
AlloyDB Omni for PostgreSQL - Transactional

(OLTP) Benchmarking Guide

Sep 2023

Disclaimer 1
Overview 2

Benchmarking Process 2
Infrastructure Setup 4

Provision the server and client VMs 4

Provision Server on GCE 4

Set up filesystem on server 9
Provision Client on GCE 10

Install AlloyDB Omni 11

Allow access from the client VM 11

Update database configuration 12
Start AlloyDB Omni 12

Setup of Benchmark Driver Machine (Client) 13

Install PostgreSQL client 13

Install HammerDB-4.6 Driver for TPC-C benchmark 13

Notes on performance benchmarking 14

Benchmark Cleanup 14

Understanding system performance 15

CPU performance 15

Disk performance 15

Network latency 16

TPC-C Benchmark 16

Prerequisites 16

Initial Setup on Client Machine 16

Script to load TPC-C data 17

Running the TPC-C benchmark 19

Analyzing TPC-C Results 21

Measured Results With AlloyDB Omni 21

Observability 22

TPC-C Benchmark on 64 vCPU AlloyDB Omni Instance 23

Infrastructure Setup using 64 vCPU Machine Type 23

AlloyDB Omni Setup 23

Client Machine Setup 23

Running the benchmark 24

Results Observed 24

Results Summary 25

Disclaimer

This AlloyDB Omni benchmark guide provides best practices for running an Online Transactional Processing

(OLTP) benchmark. Your results may vary depending on several factors including, but not limited to the

machine specifications of your AlloyDB Omni instance, type of client machine driving the benchmark, region,

zone, and network bandwidth at the time of tests. Nothing in this user guide should be construed as a

promise or guarantee about the results you’ll derive from measuring the OLTP performance of AlloyDB Omni.

AlloyDB Omni OLTP Benchmark User Guide 1

https://www.lawinsider.com/clause/promise
https://www.lawinsider.com/clause/guarantee

Overview

AlloyDB Omni is a downloadable edition of AlloyDB, designed to run anywhere — in your data center, on your

laptop, at the edge, and in any cloud. AlloyDB Omni has several components and features, such as

state-of-the-art log and transaction management, dynamic memory management, and a built-in columnar

engine. As a whole, these features enable high performance for your transactional (OLTP), analytical

(OLAP), and hybrid (HTAP) workloads.

Relational database systems typically require a database administrator (DBA) to optimize them for

benchmarking, which includes configuring the transaction log settings, establishing the right buffer pool

sizes, and tweaking other important database parameters (flags) and characteristics. These settings also

vary based on machine hardware.

During installation, AlloyDB Omni chooses settings that are likely to be optimal for the number of CPUs and

memory on your system. It requires minimal to no tuning of flags at the database level to achieve high OLTP

performance. Users may further adjust the settings to optimize performance for their specific workload.

This document describes step-by-step procedures and best practices to configure AlloyDB Omni, a client

machine, and scripts to setup, load and run benchmarks. We will be running HammerDB TPROC-C (derived

from TPC-C) with different test parameters.

NOTE: Since HammerDB’s TPROC-C implementation is a close variant of the official TPC-C benchmark, we

will use the terms TPC-C and TPROC-C interchangeably throughout this user guide.

Benchmarking Process

We'll go through the following steps to set up and run various OLTP benchmarks.

1. Configure AlloyDB Omni running on a Google Compute Engine (GCE) VM.

2. Setup of a separate benchmark driver client virtual machine running on GCE, where we will install

benchmarking tools.

3. Install HammerDB on the client machine.

4. Run TPC-C like benchmark using HammerDB.

Unless otherwise specified, we used the following setup for performance benchmarking:

Component Value

AlloyDB Omni Machine Type n2-highmem-16

16vCPU / 128GB / 2048GB Persistent Disk

AlloyDB Omni Version 15.2.0
(This is the latest version at the time of writing of this document.)

Region us-central1 (Iowa)

Zone us-central1-a

AlloyDB Omni OLTP Benchmark User Guide 2

https://www.hammerdb.com/index.html
https://www.hammerdb.com/docs/ch03s02.html
https://www.hammerdb.com/docs/ch03s02.html

Client VM — Machine Type E2-standard-32 / 128GB / 128 GB persistent disk as boot disk

Operating System: Debian linux

Zone of Client VM us-central1-a [same as AlloyDB Omni instance]

Connectivity Private IP (same VPC)

Test tools HammerDB-4.6

Psql

Workloads TPC-C benchmark on 16 and 64 vCPU machines in following modes:

(1) 30% data on cache

(2) 100% data on cache

In your own testing, you can also run AlloyDB Omni on other platform configurations (as long as they meet

these system requirements). Your benchmarking results will vary based on your specific hardware. Some

crucial factors that can affect performance include the CPU model, number of cores/vCPUs, available

memory, disk performance (IOPS and throughput), and network performance (latency and bandwidth)

between the server and client.

AlloyDB Omni OLTP Benchmark User Guide 3

https://cloud.google.com/alloydb/docs/omni/install#before_you_begin

Infrastructure Setup

Provision the server and client VMs

Note: The next section describes how to provision the VMs through the GCP cloud console. You may skip this

section if running on your own hardware.

Provision Server on GCE

1. Create or select your GCP project: Go to https://console.cloud.google.com and select your project

from the drop down menu or create a new one.

2. Follow these links on the portal: “Products and Solutions” → “All Products” → “Compute Engine”.

3. Click on the following button to create instance to run AlloyDB Omni.

4. Choose a name for your server VM, and select your desired region and zone.

5. Under "Machine Configuration", select "N2" for "Series", and "n2-highmem-16" for the "Machine type".

AlloyDB Omni OLTP Benchmark User Guide 4

https://console.cloud.google.com

6. For best performance, expand "Advanced Configurations" and select "Intel Ice Lake or later".

AlloyDB Omni OLTP Benchmark User Guide 5

7. Under "Boot disk", ensure you are using a Debian 11 image, and have at least 20 GB provisioned for

the boot disk.

8. Under "Observability - Ops Agent", select "Install Ops Agent for Monitoring and Logging". This agent

helps gather system metrics during the benchmark run.

AlloyDB Omni OLTP Benchmark User Guide 6

9. Next, we create a separate disk which will be used by the database. Under "Advanced options" →
"Disks", select "Add new disk".

10. In the sidebar, ensure "Disk type" is set to "SSD persistent disk", and "Size" to "2048" GB. Persistent

disks have per GB and per instance performance limits for the maximum IOPS and throughput that

they can sustain, so we recommend a large disk size for better disk performance.

AlloyDB Omni OLTP Benchmark User Guide 7

https://cloud.google.com/compute/docs/disks/performance#performance_metrics

11. Finally, towards the bottom of the sidebar, ensure "Mode" = "Read/write", "Deletion rule" = "Delete

disk", and use a custom device name "alloydb-disk". Then you may click "Save" to finish the disk

setup.

AlloyDB Omni OLTP Benchmark User Guide 8

12. Now click "Create" at the bottom of the create instance page, and a new VM will begin to be

provisioned for you. Wait until the VM is fully created, which will be indicated by a green check mark

under the "Status" column.

Set up filesystem on server

Connect to the server VM using the “gcloud compute ssh” command. Refer this documentation for details

"https://cloud.google.com/compute/docs/connect/standard-ssh".

Sample command:

gcloud compute ssh --zone "<primary zone>" "<server machine name>" --project "<google-project>"

AlloyDB Omni OLTP Benchmark User Guide 9

https://cloud.google.com/compute/docs/connect/standard-ssh

After connecting to the VM, run the following commands:

sudo mkdir -p /home/$USER/alloydb-data

sudo mkfs.ext4 -m 1 -F "/dev/disk/by-id/google-alloydb-disk"

sudo mount --make-shared -o noatime,discard,errors=panic "/dev/disk/by-id/google-alloydb-disk"

"/home/$USER/alloydb-data"

You can verify that you have formatted and mounted the PD correctly by running lsblk -o

NAME,MOUNTPOINT,FSTYPE,SIZE /dev/disk/by-id/google-alloydb-disk:

$ lsblk -o NAME,MOUNTPOINT,FSTYPE,SIZE /dev/disk/by-id/google-alloydb-disk

NAME MOUNTPOINT FSTYPE SIZE

sdb /home/$USER/alloydb-data ext4 2T

Note the line that says sdb /home/$USER/alloydb-data ext4 2T: It means you have successfully

formatted the PD with an ext4 filesystem, it is accessible through the path /home/$USER/alloydb-data,

and it has 2TB capacity.

Provision Client on GCE

To run the OLTP benchmarks, you will require a client machine with enough processing power. The

benchmark driver HammerDB runs in a highly parallel fashion and consumes a significant amount of CPU.

The client machines' configurations are chosen in a way that they should not be a bottleneck for the

experiment.

For HammerDB TPC-C benchmark: An E2-standard-32 machine (32 vCPUS, 128 GB memory) and 128 GB

disk as a client for driving TPC-C benchmark.

Important: For this exercise, the client must be provisioned in the same region, zone, and VPC as AlloyDB

Omni’s primary instance. Benchmarking tools directly access the AlloyDB Omni instance over private IP. This

setup reduces network latency between the server and client.

Below is a sample client machine we provisioned to execute the TPC-C benchmark on an AlloyDB Omni

primary instance with 16 virtual CPUs.

AlloyDB Omni OLTP Benchmark User Guide 10

https://cloud.google.com/compute/docs/general-purpose-machines#e2_machine_types_table

Install AlloyDB Omni

Follow the steps in "Install AlloyDB Omni on the VM" to install AlloyDB Omni.

Allow access from the client VM

AlloyDB Omni OLTP Benchmark User Guide 11

https://cloud.google.com/alloydb/docs/omni/quickstart#install

Edit the file /var/alloydb/config/pg_hba.conf. This file controls which clients may connect to the

database, and we need to add an entry for the client. For example, if your client's IP address is 1.2.3.4,

you will add a line at the end of pg_hba.conf like this:

TYPE DATABASE USER ADDRESS METHOD

"local" is for Unix domain socket connections only.

Don’t allow any unix socket connections as the alloydbadmin.

local all alloydbadmin reject

local all all md5

IPv4 local connections:

host all all 127.0.0.1/32 trust

IPv6 local connections:

host all all ::1/128 trust

Allow replication connections on localhost, from a user with the replication privilege.

local replication all md5

host replication all 127.0.0.1/32 trust

host replication all ::1/128 trust

host all all 1.2.3.4/32 trust # <-- ENTRY FOR CLIENT

NOTE: In this guide, we use the "trust" setting to simplify the benchmarking setup. However, note that

"trust" bypasses password protection, and should not be used for a production instance.

Update database configuration

Finally, edit the file /var/alloydb/config/postgresql.conf. This file sets the configurations for the

database. The default configuration values are already tuned for your system's vCPU and RAM, but in our

benchmarking, we need to increase the value of max_connections=2000 to accommodate more clients in

the larger tests.

Start AlloyDB Omni

Now we may restart AlloyDB Omni to pick up the updated configurations:

sudo alloydb database-server stop

sudo alloydb database-server start

If you do not see any errors, that means AlloyDB Omni is running. Verify by connecting to the database

locally:

sudo docker exec -it pg-service psql -h localhost -U postgres

You should see a psql prompt, which means you have successfully connected:

sudo docker exec -it pg-service psql -h localhost -U postgres

psql (15.2)

Type "help" for help.

postgres=#

Type quit to exit psql.

AlloyDB Omni OLTP Benchmark User Guide 12

Setup of Benchmark Driver Machine (Client)

This section will guide you through the steps of configuring the client machine, where we will install

benchmarking tools such as HammerDB.

Connect to the client machine using the “gcloud compute ssh” command.

Sample command:

gcloud compute ssh --zone "<primary zone>" "<client machine name>" --project "<google-project>"

Install PostgreSQL client

You will need a psql client application to connect to AlloyDB Omni. Use the following command to install a

postgresql client that includes a psql application and then ensure you are able to connect.

sudo apt-get update

sudo apt install -y postgresql-client

Now ensure that it works and you are able to connect to the AlloyDB Omni. Use the “Private IP” address of

your AlloyDB Omni instance.

psql -h <Private IP> -U postgres

Install HammerDB-4.6 Driver for TPC-C benchmark

For this benchmarking guide, we utilized HammerDB-4.6 driver. Execute the following commands to install

HammerDB driver.

mkdir hammerdb

pushd hammerdb

curl -OL

https://github.com/TPC-Council/HammerDB/releases/download/v4.6/HammerDB-4.6-Linux.tar.gz

tar zxvf HammerDB-4.6-Linux.tar.gz

NOTE: If your operating system is Non-Debian, perform the following checks to ensure you have all

essential libraries to run hammerdb. For debian, the steps below are optional.

Next, run hammerdb/HammerDB-4.6 directory:

cd HammerDB-4.6

sudo ./hammerdbcli

AlloyDB Omni OLTP Benchmark User Guide 13

https://github.com/TPC-Council/HammerDB/releases/download/v4.6/HammerDB-4.6-Linux.tar.gz

This puts you in the HammerDB shell. From there, run librarycheck:

HammerDB CLI v4.6

Copyright (C) 2003-2022 Steve Shaw

Type "help" for a list of commands

Initialized SQLite on-disk database /tmp/hammer.DB using existing tables (45,056 KB)

hammerdb> librarycheck

In the output, look for the section that says Checking database library for PostgreSQL, and ensure it

succeeds. Otherwise, fix any errors that show up. On some platforms, you may need to install additional

packages:

Debian-based system: sudo apt-get update && apt-get install -y libpgtcl

Red hat: sudo yum install tcl libpq

If the check was successful, you should see output like this:

~/hammerdb/HammerDB-4.6$./hammerdbcli

HammerDB CLI v4.6

Copyright (C) 2003-2022 Steve Shaw

Type "help" for a list of commands

Initialized new SQLite on-disk database /tmp/hammer.DB

hammerdb>librarycheck

<... snipped ...>

Checking database library for PostgreSQL

Success ... loaded library Pgtcl for PostgreSQL

<... snipped ...>

Notes on performance benchmarking

Benchmark Cleanup

This step is important if you are planning to execute multiple benchmarks in succession. Performing a proper

cleanup between each benchmark is a critical prerequisite for accurate and reliable benchmarking results.

This includes deleting previous benchmark data (i.e. benchmark database), and rebooting the AlloyDB Omni

instance (that clears caches at database and operating systems level) before running another benchmark. A

proper benchmark cleanup ensures that residual effects from previous benchmarks do not affect the

performance measurements of the new benchmark. It also helps to ensure consistency and repeatability of

the benchmark results, which is essential for making meaningful comparisons between different systems or

identifying areas for optimization in hardware, software, or configuration.

Follow the URL https://cloud.google.com/compute/docs/instances/stop-start-instance to learn more about

how to reboot a GCE VM.

To drop the previous benchmark database, you can use the following psql command from the client

machine.

AlloyDB Omni OLTP Benchmark User Guide 14

https://cloud.google.com/compute/docs/instances/stop-start-instance

psql -h <Private IP> -U postgres -c "DROP DATABASE IF EXISTS <database_name>;"

Understanding system performance

Since AlloyDB Omni can be run on many different environments, it is important to know that the transaction

performance is highly dependent on CPU/Memory/IO/Network latency.

1. When most data fits in memory, it is a CPU bound workload, and more CPUs will get more transaction

performance.

2. When most data can not fit in memory, it becomes an IO bound workload, more disk IOPS/throughput

will get more transaction performance. IO latency is also important for OLTP workload, when a

transaction commits, it needs to flush WAL to disk before commit, so IO latency is directly related to

commit latency.

3. Query latency is affected by network latency between client and server communication. It is

recommended to have the client and server located in the same local network or same zone for

benchmarking purposes.

Before benchmarking, It is useful to be able to characterize system performance of the hardware. In this

section, we list down some commands that can be used to measure:

1. Performance of the CPU

2. Performance of the disk

3. Network latency between client and server

CPU performance

CPU performance can be measured by sysbench benchmark, see https://github.com/akopytov/sysbench for

installation instructions.

Use the following command to measure cpu performance:

sysbench cpu --cpu-max-prime=10000 --threads=<Number of vCPUs> run

Disk performance

Fio can be used to measure disk performance.

Use the following commands to measure IOPS, throughput and latency.

IOPS

fio --time_based --runtime=60s --ramp_time=2s --ioengine=libaio --direct=1 --name=iops_test

--filename=/mnt/disks/pgsql/fio_test --bs=8k --iodepth=256 --size=4G --readwrite=randrw

--rwmixread=25 --verify=0 --group_reporting=1

Write Throughput

fio --name=write_throughput --filename=/mnt/disks/pgsql/fio_test --numjobs=16 --size=4G

--time_based --runtime=60s --ramp_time=2s --ioengine=libaio --direct=1 --verify=0 --bs=256k

--iodepth=256 --rw=randwrite --group_reporting=1

AlloyDB Omni OLTP Benchmark User Guide 15

https://github.com/akopytov/sysbench

Latency

fio --time_based --runtime=60s --ramp_time=2s --ioengine=libaio --direct=1 --name=latency_test

--filename=/mnt/disks/pgsql/fio_test --bs=256k --iodepth=1 --size=4G --readwrite=randwrite

--verify=0

Network latency

Ping can be used to measure network latency.

ping <IP address> -c 100

TPC-C Benchmark

HammerDB is a popular benchmarking tool that includes a TPC-C benchmark implementation for evaluating

the performance of OLTP systems. HammerDB's TPC-C implementation allows users to simulate a workload

similar to the TPC-C benchmark, including a mix of transactions that mimic the behavior of a wholesale

supplier environment. HammerDB measures the system's performance in terms of transactions per minute

(TPM) and generates reports that include detailed statistics and performance metrics. Additionally,

HammerDB supports customization of the benchmark parameters, allowing users to adjust the database size,

the number of warehouses, and other workload characteristics to simulate different scenarios.

This section provides a comprehensive guide on how to execute the HammerDB TPC-C benchmark to gauge

the performance of the AlloyDB Omni database system.

Prerequisites

A. You need to run the following steps from a client (driver) machine. Ensure that you have completed

the setup steps listed in the "Setup of Benchmark Driver Machine (Client)" section (especially

installation of the HammerDB utility).

B. Cleanup: If you are running multiple benchmarks in succession, ensure you follow the "Benchmark

Cleanup" section before doing your subsequent run.

Initial Setup on Client Machine

Execute all commands from hammerdb/HammerDB-4.6 directory.

cd hammerdb/HammerDB-4.6

Then create setup.env file as follows:

AlloyDB Omni OLTP Benchmark User Guide 16

https://www.hammerdb.com/index.html
http://www.tpc.org/tpcc

cat << EOF > setup.env

Private IP of the AlloyDB primary instance

export PGHOST=111.222.333.444

Postgres default port address. You do not need to change it unless you use non-default port

address.

export PGPORT=5432 # default port to connect with postgres

Number of TPC-C warehouses to load. This determines the overall database size.

export NUM_WAREHOUSE=576

Number of users for running the benchmark.

export NUM_USERS=256

EOF

Edit the generated setup.env file and change all the highlighted parameter values to those that are

suitable to your environment setup.

For the purpose of this benchmarking guide, we evaluate the performance in the following two crucial

scenarios:

1. Partially (~30%) cached mode: In this mode, we generate a large TPC-C database which can only

partially fit in the buffer cache. The transactions in this mode will not be always served from

memory and will incur IO to the underlying storage subsystems. This scenario is more realistic to the

OLTP needs of the majority of customers with large data set.

To test this scenario, change NUM_WAREHOUSE as 3200 in the setup.env file.

2. Fully (100%) cached mode, where the TPC-C database fully fits in the buffer cache. AlloyDB Omni

utilizes approximately 90% of the available 128 GB RAM including buffer cache. Since TPC-C

transactions perform minimal IO’s (as reads are mostly served from buffer cache) in this mode,

higher TPM is expected compared to partially-cached runs.

To test this scenario, change NUM_WAREHOUSE as 576 in the setup.env file.

NOTE: The number of users (or clients) is set to 256 for this test. This number of users has been tuned to

provide the best throughput with acceptable latency on both of these configurations.

Script to load TPC-C data

In the context of the TPC-C benchmark, a "load step" refers to the process of populating the benchmark

database with initial data before running the actual performance test.

During this step, the database is populated with a specified number of warehouses, customers, and other

entities according to the TPC-C specifications. The purpose of the load step is to create a realistic workload

for the performance test, and to ensure that the test results are comparable across different systems.

AlloyDB Omni OLTP Benchmark User Guide 17

After the load step is completed, the database is pre-populated with a defined set of initial data, and ready

to be used for the TPC-C benchmark test.

Follow the steps below to load the TPC-C database:

1. Switch to the benchmark home directory.

cd hammerdb/HammerDB-4.6

2. Create build-tpcc.sh file as follows:

#!/bin/bash -x

source ./setup.env

./hammerdbcli << EOF

CONFIGURE PARAMETERS FOR TPCC BENCHMARK

dbset db pg

dbset bm tpc-c

CONFIGURE POSTGRES HOST AND PORT

diset connection pg_host $PGHOST

diset connection pg_port $PGPORT

CONFIGURE TPCC

diset tpcc pg_superuser postgres

diset tpcc pg_user tpcc

diset tpcc pg_dbase tpcc

SET NUMBER OF WAREHOUSES AND USERS TO MANAGE EACH WAREHOUSE

THIS IMPORTANT METRIC ESTABLISHES THE DATABASE SCALE/SIZE

diset tpcc pg_count_ware $NUM_WAREHOUSE

diset tpcc pg_num_vu 10

LOG OUTPUT AND CONFIGURATION DETAILS

vuset logtotemp 1

print dict

CREATE AND POPULATE DATABASE SCHEMA

buildschema

vudestroy

AlloyDB Omni OLTP Benchmark User Guide 18

quit

EOF

3. Execute the load command as shown below and wait for the command to finish. During this

command, you may view the contents of results/build-tpcc.out in a second terminal to see its

progress.

○ For the 100% cached test, this command should return in under an hour.

○ For the 30% cached test, this command could take several hours.

chmod +x ./build-tpcc.sh

mkdir -p results

ulimit -n 32768

sudo nohup ./build-tpcc.sh > results/build-tpcc.out 2>&1

4. Validate Load: After the aforementioned script completes, it would be advisable to confirm that the

database load was successful. The database's size can be quickly verified by doing as follows:

$ psql -h $PGHOST -p 5432 -U postgres

postgres=> \l+ tpcc

 List of

databases

 Name | Owner | Encoding | Collate | Ctype | Access

privileges | Size | Tablespace | Description

--------------+------------------+----------+---------+---------+----------------------

-----------------+---------+------------+--

 tpcc | tpcc | UTF8 | C.UTF-8 | C.UTF-8 |

 | --- GB | pg_default |

In 30% cached TPC-C configuration (with 3200 warehouses), expect the size of the TPC-C database to

be around 300 GB.

In 100% cached TPC-C configuration (with 576 warehouses), expect the size of the TPC-C database to

be around 55 GB.

Running the TPC-C benchmark

In this step, we will initiate the actual TPC-C performance test. The TPC-C benchmark will be executed

using the populated database from the load step. The benchmark generates a series of transactions that

simulate a typical business environment, including order entry, payment processing, and inventory

management. The workload is measured in "transactions per minute" (TPM), which represents the number of

complete business transactions that the system can handle in one minute.

AlloyDB Omni OLTP Benchmark User Guide 19

The run step is designed to stress the database system under realistic conditions and provide a standard way

of measuring performance that can be compared across different database systems. Vendors and customers

widely use the results of the TPC-C benchmark to evaluate the performance of different database systems

and hardware configurations.

The following script will run the TPC-C benchmark for about 1 hour after approximately 10 minutes of warm

up.

1. Switch to benchmark home directory:

cd hammerdb/HammerDB-4.6

2. Create run-tpcc.sh script as follows:

#!/bin/bash -x

source ./setup.env

./hammerdbcli << EOF

dbset db pg

dbset bm tpc-c

CONFIGURE PG HOST and PORT

diset connection pg_host $PGHOST

diset connection pg_port $PGPORT

CONFIGURE TPCC DB

diset tpcc pg_superuser postgres

diset tpcc pg_user postgres

diset tpcc pg_dbase tpcc

BENCHMARKING PARAMETERS

diset tpcc pg_driver timed

diset tpcc pg_rampup 10

diset tpcc pg_duration 60

diset tpcc pg_vacuum false

diset tpcc pg_partition false

diset tpcc pg_allwarehouse true

diset tpcc pg_timeprofile true

diset tpcc pg_connect_pool false

diset tpcc pg_dritasnap false

diset tpcc pg_count_ware $NUM_WAREHOUSE

diset tpcc pg_num_vu 1

loadscript

print dict

AlloyDB Omni OLTP Benchmark User Guide 20

vuset logtotemp 1

vuset vu $NUM_USERS

vucreate

vurun

quit

EOF

3. Run the script as follows:

chmod +x run-tpcc.sh

mkdir -p results

ulimit -n 32768

sudo nohup ./run-tpcc.sh > results/run-tpcc.out 2>&1

Now wait for the run-tpcc.sh script to finish. The script will take approximately 1 hour and 10 minutes to

complete.

Analyzing TPC-C Results

In the context of the TPC-C benchmark, NOPM and TPM are performance metrics used to measure the

performance of a database system. NOPM stands for "New Orders Per Minute" and measures the number of

new order transactions that the system can handle in one minute. The New Order transaction is one of the

most important transactions in the TPC-C benchmark and involves creating a new order for a customer.

TPM stands for "Transactions Per Minute" and measures the total number of completed business

transactions that the system can handle in one minute. This includes not only New Order transactions but

also Payment, Delivery, Order Status, and other types of transactions defined in the TPC-C benchmark.

In general, TPM is considered to be the primary performance metric for the TPC-C benchmark, as it provides

an overall measure of the system's ability to handle a realistic workload. However, NOPM can also be a

useful metric for systems that are heavily focused on processing new orders, such as e-commerce or retail

systems.

Measured Results With AlloyDB Omni

With 30% cached TPC-C database on 16 vCPU machine (i.e. NUM_WAREHOUSE=3200 and NUM_USERS=256), we

observed 106804 tpm-C (New Order Per Minute) from a cumulative 245666 TPM. These performance

numbers can be extracted using following command:

$ grep NOPM results/run-tpcc.out

Vuser 1:TEST RESULT : System achieved 106804 NOPM from 245666 PostgreSQL TPM

On a 100% cached TPC-C database on 16 vCPU machine (i.e. NUM_WAREHOUSE=576 and NUM_USERS=256), we

got 436429 tpm-C (New Order Per Minute) from a cumulative 1011352 TPM :

AlloyDB Omni OLTP Benchmark User Guide 21

$ grep NOPM results/tpcc-run.out

Vuser 1:TEST RESULT : System achieved 436429 NOPM from 1011352 PostgreSQL TPM

Summary of performance results on 16 vCPU.

TPC-C Scenario NUM_WAREHOUSE NUM_USERS New Order Per
Minute (NOPM)

Cumulative TPM

30% cached 3200 256 106893 245878

100% cached 576 256 414917 958875

Observability

To further understand the behavior of the database system, you can use GCE monitoring page to monitor

important system metrics, such as CPU usage, memory usage, etc. These monitoring information can be

found by navigating to the "Compute Engine -> VM instances -> Instance" page and/or navigating to the

Observability page on https://console.cloud.google.com.

For instance, the below picture shows the CPU/Memory/Disk/Network metrics of a GCE instance during the

TPC-C run.

AlloyDB Omni OLTP Benchmark User Guide 22

https://console.cloud.google.com

If you are running AlloyDB Omni on other hardware, you can use the iostats program to check real time

CPU/IO stats.

iostat -m 10

This will print statistics about the I/O devices every 10 seconds, e.g.:

$ iostat -m 10

Linux 5.10.0-25-cloud-amd64 (omni-server-16vcpu) 09/13/23 _x86_64_ (16 CPU)

avg-cpu: %user %nice %system %iowait %steal %idle

0.77 1.75 1.11 0.26 0.00 96.12

Device tps MB_read/s MB_wrtn/s MB_dscd/s MB_read MB_wrtn MB_dscd

sda 53.04 0.94 4.81 0.58 803 4104 496

sdb 1535.29 0.04 186.46 2466.31 31 159054 2103788

avg-cpu: %user %nice %system %iowait %steal %idle

1.69 6.17 3.22 1.81 0.00 87.10

Device tps MB_read/s MB_wrtn/s MB_dscd/s MB_read MB_wrtn MB_dscd

sda 0.50 0.00 0.01 0.00 0 0 0

sdb 8297.00 0.00 1060.20 121.73 0 10602 1217

...

For details about the output of iostat, please refer to its documentation.

TPC-C Benchmark on 64 vCPU AlloyDB Omni Instance

Infrastructure Setup using 64 vCPU Machine Type

AlloyDB Omni Setup

The overall instructions for the setup of AlloyDB Omni with 64 vCPU machine type are similar to the steps

outlined in section “Provision the server and client VM”. The only changes you need:

- In step 5: The Machine Type should be changed to n2-highmem-64.

- In step 9: The size of the disk should be increased to 5120GB, for best performance.

Client Machine Setup

To setup a client machine, you need to follow the steps outlined in “Provision Client Machine” except the

Machine Type parameter that changes to n2-standard-64 machine. Ensure that the client machine is

located in the zone of AlloyDB Omni primary instance. Below is the screenshot of our client machine

configuration.

AlloyDB Omni OLTP Benchmark User Guide 23

https://linux.die.net/man/1/iostat

Then follow the instructions outlined in the section “Setup of Benchmark Driver Machine (Client)”.

Running the benchmark

Follow the steps outlined below to run the benchmark:

1. Follow the “Prerequisites” section.

2. Then follow “Initial Setup on Client Machine” and use following parameter values:

● Set PGHOST to the “Private IP” of your new 64 vCPU AlloyDB Omni instance.

● For 30% Cached TPC-C scenario, set NUM_WAREHOUSE=12800 and NUM_USERS=1024.

● For 100% Cached TPC-C scenario, set NUM_WAREHOUSE=2304 and NUM_USERS=1024.

3. To setup and load a TPC-C database, follow the “Load TPC-C script” section.

NOTE: In order to speed-up the load, change the value of pg_num_vu to 64 in build-tpcc.sh as

diset tpcc pg_num_vu 64.

4. Then follow the exact steps in “Running the TPC-C benchmark”.

Results Observed

Benchmark Mode NUM_WAREHOUSE NUM_USERS New Order Per
Minute (NOPM)

Cumulative TPM

30% cached 12800 1024 227849 518515

AlloyDB Omni OLTP Benchmark User Guide 24

100% cached 2304 1024 1003868 2293709

Results Summary

This section is intended to provide a summary of our observations based on the benchmarks explained in this

document.

HammerDB TPC-C Performance Summary

AlloyDB
Omni

Machine
Type

TPC-C
Workload
Scenario

NUM_WAREH
OUSE

NUM_USERS New Order
Per Minute
(NOPM)

Cumulative
TPM

Converted to
TPS

16 vCPU 30% cached 3200 256 106893 245878 4098

16 vCPU 100% cached 576 256 414917 958875 15981

64 vCPU 30% cached 12800 1024 227849 518515 8642

64 vCPU 100% cached 2304 1024 1003868 2293709 38228

AlloyDB Omni OLTP Benchmark User Guide 25

