
Android
Security
Paper
2023

Contents

Introduction ...05

About the Android Operating System ..06
Security by Design 12
Android Compatibility Program 14

Hardware-backed Security ...16
Trusted Execution Environment 16
Verified Boot 17
Android Keystore System 18

Keystore Key Attestation 19
KeyChain 19
Key Decryption on Unlocked Devices 20
 Version Binding (Anti-Rollback Protection) 20
User Authentication 20
Gatekeeper 21
Weaver 21
Biometrics 22

Fingerprint Authentication 23
Face Authentication 24

Additional Authentication Methods 24
Protected Confirmation 24
Memory Safety 25
Sanitizers 25
GWP-ASan and KFENCE 25
Rust 25

Operating System Security ...26
Sandboxing 26

SELinux 27
Seccomp Filter 27
Unix Permissions 27

Anti-Exploitation 28

2

Android Security Paper

User and Data Privacy 28
Restricting Access to Device Identifiers 28
App Permissions 29
Location Control 31
Per-use Access to all Device Logs 32
Privacy Indicators 32
Files and Media Access 32
Photo Picker 33
Limited Access to Background Sensors 34
Lockdown Mode 34
Privacy Dashboard and Permission Manager 34
Private Compute Core 35

Network Security ...36
DNS over TLS 36
TLS by Default 36
Cellular Connectivity 37
Wi-Fi 38
VPN 39

VPN Service Modes 39
VPN Lockdown Modes 40
Third-Party Apps 40
Certificate Handling 40

Hypervisor/ Virtualization 41
Virtualization Service 42
Hypervisor 43
Virtual Machine Monitor 43
Microdroid 43

Application Security ...44
Google Security Services 44

Jetpack Security 45
Application Signing 45
Google Play Protect 46
Google Play App Review 47

Data Protection ..49
Encryption 49

Adiantum 50
Backup Encryption 50

3

Android Security Paper

Android Security Updates ...51
Device Manufacturer Partner Updates 51

Google Play System Updates 52
Conscrypt 52

Enterprise Identity, Security & Management ..53
Device and Profile Management 53

Device Management For Any Scenario 53
Work Profile 54

 Work Profile for employee-owned devices 55
 Work Profile for mixed-used company-owned devices 55
 Full management for work-only company-owned devices 55
Full management for dedicated devices 55

OEMConfig 56
Device Provisioning 56
Work Challenge 57
Data Loss Prevention 57

Application Management ..59
Managed Google Play 59
Private Apps 60
Managed Configurations 61
Applications from Unknown Sources 61

Enterprise Identity – Zero Trust Capabilities ..62

Programs ..64
Android Enterprise Recommended 64
Android Security Rewards Program 64
Google Play Security Reward Program 65
Developer Data Protection Reward Program 65
App Security Improvement Program 65
App Defense Alliance 65

Industry Standards and Certifications ...66
ISO and SOC Certification 66
OWASP MAS 67
Government Grade Security 67

NIST FIPS 140-3/140-2 CMVP & CAVP 67
 Common Criteria/NIAP Mobile Device Fundamentals Protection Profile 68
 DISA Security Technical Implementation Guide (STIG) 68

Conclusion ...69

4

Android Security Paper

Introduction
Android uses industry-leading security practices to keep user devices safe. We work closely
with device partners, developers, security experts, researchers, and academic leaders to
ensure the security of the platform. Android’s robust, layered security approach is critical
for enterprises that must contend with ongoing threats. Organizations require strong
security and privacy to protect their data while also giving employees the flexibility to use
mobile devices for essential tasks.

This security paper outlines the Android approach to out-of-the-box mobile security
and privacy for consumers, business, and government customers. It details the strengths
of the Android platform, the range of management APIs available to control enterprise
environments, and the role of Google Security Services in preventing
threats and abuse.

Android offers a layered security strategy with unique ways to keep data and devices safe.
Beyond hardware and operating system protections, Android uses multi-profile support with
device-management options that enable the separation of work and personal data, keeping
company and personal data secure and isolated from each other. Google Play Protect
offers built-in malware protection, identifying potentially harmful applications (PHAs), and is
continually working to keep data and devices safe.

This paper also details how the open source Android platform enables best-in-class
enterprise security by leveraging the collective intelligence of the Android ecosystem.
Overall, this paper is designed to help organizations in their decisions to implement Android
and take advantage of its robust security tools.

5

Android Security Paper

About the Android
Operating System
When Android was being developed, the state-of-the-art in consumer operating system
security was provided by memory management systems. For example, both Windows and
Unix workstations used protected memory features to provide robust security between
users of a device: multiple users could have their own logins to the device, with fully
protected separation of all of their apps and data, as if they were on different devices.
However, within an individual user’s purview, security was more limited. Protected memory
was used to prevent applications from gaining highly privileged access to the kernel or
accidentally corrupting each other but with essentially no security between the applications
themselves. That is, a single user on a device could install applications on it, which couldn’t
interact with other users, but had fairly free reign within the device.

Installing an application in these operating systems effectively allowed that application to
run as the user, with the ability to do almost everything the user could do. This situation was
problematic, as the user needed significant trust in every application installed. One of the
greatest security values the web brought was that web pages were treated as untrusted and,
as such, were limited in what they could do.

Consider, for example, the difference between using a web page for an email client vs. using an
application. Navigating to a web page to try an email client can be done without concern since that
web page will not have any unsafe access to the user’s device (unless the user allows it). Installing
an email app means the user must carefully evaluate whether or not to trust its developer, with
the knowledge that the app can access everything on the device (and that even if the app is later
uninstalled, the device may never behave the way it did before the installation).

This situation was already driving users away from native desktop apps. It was simply not viable
for mobile devices and, as these devices were already becoming central to their owners’ lives,
users were even less able or willing to have such trust in various applications.

6

About the Android Operating System

Use web technology
This leveraged the robust security model of the web, however, it required adding
significant extensions to enable all of the application use cases needed for phones,
as well as extensions to its security model. It did not allow native code, which is
very problematic for critical classes of apps like games. Web tech, designed for
desktops, was too heavyweight to run on mobile hardware at that point.

There were a few ways to address these new security requirements on mobile platforms:

Use code signing
This, along with source of app restrictions, ensures the user can only install
approved apps from a single source. In these cases, the app could still run on
the device with almost full access like a traditional desktop system (and use
native code and other tools), but with a single distribution point vetting all apps
to ensure they are safe to the user. This approach was increasingly common in
carrier stores and other places.

Use Java or a similar virtual environment
This more directly mapped to the kinds of apps being written for mobile devices,
but had the same critical problem of requiring apps to be written in that language
with no support for native code. Mobile Information Device Profile is an example of
this approach.

7

About the Android Operating System

https://en.wikipedia.org/wiki/Mobile_Information_Device_Profile

One of Android’s goals was to create an open and secure platform for mobile devices and
a wide array of other device form factors, while allowing users to install apps from different
sources. From Android’s point of view, if mobile was the next big computing platform, anything
that could be installed without sacrificing security and privacy shouldn’t be entirely under the
control of a single entity. To maintain this openness and still protect user safety, the operating
system itself needed a much more robust application security model, where installing an
application did not effectively make it a user of the device.

For Android to be a viable open and secure platform for our users, we had to find a way to
allow native code in apps: the importance of gaming, media, and other scenarios meant being
limited to running in a virtualized language was too much overhead. In addition, it was already
clear that these virtualized languages tended to have frequent security holes due to the
complicated interactions between the various security domains within them.

Thus, Android adopted a security solution built on the Linux
kernel using protected memory and a novel isolation process.

A related area of development in operating systems was capability-based systems, where
processes essentially start out with no capabilities (such as access to files and hardware like
microphones), then are explicitly given specific abilities based on what they are being created
for. The implementations at that time were generally either research systems or designed
more for use in embedded systems rather than general-purpose operating systems.

The foundation of Android’s security is the Linux kernel.

The Linux kernel has been in widespread use for years and is used in millions of security-
sensitive environments. Through its history of constantly being researched, attacked, and fixed
by thousands of developers, Linux has become a stable and secure kernel trusted by many
corporations and security professionals. Devices launching with Android 11 and higher are
required to use the latest long-term support (LTS) kernel that is regularly maintained upstream
with security updates and bug fixes.

8

About the Android Operating System

https://en.wikipedia.org/wiki/Capability-based_security

Android’s overall security design is built on top of only the Linux kernel itself, thus it is fairly
free to rebuild its user space above to suit its needs. Given that Linux comes with extremely
robust multi-user support, this is leveraged for a new application-centric security model in
Android. A “user” in Linux is just an arbitrary 32-bit integer (called a UID, the term we will use
going forward to distinguish these from the regular Linux user concept) that fully separates it
from other UIDs within the kernel.

App A App A

App G App G

Window Manager/Clipboard/etc.

initd/cron/etc.

Window Manager/Clipboard/etc.

App C App C

App H App H

App D App D

App M App M

UID X

UID 0 (root)

UID Y

Instead of being a user, Android maps a UID to an application. Each application installed
on the device is assigned its own UID, and the kernel ensures it is naturally isolated from
other UIDs (and hence other apps). With this extensive use of UIDs, Android also makes a
deliberate effort to minimize the amount of code running as root (UID 0). For example, a
focused installd service provides the minimal functionality needed to manage the overall
filesystem (such as creating and destroying the storage for UID sandboxes), and most parts
of the system run in their own UID sandboxes.

Figure 1. Traditional relationship between users, apps, and system services in Linux

9

About the Android Operating System

Any interactions between UIDs must be explicitly allowed by Android, much like
a capability-based system.

To define the sandboxes for applications, there must be some concept of a secure identity
of that application. A well-established way to do this is with a signing certificate, where the
application provides a public key identifying who its source is and a private key to sign the
code. The operating system then uses the public key to verify that the application came
from the author it claims by verifying it against its signing certificate.

App A App B

SysUI

Window manager/
Activity manager/

Clipboard/etc.
Telephony

initd/installd/
etc.

WiFi
supplicant

App C

Media
Provider

App D

Package
Installer

App E

UID 10003 UID 10005

UID 10001

UID 10004

UID 10000

UID 1000
(system)

UID 1001
(phone)

UID 0
(root)

UID 1010
(wifi)

UID 10006

UID 10002

UID 10007

Figure 2. Resulting security architecture

10

About the Android Operating System

In traditional implementations of code signing, the public certificate is chained to
a root certificate. This root certificate can come only from a limited set of certificate
authorities responsible for controlling the public certificates charged to them, so their
identities can be trusted.

In the development of mobile platforms before Android’s creation, the platform owner or
carrier (or a combination) would serve as the sole Certificate Authority (CA). For each app
being installed, the platform would verify the app was signed by the platform’s CA, effectively
controlling which apps the user was allowed to install.

Android explicitly did not want platform and/or device providers to have absolute control
over what users can install on their device, but still needed a robust way to securely identify
applications. Android applications are still signed with a cryptographically secure certificate
as previously described, but it does not need to use certificate authorities. Instead, each
app’s certificate stands on its own and can only be used to securely determine whether two
apps came from the same author. This allows Android to enforce core security guarantees,
such as “this update to app X came from the original author of the current version of the
app” while allowing users to install apps from multiple sources.

Apps are generally built to execute in the Android Runtime and interact with the operating
system through a framework that describes system services, platform APIs, and message
formats. A variety of high-level and lower-level languages, such as Java, Kotlin, Rust, and
C/C++ are allowed and can operate within the same application sandbox. Note that these
languages are not part of the Android security model: both native and VM code in an
application are running in the same sandbox, and don’t have different security semantics.

11

About the Android Operating System

The overall layers of the Android software stack can be visualized as below, though the actual
security sandboxing layers are much more fine-grained.

Security by design

Firmware Integrity and Trust
Key management, Attestation, TrustZone,
Baseband Security, Verified boot

OS Integrity and Trust
Android Virtualization Framework,
Memory Safety, Kernel hardening,
Application sandboxing, API hardening

Application Integrity and Trust
Malware prevention,
App store policy

User Integrity and Trust
Authentication

Supply Chain Security
Vulnerability mitigration,
Remove key provisioning

La
ye

rs
 o

f
tr

us
t

Figure 3. Android’s security by design

Android uses hardware and software protections to achieve strong defenses. Security
starts at the hardware level, where the user is authenticated with lock screen credentials.
Android operating system, once installed, is immutable. That is, an attacker cannot make
persistent modifications to the operating system. Verified Boot ensures the system software
has not been tampered with, and hardware-assisted encryption and key handling help protect
data in transit and at rest.

Android’s core security model is based on protecting the user on-device through a robust
security design with app sandboxing. Application sandboxing isolates and protects Android
apps, preventing malicious apps from accessing private information. Android also protects
access to internal operating system components, to help prevent vulnerabilities from becoming
exploitable. Mandatory, always-on encryption helps keep data safe, even if devices fall into
the wrong hands. Encryption is protected with Keystore keys, which store cryptographic
keys in a container, making it harder to extract from a device. Developers can use Android
KeyStore with Jetpack Security safely and easily. In total, Android leverages hardware and
software to keep devices safe.

12

About the Android Operating System

https://source.android.com/security/verifiedboot
https://developer.android.com/training/articles/keystore
https://developer.android.com/reference/java/security/KeyStore.html
https://developer.android.com/jetpack/androidx/releases/security

At the software layer, built-in protection is essential to helping Android devices stay safe.
Google Play Protect is the world’s most widely deployed threat detection service, actively
scanning over 125 billion apps on devices every day to monitor for harmful behavior. Google Play
Protect scans all applications including public apps from Google Play, system apps updated by
original equipment manufacturers (OEMs) and carriers, and sideloaded apps.

Apps
Alarm, Browser, Calculator, Camera, Clock, Contacts, IM Dialer, Email, Media Player,
Photo Album, SMS/MMS, Voice Dial

Framework
Content Providers, Activity Manager, Location Manager, View System, Package Manager,
Notification Manager, Resource Manager, Telephony Manager, Window Manager

Native Libraries
Audio Manager, LIBC, SSL, Freetype, Media, OpenGL/ES,
SQLite, Webkit, Surface Manager

Runtime
Core Libraries, Android
Runtime (ART)

Secure Element
Trusted Execution
Environment

HAL
Audio, Bluetooth, Camera, DRM, External Storage, Graphic, Input, Media, Sensors, TV

Linux Kernel
Drivers: Audio, Binder IPC, Bluetooth, Camera Display,
Keypad Shared Memory, USB Wi-fi, Power Management

Figure 4. The Android software stack

13

About the Android Operating System

https://developers.google.com/android/play-protect
https://developers.google.com/android/play-protect

Android is an open source software stack created for a wide array of devices with different
form factors. Android incorporates industry-leading security features and the Android team
works with developers and device OEMs to keep the Android platform and ecosystem safe. A
robust security model is essential to enable a vigorous ecosystem of apps and devices built
on and around the Android platform and supported by cloud services. As a result, through its
entire development lifecycle, Android has been subjected to a rigorous security program.

Applications running on Android are signed and isolated into application sandboxes
associated with their application signature. The application sandbox defines the privileges
available to the application.

Android Compatibility Program
The Android Compatibility Program defines the technical details of the Android platform
and provides tools for OEMs to ensure developer applications run on a variety of devices.
This compatibility program consists of three key components:

• The Android Open Source Project source code

• The Compatibility Definition Document (CDD), representing the “policy”
aspect of compatibility

• The Compatibility Test Suite (CTS), representing the “mechanism” of compatibility

14

About the Android Operating System

To build an Android-compatible mobile device, follow this three-step process:

1 Obtain the Android software source code. This is the source code for the Android
platform that you port to your hardware.

2 Comply with the Android CDD (PDF, HTML), which enumerates the software and
hardware requirements of a compatible Android device.

3 Pass the CTS. Use the CTS as an ongoing aid to evaluate compatibility during the
development process.

https://source.android.com/docs/compatibility/overview
https://android.googlesource.com/
https://source.android.com/compatibility/cdd
https://source.android.com/compatibility/cts
https://source.android.com/setup
https://source.android.com/compatibility/android-cdd.pdf
https://source.android.com/compatibility/android-cdd
https://source.android.com/compatibility/cts

After complying with the CDD and passing the CTS, your device is Android compatible.
This means Android apps in the ecosystem provide a consistent experience when running
on your device. It also helps to ensure that device manufacturers comply with mandated
security requirements. The CDD has guidelines covering many security areas, including
hardware and software.

After building an Android-compatible device, manufacturers can apply for a Google
Mobile Services (GMS) license. GMS is required to manage Android devices using Android
Enterprise and also adds all of the Google security services (such as Play Integrity API,
Google Play Protect, and SafeBrowsing), Google applications (such as Google Play, YouTube,
Google Maps, Gmail), and APIs to help support functionality across devices. GMS is not part
of the Android Open Source Project (AOSP) and is only available through a Google license.

For information on how to request a GMS license, see our Contact/Community page

15

Hardware-backed Security

https://developers.google.com/android/guides/overview
https://source.android.com/setup/community#for-business-inquiries
https://source.android.com/setup/community#for-business-inquiries
https://source.android.com/setup/community#for-business-inquiries

Hardware-backed
Security
Android leverages underlying hardware features to enable
strong device security.

Trusted Execution Environment
The processor provides the Trusted Execution Environment (TEE) (TrustZone on ARM devices). This
secondary, isolated environment, the TEE, “virtualizes” the main processor and creates a secure,
trusted execution environment. Many confidential operations in Android — such as device unlock,
credential unlock, and biometrics — need to be done in a constrained, isolated environment. The
TEE provides such an environment.

In Android, the main OS, called the Rich Execution Environment (REE), is often referred to as
“untrusted,” meaning it cannot access certain areas of RAM, hardware registers, and write-
once fuses where secret data (such as device-specific cryptographic keys) are stored by the
manufacturer. Software running on the REE delegates any operations that require the use of secret
data to the TEE.

A TEE consists of a separate, small operating system (TEE OS) along with mini-apps that provide
critical services to Android (for example, biometrics and device unlock). While the TEE runs on the
same processor as Android, the Arm hardware architecturally isolates the Android Linux kernel
and apps from the TEE. This hardware-mediated isolation is another defense-in-depth measure
adopted by Android to protect critical user data and device secrets. Google Pixel devices use the
open source operating system called Trusty.

Only the TEE can access device-specific keys required to decrypt protected content. The REE sees
only the encrypted content, providing a high level of security and protection against software-
based attacks. There are many uses for a TEE, such as biometrics, device unlock, mobile payments,
secure banking, multi-factor authentication, device reset protection, and replay-protected
persistent storage.

16

Hardware-backed Security

https://source.android.com/security/trusty

Verified Boot
Verified Boot ensures that all executed code comes from a trusted source (usually device
OEMs), rather than from an attacker or corruption. It establishes a full chain of trust, starting
from a hardware-protected root of trust — to the bootloader, the boot partition, and other
verified partitions including system, vendor, and optionally OEM partitions. During device
boot-up, each stage verifies the integrity and authenticity of the next stage before handing
over execution.

In addition to ensuring that devices are running a safe version of Android, Verified Boot
checks for the correct version of Android with rollback protection. Rollback protection
helps to prevent a possible exploit from becoming persistent by ensuring devices only
update to newer versions of Android. That is, a kernel compromise (or physical attack)
cannot install an older, more vulnerable, version of the OS on a system and boot it. Device
manufacturers must integrate rollback protection and ensure that a device’s rollback state is
stored in tamper-evident storage.

The TEE is responsible for some of the most security-critical operations on
the device, including:

1 Lock screen passcode verification: available on devices that support a secure lock
screen. Lock screen verification is provided by the TEE unless an even more secure
environment. For example, a secure element such as the Titan M, is available.

2 Fingerprint template matching: available on devices that have a fingerprint sensor.

3 Protection and management of KeyStore keys: available on devices that support
a secure lock screen.

4 Digital Rights Management (DRM): an extensible framework that lets apps manage
rights-protected content according to the license constraints associated with the
content.

5 Protected Confirmation: leverages a hardware-protected user interface
called Trusted UI to facilitate high assurance to critical transactions. Protected
Confirmation is an optional capability for device manufacturers to implement for
devices running Android 9 and above.

17

Hardware-backed Security

http://source.android.com/security/verifiedboot/index.html
https://source.android.com/docs/security/features/verifiedboot/verified-boot#rollback-protection

Application developers wishing to measure the boot time device state and integrity, and
communicate it to their backend (for example, to apply different policies for devices that
don’t meet an acceptable integrity state), can use KeyStore Key Attestation. By checking
the attestation certificates and their signatures, it’s possible to get a high level of assurance
whether the bootloader is locked, whether verified boot is enabled, and whether the patch
level of Android and vendor-provided software meets certain requirements. Key Attestation
is mandatory to implement for any Android device shipping with Android 8.1 and higher.

Android Keystore System
The Android Keystore system is a foundation of data protection and authentication on
devices. It stores cryptographic keys in a hardware-backed container, usually a Trusted
Execution Environment, making Android compromises insufficient to extract private keys.
Keystore restricts when and how keys can be used, such as requiring user authentication for
key use or restricting keys to be used only in certain cryptographic modes. These restrictions
are enforced by the secure hardware on the device.

Additionally, devices running Android 9 or higher can optionally provide a StrongBox KeyMint,
an implementation of the KeyMint HAL that resides in a dedicated hardware security module.
The module contains its own CPU, secure storage, a true random number generator, and
additional mechanisms to resist package tampering and unauthorized sideloading of apps.
When checking keys stored in the StrongBox KeyMint, the system corroborates a key’s
integrity with the TEE. For Android 11 devices that use a StrongBox security chip, admins
of company-owned devices can request device unique attestation using individual
attestation certificates.

On Android 13 devices, Keystore supports symmetric cryptographic primitives such as
AES (Advanced Encryption Standard), HMAC (Keyed-Hash Message Authentication Code),
and asymmetric cryptographic algorithms (including Elliptic Curve, RSA2048, RSA4096,
and Curve 25519). Access controls are specified during key generation and enforced for the
lifetime of the key.

For devices that support a secure lock screen, Keystore must be backed by secure hardware.
Enterprise customers are provided strong assurances that even in the event of a kernel
compromise, Keystore keys are not extractable from the secure hardware, thus protecting
corporate authentication credentials.

18

Hardware-backed Security

https://developer.android.com/training/articles/security-key-attestation.html
https://developer.android.com/training/articles/keystore
https://developer.android.com/training/articles/keystore#HardwareSecurityModule
https://developer.android.com/reference/android/app/admin/DevicePolicyManager#generateKeyPair(android.content.ComponentName,%20java.lang.String,%20android.security.keystore.KeyGenParameterSpec,%20int)
https://source.android.com/security/keystore/features.html

Keystore Key Attestation
Devices that launched with Android 8.0 and higher are required to support Key Attestation,
which empowers a server to gain assurance about the properties of the device and the keys
generated on the device. On devices that ship with key attestation and Google Play services,
the root certificate is signed with a Google attestation root key, indicating the device is a
certified Google-Android device. These attestation keys can be used to sign trustworthy
statements about important device integrity properties, such as if the bootloader is locked
and which security patch levels the various Android partitions are running.

Enterprise customers managing personal or company-owned devices can additionally
request device identifiers (IMEI, serial number) within the attestation, which ensures only
known devices are enrolled into the enterprise and there’s a clear inventory of devices
holding enterprise data.

All this helps customers ensure their fleet of devices are patched and behaving as expected.

Learn more about verifying hardware-backed keys with Key Attestation

KeyChain
The KeyChain class provides access to private keys and their corresponding certificate chains
in credential storage. KeyChain is often used by Chrome, Virtual Private Networks (VPNs), and
enterprise apps to access keys imported by the user or by the Enterprise Mobility Management
(EMM) Device Policy Controller (DPC) deployed on managed devices.

Whereas the KeyStore is for non-shareable app-specific keys, KeyChain is for system- or
profile-wide keys that may be used by multiple apps with the approval of the EMM DPC or the
user. For example, an EMM DPC can import a key that Chrome will use to access an enterprise
website.

Android 10 and higher use several improvements to the KeyChain API. When an app calls
KeyChain.choosePrivateKeyAlias, devices now filter the list of certificates a user can choose
from based on the issuers and key algorithms specified in the call. KeyChain no longer requires a
device to have a screen lock before keys or CA certificates can be imported.

A benefit for enterprise customers with Android 11 is that the EMM DPC can generate their
KeyChain keys for TLS client certificates directly in secure hardware and obtain a signed
attestation record. This guarantees that the keys cannot be extracted from the device or
intercepted in transit.

19

Hardware-backed Security

https://developer.android.com/training/articles/security-key-attestation
https://developer.android.com/training/articles/security-key-attestation
https://developer.android.com/training/articles/security-key-attestation
https://developer.android.com/reference/android/security/KeyChain
https://developer.android.com/reference/android/security/KeyChain.html
https://developer.android.com/reference/android/security/KeyChain#choosePrivateKeyAlias(android.app.Activity,%20android.security.KeyChainAliasCallback,%20java.lang.String%5B%5D,%20java.security.Principal%5B%5D,%20java.lang.String,%20int,%20java.lang.String)
https://source.android.com/security/overview/app-security#certificate-authorities

Key Decryption on Unlocked Devices
Android 9 and higher take advantage of the unlockedDeviceRequired flag. This option
determines whether the Keystore requires the screen to be unlocked before allowing usage
of a specified key. These types of keys are well suited for encrypting sensitive data stored
on-disk, such as health and enterprise data. The flag, which is enforced by the secure
hardware, provides users a higher assurance that the data cannot be decrypted while the
device is locked should their phone be lost or stolen.

Version Binding (Anti-Rollback Protection)
In Keymaster and KeyMint, all keys are additionally bound to the security patch level of the
Android image. This ensures that an attacker who discovers a weakness in an old version of
the Android system or TEE software cannot roll a device back to a vulnerable version and
compromise secrets by using those vulnerabilities. The effects of this are most immediately
obvious when considering that the device encryption key used to decrypt a device’s data
partition cannot be used if the device version has been rolled back, cryptographically sealing
away all data on the device from a malicious attacker.

Keys can (and must) be upgraded and bound to newer versions of the security patch levels
as users take OTAs, but they can never be downgraded and rolled back. This is a transparent
process between KeyStore and KeyMint that happens without the developer needing to take
any explicit actions.

User Authentication
Android implements a tiered authentication model which is a conceptual classification of
all the different authentication methods on Android, how they relate to each other, and how
they are constrained based on this classification. The Android Compatibility Definition
Document specifies the implementation requirements for secure lock screen and
biometric security.

Authentication methods are classified into three buckets of decreasing levels of security and
commensurately increasing constraints. The primary tier is the least constrained in the sense
that users only need to re-enter a primary modality under certain situations (for example,
after each boot or every 72 hours) to use its capability. The secondary and tertiary tiers
cannot be set up and used without having a primary modality enrolled first and they have
more constraints further restricting their capabilities.

20

Hardware-backed Security

https://developer.android.com/reference/android/security/keystore/KeyProtection.Builder#setUnlockedDeviceRequired(boolean)
https://source.android.com/security/keystore
https://security.googleblog.com/2020/09/lockscreen-and-authentication.html
https://source.android.com/compatibility/android-cdd
https://source.android.com/compatibility/android-cdd
https://source.android.com/compatibility/android-cdd#9111_secure_lock_screen_authentication_and_virtual_devices
https://source.android.com/compatibility/android-cdd#7310_biometric_sensors

Gatekeeper
Android supports Gatekeeper for PIN/pattern/password authentication. The Gatekeeper
subsystem performs this authentication in the TEE, enrolling and verifying passwords via
a Hash-Based Message Authentication Code (HMAC) with a hardware-backed secret key.
Gatekeeper enforces rate limiting of password guesses.

Weaver
On supported devices, PIN/pattern/password authentication is further hardened with
Weaver, a hardware abstraction layer that leverages secure persistent storage of secret
values that may only be read when the corresponding key has been presented. Weaver runs
inside discrete tamper-resistant hardware (a Secure Element or a dedicated secure enclave).
Weaver is used to map the user’s PIN/pattern/password, which might be low-entropy, to a
high-entropy secret value with rate limiting enforced by the tamper-resistant hardware. If the
correct PIN/pattern/password is presented within the rate limiting policy, the high-entropy
secret value is made available to Android and is used to decrypt secrets associated with the
user, such as the user’s credential-encrypted key for file-based encryption.

Primary tier

“What you know”

Knowledge-factor based

Highest
level of
security Least

constrained

Secondary tier

“What you are”

Biometric based

High
level of
security Somewhat

constrained

Tertiary tier

“What you have”

Environment based

Lowest
level of
security Most

constrained

“What you know” “What you are” “What you have”

Figure 5. Android tiered authentication model

21

Hardware-backed Security

https://source.android.com/security/authentication/gatekeeper.html
https://android.googlesource.com/platform/hardware/interfaces/+/refs/heads/main/weaver/aidl/android/hardware/weaver/IWeaver.aidl

Biometrics

Devices can use biometric authentication to safeguard private information and essential
corporate data accessible through devices used in an enterprise setting. The BiometricPrompt
API is accessible to developers for integrating biometric authentication into their apps.

The Android framework includes face and fingerprint biometric authentication. Android can be
customized to support other forms of biometric authentication, such as Iris scans. To participate
in the BiometricPrompt class, biometric implementations must meet security specifications for
Class 2 or 3 as required in the CDD. Only Class 3 biometrics allow third-party applications to
access Android Keystore keys.

Biometric authentication typically depends on the outcome of a False Accept Rate (FAR),
however, Android uses additional metrics to help device manufacturers evaluate their security:

• Spoof Acceptance Rate (SAR): Defines the metric of the chance that a biometric model
accepts a previously recorded, known good sample. For example, with voice unlock, this
would measure the chances of unlocking a user’s phone using a recorded sample of them
saying: “Ok, Google.” We call such attacks Spoof Attacks, also known as Impostor Attack
Presentation Match Rate (IAPMR).

• Imposter Acceptance Rate (IAR): Defines the metric of the chance that a biometric model
accepts input that is meant to mimic a known good sample. For example, in the Smart Lock
trusted voice (voice unlock) mechanism, this would measure how often someone trying to
mimic a user’s voice (using similar tone and accent) can unlock their device. We call such
attacks Imposter Attacks.

• False Acceptance Rate (FAR): Defines the metric of how often a model mistakenly accepts
a randomly chosen incorrect input. While this is a useful measure, it does not provide
sufficient information to evaluate how well the model stands up to targeted attacks.

Application processor

SoC resources

Android TEE
Tamper-resistant hardware w/

isolated CPU, RAM, flash

RAM Flash

Figure 6. Security hardware provides numerous protections on the device

22

Hardware-backed Security

https://developer.android.com/reference/android/hardware/biometrics/BiometricPrompt
https://developer.android.com/reference/android/hardware/biometrics/BiometricPrompt
https://source.android.com/compatibility/android-cdd#7310_biometric_sensors

Biometric sensors are classified based on their biometric security performance (for
example, SAR and FAR) and on the security of the biometric pipeline. Test methodology
is available to assist in measuring the implementation of these unlock methods and GMS
devices must follow specific biometric security test protocols. Additionally, Android device
manufacturers can access recommendations of system security best practices for using
biometric authentication.

In Android 9 and higher, the BiometricPrompt API system provides biometric
authentication dialogs to be used on behalf of an application. This creates a consistent
look, feel, and placement for the dialog, and gives users greater confidence they’re
authenticating with biometrics using a trusted credential tracker. To help control the level
of security for an app’s data, Android 11 provides several improvements to biometric
authentication that are extended in the Jetpack Biometric library. This improves the ability
of an app to use the Biometric capabilities built into Android 11. Android 12 introduces
the BiometricManager.Strings API, which provides localized strings for apps that use
BiometricPrompt for authentication. These strings are intended to be device-aware and
provide more specificity about which authentication type(s) may be used. Android 12 also
includes support for under-display fingerprint sensors.

The BiometricPrompt API is used in conjunction with the Android Keystore system, which
provides hardware-backed cryptography for secure key storage in a secure environment,
such as a Trusted Execution Environment (TEE) or Secure Element (SE) like Strongbox.

Fingerprint Authentication

On devices with a fingerprint sensor, users can enroll one or more fingerprints and
use those fingerprints to unlock the device and perform other tasks. Android uses the
Fingerprint Hardware Interface Definition Language (HIDL), or a newer Fingerprint
Android Interface Definition Language (AIDL) introduced in Android 12, to connect to
a vendor-specific library and fingerprint hardware, such as a fingerprint sensor.

Note: Older HIDL interfaces will be deprecated in the near future, and are strongly
recommended to migrate to newer AIDL interfaces for improved security and
added features.

23

Hardware-backed Security

https://source.android.com/compatibility/android-cdd#7310_biometric_sensors
https://source.android.com/security/biometric/measure
https://source.android.com/security/best-practices/system
https://developer.android.com/reference/android/hardware/biometrics/BiometricPrompt
https://developer.android.com/reference/android/hardware/biometrics/BiometricManager.Strings
https://android.googlesource.com/platform/hardware/interfaces/+/refs/heads/main/biometrics/fingerprint/2.3/IBiometricsFingerprint.hal
https://android.googlesource.com/platform/hardware/interfaces/+/refs/heads/main/biometrics/fingerprint/2.3/IBiometricsFingerprint.hal
https://android.googlesource.com/platform/hardware/interfaces/+/refs/heads/main/biometrics/fingerprint/2.3/IBiometricsFingerprint.hal

Face Authentication

Face authentication allows users to unlock their device simply by looking at the front of
their device. Android 10 and higher support the face authentication stack that can securely
process camera frames, preserving security and privacy during face authentication on
supported hardware. Android 10 and higher also provide a method for security-compliant
implementations to enable application integration for transactions, such as online banking or
other services. Android 12 and higher support a newer Face Android Interface Definition
Language (AIDL) for more secure sensor operations. Older Face Hardware Interface
Definition Language (HIDL) interfaces will be deprecated in the near future, and are
strongly recommended to migrate to newer AIDL interfaces for improved security and
added features.

Additional Authentication Methods
Android supports the Trust Agent Framework to unlock the device. Google Smart Lock uses
this framework to allow a device to remain unlocked as long as it stays with the user for up to
four hours, as determined by certain user presence or other signals.

However, Smart Lock does not meet the same level of assurance as other unlock methods on
Android and is not allowed to unlock auth-bound KeyStore keys. Organizations can disable
Trust Agents using the KEYGUARD_DISABLE_TRUST_AGENTS flag in their EMM policies.

Protected Confirmation
Android Protected Confirmation leverages a hardware-protected user interface (Trusted
UI) to perform critical transactions outside the operating system in devices that run Android
9 or above. This provides users with even more assurance that a critical action has been
executed securely and helps developers verify a user’s action intent with a very high degree
of confidence. When an app invokes Protected Confirmation, control is passed to the Trusted
UI, where transaction data is displayed and user confirmation of the data’s correctness is
obtained.

Once confirmed, the intention is cryptographically authenticated and tamper-proof when
conveyed to the relying party. In total, the transaction has higher protection and security
relative to other forms of secondary authentication.

This can be especially useful in a number of user moments, like during mobile payment
transactions, that greatly benefit from additional verification and security.

24

Hardware-backed Security

https://android.googlesource.com/platform/hardware/interfaces/+/refs/heads/main/biometrics/face/aidl/android/hardware/biometrics/face/IFace.aidl
https://android.googlesource.com/platform/hardware/interfaces/+/refs/heads/main/biometrics/face/aidl/android/hardware/biometrics/face/IFace.aidl
https://android.googlesource.com/platform/hardware/interfaces/+/refs/heads/main/biometrics/face/1.0/IBiometricsFace.hal
https://android.googlesource.com/platform/hardware/interfaces/+/refs/heads/main/biometrics/face/1.0/IBiometricsFace.hal
https://support.google.com/android/answer/9075927?visit_id=637117140080482470-4193372917&rd=1
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#KEYGUARD_DISABLE_TRUST_AGENTS
https://developer.android.com/training/articles/security-android-protected-confirmation

Memory Safety
Memory safety bugs, and errors in handling memory in native programming languages
like C and C++, are an industry-wide problem with negative consequences to software
stability, security, and ultimately user experience. Throughout the industry, across different
companies and products, these bugs represent a large fraction of reported security
vulnerabilities.

To improve the security and user experience of the operating system, Android has been
investing in the development of technologies to address this problem:

• Sanitizers such as HWASan help find memory safety bugs in pre-release testing

• GWP-ASan and KFENCE allow probabilistic detection of memory safety bugs in
production

• Rust is a modern native programming language that is memory safe

Sanitizers
Android has supported HWASan since Android 10. This tool has been used extensively for
Android platform development, preventing many bugs from making it into Android releases.
The app developer workflow for using HWASan has been significantly improved in Android 14
and we hope it will gain more widespread usage.

GWP-ASan and KFENCE
GWP-ASan and KFENCE are probabilistic memory detection tools for production usage
in userspace and the kernel, respectively. When enabled, a small number of allocations
are guarded against memory safety bugs. Even with a small sample rate for the guarded
allocations, when deployed at scale they can effectively detect memory safety bugs.
This is used for some 1P apps and is available for 3P applications. Android 14 introduces a
“recoverable” GWP-ASan mode that is enabled by default for all 3P applications.

Rust
Android 12 introduced Rust as a language for platform development. Rust provides memory
and thread safety at performance levels similar to C/C++. Rust is the preferred choice for
new native projects in the Android platform.

25

Hardware-backed Security

Operating
System Security
Android utilizes a “defense in depth” approach to help keep the
operating system secure. With each version of Android, the
operating system is further hardened to have the right defenses
for the ongoing threats that users face.

Sandboxing
Enforcement of Android’s security model starts with sandboxing of applications and system
services. Hardware components like a TEE help further isolate sensitive processes and data
such as cryptographic operations and key storage. Process isolation provides the foundation
for sandboxing of userspace processes. Every app runs in its own UID and is thus isolated
from the operating system components and other apps. SELinux brings Mandatory Access
Control policies and is the primary means by which the isolation among processes, apps, and
system services is achieved.

• Kernel Sandboxing enforces restrictions on what actions the kernel may take and limits
userspace access to kernel entry points such as device drivers.

• System Process Sandboxing applies sandboxing to all processes such as the media
frameworks, telephony stack, WiFi services, and Bluetooth components.

• Application Sandboxing uses SELinux and a unique user ID (UID) to isolate apps from
each other and the system. This sandbox keeps the application and its data secure.

• Other areas of separation include the TEE and userspace components. For example,
the Android Keymint integrates the keystore into the TEE, which guards cryptographic
key storage from exposure and tampering. An attacker cannot read key material stored
in the Keymint even if the kernel is fully compromised. Android 9 and higher devices
with dedicated tamper-resistant hardware can store keys in the StrongBox Keymint.
This implementation mitigates against the most sophisticated attacks such as
cold boot memory attacks, power analysis, and other invasive attacks that can
allow privilege escalation.

26

Operating System Security

https://source.android.com/security/trusty
https://source.android.com/security/keystore

SELinux
Android uses Security-Enhanced Linux (SELinux) to enforce mandatory access control
(MAC) over all processes, including those with root/superuser privileges. SELinux enables
Android to better protect and confine system services, restrict access to app data and
system logs, isolate potentially malicious apps, and protect users from potential security
vulnerabilities.

SELinux operates on the principle of default denial: Anything not explicitly allowed is denied.

Android includes SELinux and a corresponding security policy for components in AOSP.
Disallowed actions are prevented and all attempted violations are logged via Linux tools:
dmesg prints the message buffer of the kernel, and logcat is a command-line tool that
dumps a log of system messages.

With the Android system architecture, SELinux is used to enforce a separation between
the Android framework and the device-specific vendor components such that they run in
different processes and communicate with each other via a set of allowed vendor interfaces
implemented as Hardware Abstraction Layers (HALs).

Seccomp Filter
In conjunction with SELinux, Android uses Seccomp to further restrict entry points to the
kernel by blocking access to system calls that are not explicitly included in an allowlist.
Seccomp is a one-way trapdoor — once a process relinquishes certain system calls, it can
never gain it back again. Seccomp is applied to processes in the media frameworks and all
applications. Apps may optionally provide their own seccomp filter to further reduce the set
of allowed system calls.

Unix Permissions
Android uses Linux/Unix permissions to further isolate application resources. Android
assigns a UID to each application and runs each user in a separate process. Apps are not
allowed to access each other’s files or resources just as different users on Linux are isolated
from each other.

27

Operating System Security

https://source.android.com/security/selinux
https://developer.android.com/studio/command-line/logcat
https://source.android.com/devices/architecture
https://source.android.com/devices/architecture/hal-types/
https://source.android.com/devices/architecture/kernel/config#Seccomp-BPF-TSYNC

Anti-Exploitation
Android enables exploit protection mitigations such as Control Flow Integrity and Integer
Overflow Sanitization. New compiler-based mitigations have been added to make bugs
harder to exploit and prevent certain classes of bugs from becoming vulnerabilities. This
expands existing compiler mitigations, which direct the runtime operations to safely abort
the processes when undefined behavior occurs.

Android 10 introduced BoundsSanitizer (BoundSan), which adds instrumentation to insert
bounds checks around array accesses. These checks are added if the compiler cannot
prove at compile time that the access will be safe and if the size of the array will be known
at runtime. BoundSan is deployed in Bluetooth, media codecs, and other components
throughout the platform.

Unintended integer overflows can cause memory corruption or information disclosure
vulnerabilities in variables associated with memory accesses or memory allocations. To
combat this, Clang’s UndefinedBehaviorSanitizer (UBSan) was added to signed and
unsigned integer overflow sanitizers to harden the media framework. In Android 9 and
higher, the UBSan was expanded to cover more components which improved build system
support. This is designed to add checks around arithmetic operations / instructions — which
might overflow — to safely abort a process if an overflow does happen. These sanitizers
can mitigate an entire class of memory corruption and information disclosure vulnerabilities
where the root cause is an integer overflow, such as the original Stagefright vulnerabilities.
As a side effect, components hardened with these mitigations also have better quality and
stability.

Android 10 and higher employ Scudo, a hardened memory allocator which employs multiple
defense-in-depth strategies to detect and prevent use-after-free, double-free, and bounds-
violations. This provides additional hardening of the platform and prevents memory unsafe
errors from becoming exploits.

User and Data Privacy
Protecting user privacy is fundamental to Android. Limiting background apps’ access to
device sensors, restricting information retrieved from Wi-Fi scans, and implementing new
permission groups related to phone calls and phone states help ensure more user privacy.
These changes affect all apps running on Android 9 and higher, regardless of the target SDK
or Android version.

28

Operating System Security

https://android-developers.googleblog.com/2019/05/queue-hardening-enhancements.html
https://source.android.com/devices/tech/debug/cfi
https://source.android.com/devices/tech/debug/intsan
https://source.android.com/devices/tech/debug/intsan
https://source.android.com/devices/tech/debug/bounds-sanitizer
https://source.android.com/devices/tech/debug/intsan
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://android-developers.googleblog.com/2016/05/hardening-media-stack.html
https://android-developers.googleblog.com/2018/06/compiler-based-security-mitigations-in.html
https://source.android.com/docs/security/test/scudo

Android 10 expanded users’ control and privacy over data and app functionalities, offering
improved transparency for both users and IT administrators regarding access to data and
user location.

Android Work Profile creates a separate, self-contained profile on Android devices that
isolates corporate data from personal apps and data. A Work Profile can be added to a
personal device in a BYOD setting or on a company-owned device used for both work and
personal purposes. With this separate profile, the user’s apps and data in the personal profile
are outside of IT control.

When a Work Profile is added to a device, in order to provide complete transparency, the
EMM DPC displays the terms of use and provides information relevant to data collection
and visibility. The user must review and accept the user license agreement to set up a Work
Profile. Users can view Work Profile settings through Settings > Accounts.

Developers are encouraged to ensure their apps are compliant with the latest privacy
changes. Android 10 and higher places restrictions on accessing data and system identifiers,
accessing camera and networking information, and making certain changes to the
permissions model.

Restricting Access to Device Identifiers
When not connected to a network, Android provides random MAC addresses when
probing new networks. On Android 9, the device can use a randomized MAC address when
connecting to a Wi-Fi network if enabled by a developer option. In Android 10 and higher,
the system transmits randomized MAC addresses by default for both probe requests
and connected networks. Additionally, device IMEI, IMSI, and serial numbers can only be
accessed by privileged system apps, helping to prevent persistent tracking of users.

App Permissions
Permissions protect the privacy of Android users
and provide transparency about what resources or
information apps want to access. For apps to access
system features, such as camera and the web, or user
data, such as contacts and SMS, an Android app must
explicitly request permission. These permission prompts
are designed so the user has clear visibility into the
request and the opportunity to approve or deny it.

Figure 7. Users are prompted to set
permissions for apps

29

Operating System Security

https://developer.android.com/work/managed-profiles
https://developers.google.com/android/work/terminology#bring_your_own_device_byod
https://developers.google.com/android/work/terminology#fully_managed_device_with_a_work_profile
https://source.android.com/security/enhancements/enhancements10
https://source.android.com/security/enhancements/enhancements10
https://developer.android.com/guide/topics/permissions/overview?hl=en

A central design point of the Android security architecture is that no app, by default, has
permission to perform any operations that would adversely impact other apps, the operating
system, or the user. This includes reading or writing the user’s private device data (such
as contacts, SMS, or MMS messages), reading or writing another app’s files, performing
network access, and keeping the device awake.

Android uses runtime permissions, which presents a dialog for the user to grant access to
the specified permission at runtime.

This gives users more control than install time permissions, streamlining the installation.
When an app requests permissions the user can decide between:

• Approve — grant the app access to data; or

• Deny — requested permissions are not granted to the app.

To further empower users to minimize data access, certain runtime dialogs allow users to
select from granting access while using the app, only this time, or don’t allow. Additional
optionality is provided to users.

These options are presented for each permission requested by the app. Granting location
permissions doesn’t grant storage access. For example, a user can choose to give a camera
app access to the camera but not to the device location. Users can revoke permissions at any
time, even if the app targets a lower API level. Android 13 (API level 33) and higher supports
a runtime permission for sending non-exempt notifications from an app. This gives users
control over which permission notifications they see.

Android has mechanisms in place to restrict access to sensitive data. Android auto-resets
permissions for apps that target Android 6 or higher and have not been used for a few
months. This action has the same effect as if the user viewed a permission in system settings
and changes an app’s access level to deny. Starting from Android 9 and higher, only the apps
running in the foreground (or in a foreground service) are allowed to access the microphone,
camera, or the sensors. As for location, starting with Android 10, background access requires
an additional background location permission. Furthermore, Android 11 introduced an
additional privacy restriction on location, camera, and microphone, which provides users the
option to grant permissions only for a single use (that is, one-time permissions). In addition,
Android 12 introduced the option for users to grant access only to their approximate
location. Finally, in Android 14, starting with apps that share location data with third-parties,
the system runtime permission dialog now includes a clickable section that highlights the
app’s data-sharing practices, including information such as why an app may decide to share
data with third parties.

30

Operating System Security

https://developer.android.com/guide/topics/permissions/overview?hl=en#runtime_requests_android_60_and_higher
https://developer.android.com/develop/ui/views/notifications/notification-permission
https://developer.android.com/about/versions/10/privacy/changes#app-access-device-location
https://developer.android.com/about/versions/11/privacy/permissions#one-time
https://developer.android.com/about/versions/12/behavior-changes-all#approximate-location
https://developer.android.com/about/versions/12/behavior-changes-all#approximate-location

Users also have access to provide better control over the use of device identifiers. Privacy-
sensitive persistent device identifiers are either no longer accessible or gated behind
a runtime permission. For example, APIs that access the Wi-Fi MAC address have been
removed except on fully managed devices.

On enterprise devices, DPCs can deny permissions on behalf of the user using the
setPermissionPolicy API, a feature of managed Google Play.

Location Control
Apps can provide relevant information to the user using location APIs. For example, if
an app helps the user navigate a delivery route, it needs to continually access the device
location to provide the right assistance. Location is useful in many scenarios and Android
provides tools for developers to request the necessary permissions while giving users a
choice in what they allow.

Apps that use location services must request location permissions so the user has visibility
and control over this access. Runtime permissions for location have been available since
Android 6, where users have been able to allow or deny permission for location access to
each app. In Android 10, a new option was added for users to grant location permission to
apps only when the app was being used. In addition, in Android 11, a one-time location option
was added as well.

The user can choose to allow an app all-the-time access to device location. After an app
accesses device location in the background after the user makes this choice, the system may
show a notification, reminding the user that the app has access to location even when it is
not being used.

In Android 12, users gained the ability to grant an app access to their approximate location,
rather than their precise location. A lot of apps require location permissions in order to
operate properly but these permissions expose more information than a lot of users are
comfortable sharing. Giving users the ability to choose between approximate location and
precise location allows some apps to continue to function without the app knowing the

user’s precise location.

Learn more about location updates

31

Operating System Security

https://android-developers.googleblog.com/2017/04/changes-to-device-identifiers-in.html?m=1
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPermissionPolicy(android.content.ComponentName, int)
https://developer.android.com/training/location
https://developer.android.com/training/location/receive-location-updates#permissions

Per-use Access to All Device Logs
Because device logs can contain sensitive information, Android 13 introduced a per-use
prompt for apps requesting access to all device logs, giving users the ability to allow or deny
access. The system denies background requests for access to all device logs automatically and
prominently displays a prompt with the app name and a warning about the content so the user
can make an informed decision to allow or deny access. This eliminates persistent access to all

device logs [logcat] reducing potential privacy risks.

Learn more about Device Logs

Privacy Indicators
Runtime permissions in Android 6 and higher give users control over when they allow audio
from a device’s microphone or video from a device’s camera to be recorded. Before an app
can record, a user must either grant or deny it permission through a dialog the system presents.
Android 12 provides users with transparency by displaying indicators on the status bar when an
app uses a private data source through the cameras and microphone. Users can also completely
disable mic and camera access for all apps using two toggles in quick settings.

Files and Media Access
To give users more control over their files and to limit file clutter, apps targeting Android 10
and higher are subject to new file access controls, or scoped storage, by default. Apps have
unrestricted access to only their own app-specific directory, accessed using
Context.getExternalFilesDir() or Context.getFilesDir() — and to create files in organized
collections on shared storage.

32

Operating System Security

https://support.google.com/android/answer/12986432
https://support.google.com/android/answer/12986432
https://developer.android.com/training/data-storage#scoped-storage
https://developer.android.com/reference/android/content/Context.html#getExternalFilesDir(java.lang.String)
https://developer.android.com/reference/android/provider/MediaStore

In order to read media files created by other apps in shared storage, apps must request
the permissions READ_MEDIA_IMAGES, READ_MEDIA_VIDEO, or READ_MEDIA_AUDIO.
If the user approves these runtime permissions, they will have read access to the file
types requested. A further dangerous permission (ACCESS_MEDIA_LOCATION) must be
requested to have access to photo or video location metadata. Apps must request explicit
approval from the user to modify or delete a file that it has received access to via one of
the media permissions.

To further mitigate the potential for any data loss, EMM
administrators are able to prevent their organization’s users
from accessing external storage, such as an SD card connected
to their device.

Photo Picker
As an alternative to the photo and video permissions,
apps are recommended to use the photo picker to ask
users to select media files.

The photo picker is a browsable interface that
presents the user with their media library, sorted by
date from newest to oldest, and integrates easily with
apps without requiring media storage permissions.
The photo picker allows users to browse their photo
gallery and select specific items to share with an app
instead of granting broad permissions to the whole
media library. Enterprise customers can quickly add a
photo selection feature to their apps without having
to develop a complex in-house picker from scratch. It
also eliminates the need to maintain complex logic for
handling permissions and querying MediaStore, saving
development time.

The photo picker was launched in 2022 to all GMS
devices running Android 11 and above.

Figure 8. With photo picker, users can
select which media to share with apps

33

Operating System Security

Privacy Dashboard and
Permission Manager
Android’s data privacy dashboard provides users
with valuable insights into how their data is being
accessed by apps. The dashboard grants users a
clear overview of which apps have accessed their
location, camera, microphone, and other device
data. Giving users this information helps them make
informed decisions about allowing or revoking
permissions to their apps.

Users can also check which apps have the same
permission setting and change an app’s permission

in the Permission Manager.

Limited Access to Background Sensors
Android 9 and above limits the ability for background apps to access user input and sensor data.
If an app is running in the background, the system applies the following restrictions:

• Application cannot access the microphone or camera

• Sensors that use the continuous reporting mode, such as accelerometers and gyroscopes,
don’t receive events

• Sensors that use the on-change or one-shot reporting modes don’t receive events

If an app needs to detect sensor events on devices, it must use a foreground service.

Lockdown Mode
A user can enable a lockdown option to further restrict access to the device. This mode
displays a power button option that turns off Smart Lock, biometric unlocking, and
notifications on the lock screen. It can be enabled via Settings > Lock screen preferences
> Lockdown mode. Enterprise administrators can remotely lock the Work Profile and evict
the encryption key from memory on enterprise devices by leveraging this capability.

Read more about Android’s privacy dashboard

Figure 9. Users can easily see how
data is being accessed

34

Operating System Security

https://source.android.com/devices/sensors/report-modes#continuous
https://source.android.com/devices/sensors/report-modes#on-change
https://source.android.com/devices/sensors/report-modes#one-shot
https://developer.android.com/guide/components/services.html#Foreground
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#FLAG_EVICT_CREDENTIAL_ENCRYPTION_KEY
https://android-developers.googleblog.com/2021/05/android-security-and-privacy-recap.html
https://security.googleblog.com/2021/09/introducing-androids-private-compute.html

Private Compute Core
Android’s Private Compute Core (PCC) is an open source, secure environment that is
isolated from the rest of the operating system and apps. Introduced in Android 12, it brings
a new layer of privacy to the Android ecosystem. PCC enables on-device processing for
features like live caption, now playing, Smart Reply, and many others by eliminating the
need to send data to the cloud for processing.

Learn more about Android’s private compute services

35

Operating System Security

https://security.googleblog.com/2021/09/introducing-androids-private-compute.html
https://security.googleblog.com/2021/09/introducing-androids-private-compute.html
https://security.googleblog.com/2021/09/introducing-androids-private-compute.html

Network
Security
In addition to data-at-rest security — protecting information
stored on the device — Android provides network security for
data-in-transit to protect data sent to and from Android devices.

Android provides secure communications over the Internet for web browsing, email,
instant messaging, and other Internet apps, by supporting Transport Layer Security (TLS).

Figure 10. The Private DNS feature in the settings
is enabled by default, with an option to input a
private DNS provider hostname

DNS over TLS
Android 9 and higher includes built-in support for
Domain Name System (DNS) over TLS. Users or
administrators can enable a Private DNS mode in
the Network and Internet settings. Android 10 further
extends the capabilities for administrators to configure
DNS over TLS and prevent users from changing DNS
settings, thus preventing DNS query leakage.

TLS by Default
Android helps keep data safe by protectingnetwork traffic
that enters or leaves a device with TLS. On Android 9 and
above, the defaults for Network Security Configuration
block all cleartext (unencrypted HTTP) traffic. Developers
must explicitly opt-in to specific domains to use cleartext
traffic in their applications. Android Studio also warns
developers when their app includes a potentially insecure
Network Security Configuration.

To prevent accidental unencrypted connections, the
android:usesCleartextTraffic manifest attribute enables
apps to indicate that they do not intend to send network
traffic without encryption.

36

Network Security

https://developer.android.com/training/articles/security-ssl
https://developer.android.com/training/articles/security-ssl
https://developer.android.com/training/articles/security-ssl
https://developer.android.com/training/articles/security-config.html
https://developer.android.com/guide/topics/manifest/application-element

Android 10 and higher uses TLS 1.3 by default for all TLS connections. TLS 1.3 is a major revision
to the TLS standard with performance benefits and enhanced security. It is also more private as
it encrypts more of the handshake process and offers stronger security by no longer supporting
certificates signed with Secure Hash Algorithm 1 (SHA 1). Benchmarks indicate secure
connections can be established as much as 40% faster with TLS 1.3 compared to TLS 1.2.

Learn more about TLS 1.3 implementation

Learn more about Android’s program to harden cellular connectivity

Cellular Connectivity
Independently of the application of TLS, when a mobile device connects to a cellular network
for data, voice, or messaging connectivity, the link layer presents unique security and privacy
challenges that are distinctive of cellular telephony. Adversarial networks, such as False Base
Stations (FBS) and Stingrays, exploit weaknesses in cellular connectivity in a number of ways,
such as traffic interception, malware sideloading, and sophisticated dragnet surveillance.

For example, an adversarial network (that is, false base stations) can disable cellular
link-level encryption by silently downgrading the connection to a legacy 2G protocol with
weak encryption and no mutual authentication, or by forcing the use of null-ciphers.
This exposes circuit-switched voice and SMS telephony traffic that is not end-to-end
encrypted to passive interception.

Android acknowledges the far-reaching implications of these attack vectors, particularly
for at-risk users, and prioritizes hardening cellular telephony.

Android 12 introduced an option to disable 2G support at the modem level, which protects
users from the inherent security risk from 2G’s obsolete security model. Recognizing how
critical disabling 2G could be for enterprise customers, Android 14 enables this security feature
in Android Enterprise, introducing support for IT admins to restrict the ability of a managed
device to downgrade to 2G connectivity.

Android 14 also introduces support to reject null-ciphered cellular connections, ensuring
that circuit-switched voice and SMS traffic is always encrypted and protected from passive
over-the-air interception.

37

Network Security

https://developer.android.com/about/versions/10/behavior-changes-all#tls-1.3
https://developer.android.com/about/versions/10/behavior-changes-all#tls-1.3
https://security.googleblog.com/2023/08/android-14-introduces-first-of-its-kind.html
https://security.googleblog.com/2023/08/android-14-introduces-first-of-its-kind.html
https://www.eff.org/wp/gotta-catch-em-all-understanding-how-imsi-catchers-exploit-cell-networks
https://www.eff.org/wp/gotta-catch-em-all-understanding-how-imsi-catchers-exploit-cell-networks
https://source.android.com/docs/setup/about/android-12-release#2g-toggle
https://developer.android.com/reference/android/os/UserManager#DISALLOW_CELLULAR_2G

Wi-Fi
Android 10 and higher support the Wi-Fi Alliance’s Wi-Fi Protected Access version 3
(WPA3) and Wi-Fi Enhanced Open standards. WPA3 and Wi-Fi Enhanced Open improve
overall Wi-Fi security, providing better privacy and robustness against known attacks.

WPA3 is a new WFA security standard for personal and enterprise networks, taking
advantage of modern security algorithms and stronger cipher suites. It has two parts:
personal and enterprise. WPA3-Enterprise offers stronger authentication and link-
layer encryption methods, and an optional 192-bit security mode for sensitive security
environments. WPA3-Personal uses simultaneous authentication of equals (SAE) instead of
pre-shared key (PSK), providing users with stronger security protections against attacks such
as offline dictionary attacks, key recovery, and message forging.

Wi-Fi Enhanced Open is a new WFA security standard for public networks based on
opportunistic wireless encryption (OWE). It provides encryption and privacy on open, non-
password-protected networks in areas such as cafés, hotels, restaurants, and libraries.
Enhanced Open doesn’t provide authentication.

Android also supports the WPA2-Enterprise (802.11i) protocol. This is also designed for
enterprise networks and can be integrated into a broad range of Remote Authentication
Dial-In User Service (RADIUS) authentication servers. The WPA2-Enterprise protocol uses
AES-128-CCM authenticated encryption.

In Android 10 and above, QR codes and NFC data used for device provisioning can contain
Extensible Authentication Protocol (EAP) configuration and credentials — including
certificates. When a person scans a QR code or taps an NFC tag, the device automatically
authenticates to a local Wi-Fi network using EAP and starts the provisioning process without
any additional manual input.

Learn more about EAP Wi-Fi provisioning

38

Network Security

https://source.android.com/devices/tech/connect/wifi-wpa3-owe
https://developer.android.com/work/versions/android-10#eap_wi-fi_provisioning
https://developer.android.com/work/versions/android-10#eap_wi-fi_provisioning

VPN
Android supports securely connecting to an enterprise network using a VPN:

• Always-on VPN: The VPN can be configured so that apps don’t have access to
the network until a VPN connection is established, which prevents apps from
sending data across other networks.

• Always-on VPN supports VPN clients that implement the VpnService. The system
automatically starts the VPN after the device boots. Always-on VPN can be enabled for apps
in enterprise use cases through the DevicePolicyManager#setAlwaysOnVpnPackage.

• Device owners and profile owners can require work apps to always connect
through a specified VPN.

• Additionally, users can manually set Always-on VPN clients that implement VpnService
methods using Settings > More > VPN.

• The option to enable Always-on VPN from settings is available only if the VPN client targets
API level 24 or higher.

• Per User VPN: On multi-user devices, VPNs are applied per Android user, so all network traffic
is routed through a VPN without affecting other users on the device. VPNs are applied per Work
Profile, which allows an IT administrator to specify that only their enterprise network traffic
goes through the enterprise-Work Profile VPN — not the user’s personal profile network traffic.

• Per Application VPN: Support to facilitate VPN connections on allowed apps and to prevent
VPN connections on disallowed apps.

In Android 10 and higher, VPN apps can set an HTTP proxy for their VPN connection.
A VPN app must configure a ProxyInfo instance with a host and port, before calling
VpnService.Builder.setHttpProxy(). The system and many networking libraries use
this proxy setting but the system doesn’t force apps to proxy HTTP requests.

VPN Service Modes
VPN apps can also discover if the service is running and if lockdown mode is active because
of always-on VPN. New methods added in Android 10 and higher can help developers adjust
the user interface. For example, developers may disable the disconnect button in the VPN
application when an always-on VPN controls the lifecycle of the service.

39

Network Security

https://developer.android.com/reference/android/net/VpnService.html#SERVICE_META_DATA_SUPPORTS_ALWAYS_ON
https://developer.android.com/reference/android/net/VpnService.html
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setAlwaysOnVpnPackage(android.content.ComponentName,%20java.lang.String,%20boolean)
https://developer.android.com/reference/android/net/ProxyInfo
https://developer.android.com/reference/android/net/VpnService.Builder.html#setHttpProxy(android.net.ProxyInfo)
https://developer.android.com/guide/topics/connectivity/vpn#always-on

VPN Lockdown Modes
Lockdown modes allow administrators to block network traffic that does not use
the VPN and exempt an app that allows it to use any available network if the VPN is
down or unreachable. Administrators can also explicitly deny access to all networks
for an app and this only allows communication to take place over the VPN.

Third-Party Apps
Google is committed to increasing the use of TLS in all apps and services. As apps become
more complex and connect to more devices, it’s easier for apps to introduce networking
mistakes by not using TLS correctly.

Network security configuration lets apps easily customize their network security settings
in a safe, declarative configuration file without modifying app code. These settings can be
configured for specific domains, such as opting out of cleartext traffic. This helps prevent
an app from accidentally regressing due to changes in URLs made by external sources, such
as backend servers. This safe-by-default setting reduces the application attack surface while
bringing consistency to the handling of network and file-based application data.

Certificate Handling
All new Android devices must ship with the same CA store. CAs are a vital component of
the public key infrastructure used in establishing secure communication sessions via TLS.
Establishing which CAs are trustworthy — and by extension, which digital certificates signed
by a given CA are trustworthy — is critical for secure communications over a network.

In addition, improvements in the TLS client certificate handling were added where users
are only asked to choose from certificates that match requirements specified by the server
(compliance with RFC5246). If there are no certificates to choose from then the user is not
presented with any prompt thus protecting them from potential threats.

To further improve these protections, apps that target Android 9 and higher are disallowed to
establish unencrypted connections by default. This follows a variety of changes made over
the years to better protect Android users. Devices trust only the standardized system CAs
maintained in AOSP. Apps can also choose to trust user or admin-added CAs. Trust can be
specified across the whole app or only for connections to certain domains.

40

Network Security

https://developer.android.com/training/articles/security-config
https://developer.android.com/training/articles/security-config.html#CleartextTrafficPermitted
https://source.android.com/security/overview/app-security#certificate-authorities

When device-specific CAs are required, such as a carrier app needing to securely access
components of the carrier’s infrastructure (for example, SMS/MMS gateways), these apps
can include the private CAs in the components/apps themselves. For more details, see
Network Security Configuration. Improvements were made for local installation of CA
certificates that help prevent tricking a user into installing bad CA certificates.

Hypervisor / Virtualization
Android 13 introduced the Android Virtualization Framework (AVF), which brings together
different hypervisors under one framework with standardized APIs. It provides secure
and private execution environments for executing workloads isolated by hypervisor. AVF-
powered protected virtual machines (pVMs) provide a new isolation primitive, stronger than
the normal mechanisms provided by the operating system but still very familiar to Android
developers. These pVMs are the new Isolated Execution Environments (IEE) critical for
many use cases in Android today. Given that the isolation and confidentiality of a pVM are
guaranteed by the hypervisor, a pVM will remain secure and uncompromised even in the
event of an Android compromise.

The premise of AVF is that it allows for:

1 Isolation without elevated privileges, compared to TrustZone where isolation is
implemented by using a higher privilege.

2 Reduction in fragmentation since there are multiple TrustZone (TEE) implementations
while AVF abstracts out the different hypervisor providers behind a portable virtual
machine environment.

3 Better updatability and portability of the applications in pVMs with resources
allocated on-demand.

41

Network Security

https://developer.android.com/training/articles/security-config

In general, AVF consists of:

• Virtualization Service API

• Hypervisor (the underlying technology that powers AVF; the Google-provided hypervisor
is called pKVM (protected Kernel Virtual Machine))

• Virtual machine monitor

• Microdroid, an operating system based on Android for the pVM

Virtualization Service
VirtualizationService manages all guest VMs, protected or otherwise, running on an Android
system, primarily by managing instances of crosvm. It exposes an AIDL API, which system
services or apps can use to start, monitor, and stop VMs.

Java API

crosvm

Linux Kernel Linux Kernel

binder

Android Microdroid

pvmfw

virtualization service

Native API

microdroid_manager binder

apexid, zipfuse, authfs, ...

Application (APKs/APEXes)

pkVM (hypervisor)

EL0

EL1

EL2

42

Network Security

Protected
VM

Figure 11. Visual representation of the Android Virtualization
Framework with a Protected VM containing a Microdroid

https://source.android.com/docs/core/virtualization/microdroid

Hypervisor
Although AVF supports some third-party hypervisors, Google has developed an open source
implementation which is included as part of the Android Common Kernel and is released as
part of the Generic Kernel Image (GKI). The pKVM is built upon the Linux KVM hypervisor,
which has been extended with the ability to restrict access to the payloads running in guest
virtual machines marked ‘protected’ at the time of creation. Coupling the hypervisor with the
Linux kernel allows for a very tightly integrated communication interface between the two
components, leveraging support for existing tools, device drivers, and development flows
with relative ease.

Virtual Machine Monitor
crosvm is a virtual machine monitor (VMM) which runs virtual machines through Linux’s KVM
interface. It focuses on safety with the use of the Rust programming language and a sandbox
around virtual devices to protect the host kernel. Each crosvm process runs exactly one
instance of a virtual machine.

Microdroid
The pVMs offered with Google’s reference AVF implementation come with Microdroid, a
minimal OS based on Android. Microdroid provides an off-the-shelf OS image designed
to require the least amount of effort from developers to offload a portion of their app
into a pVM. Native code is built against Bionic, communication happens over Binder. It
allows importing of APEXes from Android and exposes a subset of the Android API, such
as keystore for cryptographic operations with hardware-backed keys. Overall, developers
should find Microdroid a familiar environment with the tools they’ve grown accustomed to in
the full Android OS.

43

Network Security

https://www.linux-kvm.org/page/Main_Page

Application
Security
Apps are an integral part of any mobile platform, and users
increasingly rely on mobile apps for core productivity and
communication tasks.

Android provides multiple layers of application protection, enabling users to download apps
for work or personal use to their devices with the peace of mind that they’re getting a high
level of protection from malware, security exploits, and attacks.

Google Security Services
Google Play Protect and Play Integrity API are services on GMS-certified devices that help
detect malware and device compromise. Exploitation code is often delivered to devices
via malware. Google Play Store security is further enhanced through the work of the App
Defense Alliance, a collaboration with industry security partners. In addition, Enterprise
admins can create allow lists / block lists for the personal Google Play Store to provide
greater specificity over which apps are allowed on devices. These resources all help to
reduce the likelihood of malware infection.

The Play Integrity API helps developers check that interactions and server requests are
coming from their genuine app binary running on a genuine Android device. By detecting
potentially risky and fraudulent interactions, such as from tampered app versions and
untrustworthy environments, the app’s backend server can respond with appropriate actions
to prevent attacks and reduce abuse.

EMM partners can use these services to help ensure users cannot sideload applications
and must only install applications from trusted app stores (such as Google Play). EMMs can
receive the signals from these on-device services to help detect and mitigate compromises.

44

Application Security

http://g.co/play/integrityapi
https://developers.google.com/android/play-protect/app-defense-alliance
https://developers.google.com/android/play-protect/app-defense-alliance

Jetpack Security
Developers can leverage the Android KeyStore with Jetpack Security. With MasterKeys,
developers can also create a safe AES 256 GCM key out of the box or for advanced use
cases that specify settings to control key authorization. Jetpack Security also provides
higher-level crypto abstractions for encrypting files (EncryptedFile) and SharedPreferences
(EncryptedSharedPreferences). It is recommended that Jetpack Security be used by all
DPCs, which control local device policies and system applications on devices, enterprise
apps, public apps, and private apps.

Application Signing
Android requires that all apps be digitally signed with a developer key prior to installation.
APK key rotation, supported in Android 9 and higher, gives apps the ability to change their
signing key as part of an APK update. To support key rotation, the APK signature scheme
has been updated from v2 to v3 to allow old and new keys to be used. When an app rotates
its signing key, the previous key attests to the new key, and this previous key remains in the
app’s signing lineage. These previous keys can be granted certain capabilities to allow the
app to interact with other apps still signed by previous keys that are still trusted.

Since APK signing key rotation was initially added to Android, rotation-related problems
have been discovered in the platform that may affect some apps. To facilitate key rotation for
apps that may be exposed to these problems, APK signature scheme v3.1 was introduced
with Android 13. Since this new version is not recognized on earlier platform releases, the
rotated key can be used to sign the APK in the v3.1 block and the original key in the v3.0
block. All new key rotations that use apksigner will use the v3.1 signature scheme by default
to target rotation for Android 13 and higher. An app that has already rotated its signing key
can specify the SDK version of Android P as the rotation minimum SDK version to continue
using the rotated signing key in the v3.0 block. The v3.1 scheme also supports verified SDK-
targeted signing configs allowing multiple use cases such as more restrictive capabilities
in the signing lineage for later platform releases while earlier versions can still use the more
relaxed capabilities.

Android uses the corresponding certificate to confirm that an update and the installed
app being updated are signed with the same key. When the system installs an update to an
application, it compares the certificate in the new version with the one in the existing version,
and allows the update if the certificate matches. In the case of a signing key rotation, the
system checks the signing lineage of the new version — if the signing key of the existing
version attests to the new key (or another key that eventually attests to the key used to sign
the new version), then the update is allowed.

45

Application Security

https://developer.android.com/jetpack/androidx/releases/security
https://developer.android.com/reference/androidx/security/crypto/MasterKeys
https://developer.android.com/reference/androidx/security/crypto/MasterKeys.html#AES256_GCM_SPEC
https://developer.android.com/reference/androidx/security/crypto/EncryptedFile
https://developer.android.com/reference/androidx/security/crypto/EncryptedSharedPreferences
https://developers.google.com/android/work/dev-options#2.-custom-dpc-and-google-play-emm-api
https://developer.android.com/about/versions/pie/android-9.0#apk-key-rotation
https://source.android.com/security/apksigning/v3
https://source.android.com/docs/security/features/apksigning/v3-1#rotation-issues
https://source.android.com/docs/security/features/apksigning/v3-1
https://developer.android.com/tools/apksigner

Android allows apps signed with the same key, either currently or previously in one of the
app’s signing lineage with the ‘SHARED_USER_ID’ capability granted, to run in the same
process, at the app’s request, so that the system treats them as a single application. This
capability is accomplished in the manifest with sharedUserId. Android provides signature-
based permissions enforcement, so that an application can expose functionality to another
app that’s signed with the same key. If either app has rotated their signing key, a signature
permission can still be granted as long as both apps share a common signer in their signing
lineage and the declaring app has granted the ‘PERMISSION’ capability to that previous key.
By signing multiple apps with the same key, and using signature-based permissions, an app
can share code and data in a secure manner.

Google Play Protect
Google Play Protect is a powerful threat detection
service that actively monitors a device to protect
it, its data, and apps from malware. The always-on
service is built into all devices that have Google Play,
protecting more than 3.5 billion devices.

The Google Play Protect service scans devices once
every day for harmful behavior and security risks.
If it detects an app containing malware, it notifies
the user. Google Play Protect may also remove
or disable malicious apps automatically as part of
its prevention initiative and use the information
it gathers to improve the detection of PHAs. In
addition, the user can opt to have unknown apps
sent to Google for further analysis.

NOTE: Shared user IDs cause non-deterministic behavior within the package
manager. As such, the sharedUserId capability has been deprecated. Instead, use
proper communication mechanisms, such as services and content providers, to
facilitate interoperability between shared components. Existing apps can’t remove
this value, as migrating off a shared user ID is not supported.

46

Application Security

Figure 12. Google Play Protect actively
scans for threats

https://developers.google.com/android/play-protect/
https://developers.google.com/android/play-protect/potentially-harmful-applications

Android is an open platform and users are free to download apps from other sources. If an
app carries malicious intent, users need to be protected from it no matter where the app
originated. Google Play Protect’s install verification checks apps coming from outside
of the Play Store when users try to install it. If the app is known to be malware, Google
Play Protect will stop the installation and prevent it from harming users.

Android’s abundant app sources also mean that not all apps will go through Google’s
threat detection service before they get to user devices. This year, Google Play Protect is
expanding its install-time protections for side-loaded apps to bring a new layer of protection
to Android. Install verification now performs real-time threat detection for new apps
from other sources, to help fight emerging threats.

Google Play App Review
The Google Play Store has policies in place to help protect users from malicious
actors trying to distribute PHAs.

Developers and their apps are validated in two stages. Developers are first reviewed
when they create their developer account based on their real-world identity: name,
address, government ID for personal accounts, legal entity details, and DUNS number
for organizational accounts. Their apps are then reviewed with additional signals upon
app submission. Before applications become available in Google Play, they undergo an
application review process to detect possible violations of Google Play policies. Google has
developed an automated application risk analyzer that performs static and dynamic analysis
of APKs to detect potentially harmful app behavior. The analyzer also leverages machine
learning to detect harmful behaviors within applications. When Google’s application risk
analyzer discovers something suspicious, it flags the offending app and refers it to a security
analyst for manual review. If an app is found violating the Google Play policies, we take
appropriate enforcement action up to and including the termination of developer accounts.

A developer is notified if their app is flagged for a security issue. They receive details about
how to improve the app and links to support pages for additional guidance. This notification
usually includes a timeline for delivering the improvement and the goal is to focus on
reducing security vulnerabilities. In some cases, security improvements to apps must be
made before a developer can publish any further updates.

47

Application Security

https://play.google.com/intl/us/about/developer-content-policy/#!#showlanguages
https://developer.android.com/google/play/asi

Another key element in minimizing risk is the use of updated APIs. Requiring developers
to use the most recent APIs encourages support for the most updated features, creating
optimal security and performance. Both new apps and app updates must target at least
Android 13 (API level 33), to meet API requirements.

Every new Android version introduces changes that bring significant security and
performance improvements — and enhance the user experience of Android overall.
Some of these changes only apply to apps that explicitly declare support through their
targetSdkVersion manifest attribute, also known as the target API level. See the Google
Play Developers documentation for more details on updating to the proper target API level
requirement.

48

Application Security

https://developer.android.com/distribute/best-practices/develop/target-sdk
https://developer.android.com/distribute/best-practices/develop/target-sdk
https://developer.android.com/distribute/best-practices/develop/target-sdk

Data
Protection
Android uses industry-leading security features to protect user
data. The platform provides developer tools and services to aid in
securing the confidentiality, integrity, and availability of user data.

Encryption
Mandatory encryption on Android protects user data if an Android device is lost or stolen.
Android uses file-based encryption (FBE), which enables different directories to be
encrypted with different keys.

With FBE, the device boots directly to the lock screen and is fully usable almost immediately
when unlocked. Apps can use two kinds of storage locations:

• Device Encrypted (DE) storage is available once the device boots, before the user
unlocks the device. This storage is protected by a hardware secret and software running
in the TEE that checks that Verified Boot is successful before decrypting data.

• Credential Encrypted (CE) storage is available only after the user has unlocked the
device. In addition to the protections on DE storage, CE keys can only be unlocked after
unlocking the device, with protection against brute force attacks in hardware.

Most apps store all data in CE storage and run only after credentials are entered. Apps such
as alarm clocks or accessibility services such as Talkback can take advantage of the Direct
Boot APIs and run before credentials are entered, using DE storage while CE is unavailable.

On devices with more than one user, each user has their own CE and DE keys. Each user’s CE
key is protected by that user’s lockscreen PIN, pattern, or password. Encryption keys are 256
bits long and are generated randomly on-device.

An additional layer of encryption called metadata encryption protects filesystem metadata
such as directory layouts, file sizes, permissions, and creation/modification times. The
metadata encryption key is protected by Keymaster and Verified Boot.

49

Data Protection

https://source.android.com/security/encryption/file-based
https://developer.android.com/training/articles/direct-boot.html
https://developer.android.com/training/articles/direct-boot.html
https://source.android.com/security/encryption/metadata

Adiantum
Adiantum is an encryption method designed for devices running Android 9 and higher
whose CPUs lack AES instructions. It provides encryption to such devices with little
performance overhead and enables a class of lower-powered devices to use strong
encryption. The Android CDD requires that all new Android devices be encrypted using
one of the allowed encryption algorithms.

Backup Encryption
Devices that run Android 9 and higher support end-to-end encrypted backup, a capability
whereby the backup data is encrypted on the device using a device and user-specific key.
The backup server has no ability to decrypt the backup archive.

The backup is encrypted with a randomly generated key that is further encrypted with a hash
of the user’s lockscreen PIN, pattern, or password. This encrypted key is securely shared with
a cohort of secure enclaves located across Google’s data centers. None of the data shared
with the secure enclave is known to Google, and the device verifies the identity of the secure
enclave by checking its root of trust.

With this secure enclave, there is a limited number of incorrect attempts strictly
enforced by the custom firmware. By design, this means that no one (including Google)
can access a user’s backed-up application data without specifically knowing their PIN,
pattern, or password.

50

Data Protection

https://source.android.com/security/encryption/adiantum
https://source.android.com/compatibility/cdd
https://security.googleblog.com/2018/10/google-and-android-have-your-back-by.html

Android
Security Updates
Monthly device updates are an important
tool to keep Android users safe.

Every month, Google publishes Android Security Bulletins to update users, partners, and
customers on the latest fixes. These security updates are available for Android versions for
three years from the date of release.

Android OS uses a feature called project Treble, which accelerates the delivery of
security fixes, privacy enhancements, and consistency improvements. It enables device
manufacturers and silicon vendors to develop and deploy Android updates faster than
what was previously possible. All devices that launch with Android 9 and higher are Treble-
compliant and take full advantage of the Treble architecture.

Administrators of fully managed devices can install system updates via a system update file
in Android 10 and higher devices. With manual system updates, IT administrators can:

• Test an update on a small number of devices before installing them widely

• Avoid duplicate downloads on bandwidth-limited networks

• Stagger installations, or update devices only when they’re not being used

Device Manufacturer Partner Updates
Security-critical fixes are pushed to all Pixel devices monthly, direct from Google’s over-
the-air servers. Pixel firmware images are also available on the Google Developer site for
manual update and flashing. Many device manufacturer partners follow a similar cadence in
their security updates, and many also deliver their own security bulletins:

Google Samsung Motorola

Nokia Xiaomi Zebra

51

Android Security Update

https://source.android.com/security/bulletin/index.html
https://source.android.com/devices/architecture#hidl
https://developers.google.com/android/images
https://source.android.com/security/bulletin/pixel/
https://source.android.com/security/bulletin/pixel/
https://security.samsungmobile.com/securityUpdate.smsb
https://security.samsungmobile.com/securityUpdate.smsb
https://motorola-global-portal.custhelp.com/app/software-security-page/g_id/6806
https://motorola-global-portal.custhelp.com/app/software-security-page/g_id/6806
https://www.nokia.com/en_int/phones/security-updates
https://www.nokia.com/en_int/phones/security-updates
https://trust.mi.com/misrc/updates/phone?tab=updatedetail
https://trust.mi.com/misrc/updates/phone?tab=updatedetail
https://www.zebra.com/us/en/support-downloads/lifeguard-security.html
https://www.zebra.com/us/en/support-downloads/lifeguard-security.html

Users can find out whether they’re running a recently patched device with the Security
Patch Level, a value indicating the security patch level of a build. It’s available through
the attestation certificate chain, which contains a root certificate that is signed with the
Google attestation root key, also visible in the device settings. EMM partners have the
capability to call an API to detect which security update is installed and impose compliance
rules for outdated devices.

Google Play System Updates
In Android 10 and higher, Google Play System Updates offer a simple and faster method
to deliver updates. Key Android system components are modularized, and end-user
devices receive the components from the Google Play Store or through a partner-provided
over-the-air (OTA) mechanism.

The components are delivered as either APK or APEX files (APEX is a new file format
which loads earlier in the booting process). Important security and performance
improvements that previously needed to be part of full OS updates can be downloaded
and installed similarly to an app update.

Google Play System Updates are secured by being cryptographically signed. They can also
deliver faster security fixes for critical security bugs by modularizing media components,
which accounted for nearly 40% of recently patched vulnerabilities, and allowing updates to
Conscrypt, the Java Security Provider.

Conscrypt
The Conscrypt module accelerates security improvements and improves device security
through regular updates via Google Play System Updates. It uses Java code and a native
library to provide the Android TLS implementation as well as a large portion of Android
cryptographic functionality such as key generators, ciphers, and message digests.
Conscrypt is available as an open source library, though it has some specializations when
included in the Android platform.

The Conscrypt module uses BoringSSL, a native library that is a Google fork of OpenSSL
and which is used in many Google products for cryptography and TLS (most notably Google
Chrome). The Conscrypt module is distributed as an APEX file that includes the Conscrypt
Java code and a Conscrypt native library that dynamically links to Android NDK libraries
(such as liblog). The native library also includes a copy of BoringSSL that has been validated
(Certificate #4407) through NIST’s Cryptographic Module Validation Program (CMVP).

52

Android Security Update

https://source.android.com/devices/architecture/modular-system
https://source.android.com/devices/tech/ota/apex
https://source.android.com/devices/architecture/modular-system/conscrypt
https://github.com/google/conscrypt
https://boringssl.googlesource.com/boringssl/
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4407
https://csrc.nist.gov/projects/cryptographic-module-validation-program

Enterprise
Identity, Security
& Management
Device and Profile Management
Android Enterprise offers tools and support for organizations of any size to securely
manage their devices. EMM providers have access to Android Enterprise’s holistic set
of APIs to build robust management solutions that meet the demands of modern security
and privacy. Choosing the right EMM provider is important for any enterprise to enforce
policies, wipe data, manage apps, and track device inventory. Android Enterprise can help
with recommended EMM providers but organizations are free to choose any EMM solution
that fits their needs.

Device Management For Any Scenario

Work Profile

Work Profile offers a unique enterprise experience,
security, and privacy model for employees and
employers alike. Based on Android’s multi-user
architecture, it runs as a separate Android user from
the personal profile. Both users run simultaneously,
offering a combined UI experience that allows
employees to easily transition between work and
personal, while maintaining strict data separation
within the OS to keep work data secure and personal
profile data private from the Work Profile. Apps,
notifications, and widgets from the Work Profile have
a blue badge icon to distinguish them from their
personal counterparts.

Figure 13. Users can easily toggle
between work and personal apps

53

Enterprise Identity, Security & Management

https://developers.google.com/android/work/overview#emm_console
http://g.co/dev/androidmanagement

With the Work Profile, work and personal profile data are stored and accessed separately, where
typically only apps running in the corresponding profile have access to data stored within that
profile. The Work Profile has its own apps, its own Downloads folder, and its own KeyChain. It
is encrypted using its own encryption key, and it can have a separate passcode to gate access
whenever a work app is launched.

Work Profile can be set up on devices owned by the organization as well as devices personally
owned by employees. If the employee owns the device, the Work Profile can be added or
removed by the employee at any time. If the organization owns the device, the Work Profile
cannot be removed unless the company relinquishes ownership of the device to the employee,
leaving the personal profile intact while removing the Work Profile and any ability for IT to
re-claim ownership of that device. Organizations can exercise full management control over
company-owned devices issued to employees. There are two deployment options available
for these types of company-owned devices: Work Profile, and fully managed device.

Work Profile Fully managed

Personally-owned Company-owned Company-owned

Management of
work apps & data

Management
of personal
apps & data

Privacy of
personal apps
& data

Not intended for personal use.

All apps and data are treated as
if they were work, and thus are
visible it IT.

Figure 14. How work and personal apps and data are separated with Work Profile

Device management for any scenario

54

Enterprise Identity, Security & Management

https://developers.google.com/android/work/overview#company-owned-devices-for-knowledge-workers

Work Profile for employee-owned devices

Personal devices can be set up with a Work Profile. In the Work Profile, the organization
has full management control and visibility, including the ability to install or block applications,
configure networks and VPNs, and apply a wide range of data loss prevention controls to
keep work data safe. This distinct separation gives enterprises what they need to enable
secure productivity on personally-owned devices while retaining employee privacy and
allowing the user to use the device just like they would a personal device.

Work Profile for mixed-used company-owned devices

Like the Work Profile on a personally-owned device, on a company-owned device, the Work
Profile enables secure access to work data without compromising the privacy of personal
usage. Unlike with personally-owned devices, however, on company-owned devices the
organization has access to additional device-wide features for asset management and
restrictions on personal usage, to keep devices compliant with corporate or regulatory
requirements. Crucially, these device-wide management features do not impact the privacy
of personal usage; regardless of who owns the device, the privacy of personal apps and data
remains the same as with personally-owned devices.

A wide range of personal usage and asset management features helps Work Profile on
company-owned devices stay compliant with some of the most stringent security and policy
requirements for company liable devices, while offering a unique personal privacy benefit to
employees and employers alike.

Full management for work-only company-owned devices

For devices used exclusively for work, a fully managed device offers a single profile,
completely managed device experience with the richness of Android’s data and asset
management features. In fully managed devices, all apps and data are categorized as work,
making them both manageable and monitorable by IT administrators.

Full management for dedicated devices

Android’s full device management capabilities can also support dedicated device scenarios.
An additional set of capabilities for more restricted, tailored device experiences allow
organizations to build Android workflows for everything from employee-facing factory and
industrial environments, to customer-facing signage and kiosks.

Dedicated devices are typically locked to a single app or set of apps. This model offers
granular control over a device’s lock screen, status bar, keyboard, and other critical UX
components, to keep usage streamlined to the desired business workflow.

55

Enterprise Identity, Security & Management

https://developers.google.com/android/work/overview#employee-owned-devices-byod
https://support.google.com/work/android/answer/6191949?hl=en
https://developers.google.com/android/work/overview#dedicated-devices

OEMConfig

OEMConfig is an Android standard that enables device manufacturers (OEMs) to offer
custom enterprise features that can be enabled by any EMM that supports Android
Enterprise. Android’s diverse ecosystem of OEMs offers unique and specialized features for
a variety of use cases, like hardware barcode scanners, support for specialized encryption
requirements, or even granular control of the manufacturer’s custom user interface. Where
previously custom OEM features meant proprietary APIs that required each EMM to support
as its own independent platform, OEMConfig enables a single Android Enterprise integration
to unlock any OEMConfig feature on any supported OEM device. EMMs can easily use an
OEM-built application that configures all of the unique capabilities of a device.

Device Provisioning

Management is established on a device through one of Android’s enterprise provisioning
experiences, depending on the use case and management mode suitable for that device.
Company-owned devices must be provisioned at the initial setup of a new device,
demonstrating corporate ownership of the asset, while personally-owned devices can be set
up any time during the device lifecycle.

A number of options exist to provision devices, including:

• Zero-touch enrollment: By purchasing devices from a zero-touch reseller,
administrators can configure devices to automatically provision during device setup.

• Enrollment link: End users can navigate to an EMM-generated enrollment URL to
provision a Work Profile on their personally-owned devices.

• QR code: Company-owned devices can be provisioned by scanning an EMM-generated
QR code at the beginning of the device setup.

Learn more about the different Android Enterprise provisioning methods

56

Enterprise Identity, Security & Management

https://support.google.com/work/android/answer/9388447?hl=en
https://developers.google.com/android/management/provision-device#zero-touch_enrollment
https://androidenterprisepartners.withgoogle.com/resellers/
https://developers.google.com/android/management/provision-device#enrollment_token_link
https://developers.google.com/android/management/provision-device#qr_code_method
https://developers.google.com/android/management/provision-device
https://developers.google.com/android/management/provision-device

Work Challenge

Android supports a separate passcode for work apps, called work challenge, to enhance the
security and manageability of the Work Profile. The work challenge is a separate passcode to
the overall device passcode, just for work apps and data. A separate work challenge can be
beneficial to administrators and employees for a number of reasons, including:

• The ability to reset the work challenge, in the event employees forget it.

• The ability to enforce stricter, more complex password requirements than is otherwise
possible on personally-owned devices.

• The ability for employees to further separate work apps or data from normal device
usage (for example, if a spouse or child uses their personal apps).

The work challenge supports all the same biometric methods as the device challenge,
making it convenient for employees to quickly authenticate, while also allowing
administrators to selectively disallow biometrics for the work challenge without affecting
the device challenge. This improves the security of work apps without impacting the
convenience of personal apps.

The work challenge is also verified within secure hardware, in line with Android’s brute-force
protections. By mixing in with a secret from the secure hardware, it is used to derive the
Work Profile’s separate disk encryption key, which means that an attacker cannot derive the
encryption key without either knowing the passcode or breaking the secure hardware.

Data Loss Prevention
By separating work and personal apps and giving administrators full control over the apps and
services installed in the Work Profile, Android offers customers complete control over what can
access work data on the device. However, there are instances where allowing select work data
to be accessed from the personal profile enables improved productivity and convenience for
employees. Android Management API offers secure, convenient defaults that strike a good balance
for many organizations, but understanding and customizing these features is a good way to deliver
the right data loss prevention strategies for any specific customer needs.

57

Enterprise Identity, Security & Management

Administrators can customize a variety of cross-profile features, such as:

• Whether work contacts can be viewed in personal apps, enabling identification
of colleagues in messaging apps or caller ID.

• Whether text copied from one profile (personal or work) can be pasted in the
other profile.

• Whether data like URLs or files can be opened or shared to apps in the other
profile, and in which direction. For instance, only personal data can be opened
in work apps, but no work data can be opened in personal apps.

58

Enterprise Identity, Security & Management

https://developers.google.com/android/management/reference/rest/v1/enterprises.policies#CrossProfilePolicies

Application
Management
Android Enterprise provides IT administrators with powerful, easy-
to-use tools to deploy, configure, and manage applications on a
variety of device form factors.

Managed Google Play
On devices managed by an EMM provider, the EMM DPC app controls which work apps
may be installed. On GMS devices, Managed Google Play can be used for application
management. This enterprise version of Google Play allows IT administrators to easily find,
deploy, and manage work apps while minimizing the threat of malware with Google Play
Protect scanning and closely controlling employees’ access to applications. Managed Google
Play provides APIs and iframes to EMM partners that allow their customers to manage apps
on Android devices. Newly registered EMM partners may only access Managed Google Play
functionality through iframes or the Android Management API.

Using Managed Google Play, organizations can build a customized and secure mobile
application storefront for their teams, featuring public and private applications that can
be delivered to devices directly from the Managed Google Play store. This eliminates the
need to sideload any applications onto devices. Managed Google Play is available for all
fully managed devices and devices with a Work Profile, whether they are personally owned
(BYOD) or company-owned.

Organizations have two methods of identifying allowed applications:

• Allowlist: Users may be restricted to a specific allow-list of permitted applications in the
company policy (default behavior). This protects company data by blocking unknown
applications from being installed.

• Blocklist: When using Android Management API, Admins also have the option of
blocking one or more apps. Users may install any application that is not explicitly marked
as ‘blocked’ in the organization’s application policy. EMMs using Android Management
API may also set application block lists in the personal usage policies of a company-
owned device with Work Profile.

59

Application Management

https://developers.google.com/android/management/
https://developers.google.com/android/management/reference/rest/v1/enterprises.policies#personalusagepolicies

Installation of apps in either the Work Profile or on fully managed devices is possible via
two main mechanisms:

1 Users may install permitted applications on-demand through the Managed Google Play
application, in their organization’s custom Google Play storefront.

2 The EMM may push an application to a device using their DPC. Organizations can ‘silently’
(without user interaction) install applications on fully managed devices.

Additionally, administrators can enforce update preferences through Managed Google Play.
Administrators can push an urgent update, such as security updates, to devices automatically
as ‘high priority’.

Private Apps
With Managed Google Play, an enterprise customer can publish apps and target them
privately (that is, they’re only visible and installable by users within that enterprise). Private
apps are logically separated in Google’s cloud infrastructure from public Google Play for
consumers. There are two modes of delivery for private apps:

• Google-hosted: By default, Google hosts the APK in its secure, global data centers.
This is the recommended option to take full advantage of Google’s enterprise-grade
security, including SSL downloads and malware security scanning. Google-hosting also
allows organizations to take advantage of Google Play app signing. With Google Play app
signing, Google manages and protects the app’s signing key on behalf of an organization
and uses it to sign optimized distribution APKs. Google Play app signing stores the app
signing key on Google’s secure key enclaves and offers upgrade options to increase
security.

• Externally-hosted: Enterprise customers host APKs on their own servers, accessible
only on their intranet or via VPN. When Managed Google Play makes a request to
download an APK from an external server, the request includes a cookie containing a
JSON Web Token (JWT). We recommend that the organization decodes the JWT to
authenticate the download.

In both cases, Google Play stores the app metadata — title, description, graphics, and
screenshots. Private apps are held to Play Policies for preventing mobile unwanted software
and malware, and cannot be made public.

60

Application Management

https://github.com/google/play-work/blob/master/externally-hosted-apks/README.md#authenticating-the-download-on-the-enterprise-server

Managed Configurations
Managed configurations allow an organization’s IT administrator to remotely specify
settings for apps. By using managed configurations, administrators can allowlist specific
apps for employee use, and selectively approve only the permissions they want their apps
to use. Managed configurations allow an IT administrator to remotely control the availability
of features, configure settings, or set in-app credentials, via the Google Play EMM API
or Android Management API As an example, an app may have an option to only sync
data when a device is connected to Wi-Fi, or allowlist or blocklist specific URLs in the web
browser. Managed configuration options can be changed by the developer and updated in
Managed Google Play where the EMM will pick up on the changes for new and existing app
deployments.

Google Chrome is an example of an enterprise-managed app that implements policies and
configurations that can be fully managed according to enterprise policies and restrictions.

Applications from Unknown Sources
Administrators may need to prevent the installation of applications from outside Google Play,
or apps from unknown sources. Devices and data can be at increased risk when such apps
are installed from unverified sources.

To prevent the installation of apps from unknown sources, administrators of fully managed
devices and Work Profile can add the DISALLOW_INSTALL_UNKNOWN_SOURCES user
restriction. When the administrator of a Work Profile adds the restriction, it only applies
to the Work Profile. However, the administrator of a Work Profile can place a device-wide
restriction by setting a managed configuration for Managed Google Play.

61

Application Management

https://developer.android.com/work/managed-configurations
https://developers.google.com/android/work/play/emm-api/
https://developers.google.com/android/management/managed-configurations-iframe
 https://chromeenterprise.google/policies/
 https://chromeenterprise.google/policies/
https://developer.android.com/reference/android/os/UserManager#DISALLOW_INSTALL_UNKNOWN_SOURCES
https://developer.android.com/work/managed-configurations

User Trust
(Identity + Behavior)

Device Trust
(Identity + Posture)

Rules
engine

Enforcement
point

Location

IP

Session age

Time

Apps and data

Web apps

SaaS apps

VMs

Infrastructure

APIs

Enterprise Identity
— Zero Trust
Capabilities

Figure 15: A Zero Trust security model with various device and user signals helping a company determine access

The zero-trust security model enables a mobile and remote
workforce to securely connect to company resources from
virtually anywhere.

Devices are vetted before being granted access to company resources. Companies
can use tight, granular controls to specify the level of access whether the devices are
connected to a corporate network, from home, or elsewhere. An effective zero-trust
implementation requires numerous device signals, context, and controls to make
intelligent decisions about access.

62

Enterprise Identity - Zero Trust Capabilities

Establishing device trust is critical for zero-trust implementations and this is an area in
which Android stands out against other mobility platforms. Android has a wealth of platform
features and APIs that our enterprise mobility management and security partners leverage
to safeguard backend services and resources. We provide a variety of device signals that
administrators can use in building systems to verify the security and integrity of devices. In
a zero-trust model, these signals are used to assess whether a device should be allowed to
access corporate information. There are currently more than 100 unique device trust signals
available across 30 APIs on Android devices.

Today, through their EMM provider, enterprise customers can delegate direct access to
on-device signals to their security providers. In 2024, we will be updating the Android
Management API so businesses can give their security providers direct access to trust
signals from a single place, across managed and unmanaged devices.

63

Enterprise Identity - Zero Trust Capabilities

https://developers.google.com/android/work/zero-trust-signals
https://developer.android.com/reference/android/app/admin/DevicePolicyManager#DELEGATION_NETWORK_LOGGING
https://developers.google.com/android/management
https://developers.google.com/android/management

Programs
A number of Google-backed initiatives and collaborations help
advance the Android ecosystem that supports partners and
customers in their use of Android in enterprise settings.

Android Enterprise Recommended
The Android Enterprise Recommended technical product validation sets an elevated
standard for enterprise devices and solutions. Devices passing the advanced validation
requirements meet the highest tier of Android Enterprise specifications for hardware,
deployment, security updates, and user experience. Organizations may select devices
from the curated list with confidence that they meet a common set of criteria required
for inclusion in the Android Enterprise Recommended program. In addition, device
manufacturers receive an enhanced level of technical support and training.

Android Enterprise Recommended enterprise mobility management solutions have the
most advanced management features and deliver a consistent deployment experience.
Knowing that these solutions are backed by enhanced training and technical support
allows organizations to choose a mobility solution with confidence.

Learn more about the program’s device requirements

Learn more about the program’s enterprise mobility management requirements

Android Security Rewards Program

The Android Security Rewards (ASR) program incentivizes researchers to find
and report security issues, providing key assistance to Android security efforts. This
program covers security vulnerabilities discovered in the latest available Android
versions for Pixel phones and tablets.

64

Programs

https://www.android.com/enterprise/recommended/
https://androidenterprisepartners.withgoogle.com/glossary/device/
https://androidenterprisepartners.withgoogle.com/glossary/device/
https://androidenterprisepartners.withgoogle.com/glossary/emm/
https://androidenterprisepartners.withgoogle.com/glossary/emm/
https://www.google.com/about/appsecurity/android-rewards/

Google Play Security Reward Program
The Google Play Security Reward Program helps secure the Android ecosystem by
ensuring that Google Play is the most secure app store by incentivizing security researchers
to report vulnerabilities discovered in apps hosted on Google Play. All of the most popular
apps are included in the program, and developers of newly popular Android apps are
invited to opt in.

Developer Data Protection Reward Program
The Developer Data Protection Reward Program aims to identify and mitigate data abuse
issues in popular Android applications, Chrome extensions, and applications leveraging the
Google API. It recognizes the contributions of individuals who help report apps that
are violating applicable program policies and are potentially putting user data at risk.

App Security Improvement Program
The App Security Improvement Program is a service that helps Google Play developers
improve the security of their apps. The program provides tips and recommendations for
building more secure apps and identifies potential security issues and mitigations when apps
are uploaded to Google Play.

App Defense Alliance
The App Defense Alliance launched in 2019 with a mission to protect Android users from
bad apps through shared intelligence and coordinated detection between alliance partners.
Together, with its members ESET, Lookout, Zimperium, McAfee and Trend Micro, the alliance
has been able to reduce the risk of app-based malware and better protect Android users.

In 2022, the App Defense Alliance expanded to include App Security Assessments where
authorized lab partners perform testing services for apps distributed through the Play Store,
or Google Partners connecting to Google Cloud Services.

65

Programs

https://www.google.com/about/appsecurity/play-rewards/
https://www.google.com/about/appsecurity/ddprp/
https://developer.android.com/google/play/asi
https://appdefensealliance.dev/

Industry Standards
and Certifications
Devices running Android and the cloud services they utilize
comply with various industry standards. Numerous security
certifications demonstrate our strong commitment to the
highest security standards.

ISO and SOC Certification
Android Enterprise has received ISO 27001 certification and SOC 2 and 3 reports for
information security practices and procedures for Android Management API, zero-touch
enrollment and Managed Google Play. This designation ensures these services meet strict
industry standards for security and privacy.

Granted by the International Organization for Standardization, ISO 27001 outlines
the requirements for an information security management system. It specifies best
 practices and details a list of security controls regarding information risk management.

The SOC 2 and 3 reports are based on American Institute of Certified Public
Accountants (AICPA) Trust Services principles and criteria. To earn this, auditors
assess an organization’s information systems relevant to security, availability,
processing integrity, and confidentiality or privacy.

An independent assessor performed a thorough audit to ensure compatibility with the
established principles. The entire methodology of documentation and procedures for
data management are reviewed during such audits, and must be made available for
regular compliance review.

Learn more about these security designations

66

Industry Standards and Certifications

https://www.blog.google/products/android-enterprise/android-enterprise-iso-certification/
https://www.blog.google/products/android-enterprise/android-enterprise-iso-certification/
https://www.blog.google/products/android-enterprise/android-enterprise-iso-certification/

OWASP MAS

OWASP Mobile Application Security (MAS) provides a security standard for mobile
apps as well as a comprehensive testing guide to ensure security assessors deliver
consistent and comprehensive results. Google first-party apps adhere to MASVS Level 1
requirements as defined by MASA. These requirements assess the security and privacy
of the application as well as connectivity and authentication to the backend. Independent
assessors perform the security assessments on behalf of Google and provide publicly
accessible validation reports.

Learn more about OWASP MAS

Government Grade Security
NIST FIPS 140-3/140-2 CMVP & CAVP

Federal Information Processing Standards (FIPS) are standards and guidelines for Federal
computer systems that are developed by the National Institute of Standards and Technology
(NIST) in accordance with the Federal Information Security Management Act (FISMA) and
approved by the Secretary of Commerce. Although FIPS standards are developed for use
by the federal government, many in the private sector voluntarily use these standards as
well. NIST’s Cryptographic Algorithm Validation Program (CAVP) provides validation
testing of approved cryptographic algorithms and their individual components. The goal of
the Cryptographic Module Validation Program (CMVP) is to promote the use of validated
cryptographic modules and provide Federal agencies with a security metric to use in
procuring equipment containing validated cryptographic modules.

67

Industry Standards and Certifications

https://appdefensealliance.dev/masa
https://appdefensealliance.dev/directory
https://mas.owasp.org/
https://mas.owasp.org/
https://csrc.nist.gov/Projects/cryptographic-algorithm-validation-program
https://csrc.nist.gov/Projects/Cryptographic-Module-Validation-Program

Common Criteria/NIAP Mobile Device Fundamentals Protection Profile

Common Criteria is a driving force for the widest available mutual recognition of security
products, with 31 participating countries. The National Information Assurance Partnership
(NIAP) serves as the U.S. representative to the Common Criteria Recognition Arrangement.
In partnership with NIST, NIAP approves Common Criteria Testing Laboratories to conduct
security evaluations in private sector operations across the U.S. This certification process
has enabled the Android team to build some of the requirements to achieve this certification
directly into the Android Open Source Project (AOSP), which enables device manufacturers
the ability to attain certification in much less time.

DISA Security Technical Implementation Guide (STIG)

STIG is the configuration standard for Department of Defense Information Assurance
(IA) and IA-enabled devices/systems. The STIG contains technical guidance to “lock
down” information systems/software that might otherwise be vulnerable to a malicious
computer attack. The Google Android 13 and Google Android 12 STIGs provide a standard
implementation for configuring and locking down any Android device using Android
Enterprise management controls.

68

Android Security Paper

https://www.commoncriteriaportal.org/
https://www.niap-ccevs.org/
https://www.niap-ccevs.org/
https://dl.dod.cyber.mil/wp-content/uploads/stigs/zip/U_Google_Android_13_V1R1_STIG.zip
https://dl.dod.cyber.mil/wp-content/uploads/stigs/zip/U_Google_Android_12_STIG.zip

Conclusion
The open source development approach of Android is a key part of its security. Developers,
device manufacturers, security researchers, SoC vendors, academics, and the wider Android
community create a collective intelligence that locates and mitigates vulnerabilities for the
entire ecosystem.

With Android, multiple layers of security support the diverse use cases of an open platform
while also enabling sufficient safeguards to protect user and corporate data. Additionally,
Android platform security keeps devices, data, and apps safe through tools like app
sandboxing, exploit mitigation, and device encryption. A broad range of management APIs
gives IT departments the tools to help prevent data leakage and enforce compliance in a
variety of scenarios. The Work Profile enables enterprises to create a separate, secure profile
on users’ devices where apps and critical company data are kept secure and separate from
personal information.

Google Play Protect, the world’s most widely deployed mobile threat protection service,
delivers built-in protection on every device. Powered by Google machine learning, it works to
catch and block harmful apps and scan the device to root out any PHAs or malware. Google
Safe Browsing in Chrome protects enterprise users as they navigate the web by warning of
potentially harmful sites.

Enterprises rely on smart devices for critical business operations, collaboration, and
accessing proprietary data and information. Google continues to invest in resources to
further strengthen the security of the Android platform, and we look forward to further
contributions from the community and seeing how organizations will use Android to drive
business success.

69

Conclusion

© 2023 Google LLC 1600 Amphitheatre Parkway, Mountain View, CA 94043.

