP INDEX IF EXISTS lineitem_pk CASCADE;

--- Drop constraints from supplier table:

ALTER TABLE supplier DROP CONSTRAINT IF EXISTS supplier_pk CASCADE;

ALTER TABLE supplier DROP CONSTRAINT IF EXISTS supplier_nation_fk CASCADE;

ALTER TABLE supplier DROP CONSTRAINT IF EXISTS "2200_127555_1_not_null" CASCADE;

--- Drop all indexes of supplier table:

DROP INDEX IF EXISTS supplier_nation_fkidx CASCADE;

--- Drop all the tables that are not needed:

DROP TABLE customer CASCADE;

DROP TABLE nation CASCADE;

DROP TABLE orders CASCADE;

DROP TABLE part CASCADE;

DROP TABLE partsupp CASCADE;

DROP TABLE region CASCADE;

4. Verify that you only see the following objects in the tpch database after executing the preceding

commands:

tpch=> \dti+

List of relations

Schema | Name | Type | Owner | Table | Persistence | Size | Description

--------+----------+-------+----------+-------+-------------+-------+-------------

public | lineitem | table | postgres | | permanent | 31 GB |

public | supplier | table | postgres | | permanent | 53 MB |

(2 rows)

Tuning Columnar Engine

Here are the recommended procedures for tuning the AlloyDB columnar engine:

1. Connect to the client machine and run the following commands to edit important Columnar Engine

flags:

AlloyDB Omni OLAP Benchmark User Guide 33

psql -U postgres << EOF

ALTER SYSTEM SET google_columnar_engine.enabled=on;

ALTER SYSTEM SET google_columnar_engine.memory_size_in_mb=39322;

ALTER SYSTEM SET max_parallel_workers_per_gather=2;

ALTER SYSTEM SET max_parallel_workers=16;

EOF

2. Connect to the server machine and restart the database so it picks up the new settings

sudo alloydb database-server stop

sudo alloydb database-server start

3. Wait for the restart operation to finish. It can take up to a few minutes to complete.

4. Connect to the client machine and verify that the Columnar Engine configurations are in effect. Use

following command to confirm this:

psql -U postgres << EOF

SHOW google_columnar_engine.enabled;

SHOW google_columnar_engine.memory_size_in_mb;

SHOW max_parallel_workers_per_gather;

SHOW max_parallel_workers;

EOF

Verify that the output matches the following:

google_columnar_engine.enabled

on

(1 row)

google_columnar_engine.memory_size_in_mb

--

39322

(1 row)

max_parallel_workers_per_gather

2

(1 row)

max_parallel_workers

16

(1 row)

AlloyDB Omni OLAP Benchmark User Guide 34

5. Connect to the tpch database by using psql -h $PGHOST -U postgres -d tpch command and

then run the following commands to add lineitem and supplier tables to the columnar-engine.

SELECT google_columnar_engine_add('lineitem');

SELECT google_columnar_engine_add('supplier');

6. Validation of columnar-engine population: Use the command psql -h $PGHOST -U postgres -d

tpch and then run the query SELECT relation_name, block_count_in_cc,

total_block_count, block_count_in_cc=total_block_count from g_columnar_relations

order by 1; \watch 10 and ensure that the output reaches a comparable state to the following:

relation_name | block_count_in_cc | total_block_count | ?column?

---------------+-------------------+-------------------+----------

lineitem | 4024945 | 4024945 | t

supplier | 6805 | 6805 | t

(2 rows)

Now we are ready to execute the OLAP atomics benchmark.

Queries in OLAP Atomics

The following table summarizes the customized OLAP queries that are executed on the tpch database that

we just loaded. The engineering team at Google AlloyDB develops these queries.

Scenario Description Query
Query
Id

Aggregation (count operation) with a filter covering
approximately 10% of the large lineitem table.

select count(l_orderkey) from lineitem where

l_discount = 0; Q1

Aggregation (SUM) on an integer column with a filter
covering approximately 10% of the lineitem table.

select sum(l_linenumber) from lineitem where

l_discount = 0; Q2

Aggregation (SUM) on numeric column with a filter
covering approximately 10% of the lineitem table.

select sum(l_quantity) from lineitem where

l_discount = 0; Q3

Summarization using GROUP BY and
AGGREGATION on the entire lineitem table.

select count(l_shipmode), l_shipmode from

lineitem group by l_shipmode; Q4

Full table scan without any filters select count(l_comment) from lineitem; Q5

Full table scan with equality predicate (filter)
select count(*) from lineitem where

l_quantity=25.99; Q6

Sorting of the entire table and presenting the top
values

select l_orderkey, l_commitdate, l_shipmode

from lineitem order by 1,2,3 limit 10; Q7

Full table scan with LIKE predicate
select count(*) from lineitem where

l_shipinstruct like '%DE%'; Q8

LIST based selection on the entire table
select count(*) from lineitem where l_tax in

(0.01, 0.02, 0.05); Q9

AlloyDB Omni OLAP Benchmark User Guide 35

MIX and MAX aggregation on the entire table
select min(l_quantity), max(l_discount) from

lineitem; Q10

Join with a predicate
select count(*) from supplier, lineitem where

s_acctbal = l_extendedprice; Q11

Execute OLAP Atomics

The execution of OLAP atomic queries is as simple as connecting to the tpch database and executing the

queries introduced in section Queries in OLAP Atomics.

It is recommended to execute the queries using “EXPLAIN ANALYZE <query> ..” prefix clause, which will

display the query plan and execution time.

Below is an example of executing Q1 from tpch database:

tpch=> explain analyze select count(l_orderkey) from lineitem where l_discount = 0;

QUERY PLAN

--

--

Finalize Aggregate (cost=137113.77..137113.78 rows=1 width=8) (actual time=151.708..153.953

rows=1 loops=1)

-> Gather (cost=137113.56..137113.77 rows=2 width=8) (actual time=151.693..153.944 rows=3

loops=1)

Workers Planned: 2

Workers Launched: 2

-> Partial Aggregate (cost=136113.56..136113.57 rows=1 width=8) (actual

time=145.574..145.576 rows=1 loops=3)

-> Parallel Append (cost=20.00..119102.90 rows=6804263 width=7) (actual

time=0.063..145.569 rows=5454623 loops=3)

-> Parallel Custom Scan (columnar scan) on lineitem

(cost=20.00..119098.89 rows=6804262 width=7) (actual time=0.062..145.565 rows=5454623 loops=3)

Filter: (l_discount = '0'::numeric)

Rows Removed by Columnar Filter: 54546385

Rows Aggregated by Columnar Scan: 1904168

Columnar cache search mode: native

-> Parallel Seq Scan on lineitem (cost=0.00..4.01 rows=1 width=7) (never

executed)

Filter: (l_discount = '0'::numeric)

Planning Time: 7.75 ms

Execution Time: 159.008 ms

(15 rows)

You should note the Execution Time in the above output, which is significantly faster for AlloyDB

columnar-engine.

AlloyDB Omni OLAP Benchmark User Guide 36

Expected Results

The following table gives a summary of the queries to execute and their expected execution and planning

time.

Query
Id

Query To Execute Execution Time
(milliseconds)

Planning
Time (ms)

Q1
EXPLAIN ANALYZE SELECT COUNT(l_orderkey) FROM lineitem WHERE

l_discount = 0; 159.00 7.75

Q2
EXPLAIN ANALYZE SELECT SUM(l_linenumber) FROM lineitem WHERE

l_discount = 0; 279.00 2.25

Q3
EXPLAIN ANALYZE SELECT SUM(l_quantity) FROM lineitem WHERE

l_discount = 0; 278.00 2.03

Q4
EXPLAIN ANALYZE SELECT COUNT(l_shipmode), l_shipmode FROM

lineitem GROUP BY l_shipmode; 912.00 1.86

Q5 EXPLAIN ANALYZE SELECT COUNT(l_comment) FROM lineitem; 218.00 1.96

Q6
EXPLAIN ANALYZE SELECT COUNT(*) FROM lineitem WHERE

l_quantity=25.99; 1.61 2.30

Q7
EXPLAIN ANALYZE SELECT l_orderkey, l_commitdate, l_shipmode

FROM lineitem ORDER BY 1,2,3 LIMIT 10; 2062.00 2.09

Q8
EXPLAIN ANALYZE SELECT COUNT(*) FROM lineitem WHERE

l_shipinstruct like '%DE%'; 286.00 2.23

Q9
EXPLAIN ANALYZE SELECT COUNT(*) FROM lineitem WHERE l_tax in

(0.01, 0.02, 0.05); 368.00 2.38

Q10
EXPLAIN ANALYZE SELECT MIN(l_quantity), MAX(l_disCOUNT) FROM

lineitem; 378.00 5.55

Q11
EXPLAIN ANALYZE SELECT COUNT(*) FROM supplier, lineitem

WHERE s_acctbal = l_extendedprice; 6,774.00 1.95

AlloyDB Omni OLAP Benchmark User Guide 37

