
Android
Security
Paper
2024

About Android 4

What’s new in Android 15 11

Improvements to customer sign-up
& account governance

14

Security by design 15

Hardware-backed security 16

Trusted Execution Environment 16

Protected Confirmation 17

Memory safety 17

Sanitizers 18

GWP-ASan and KFENCE 18

Rust 18

Operating system security 19

Sandboxing 19

SELinux 20

Unix permissions 20

Anti-Exploitation 21

User and data privacy 22

Restricting access to device identifiers 22

Location control 23

Privacy indicators 23

Storage access 23

Limited access to background sensors 24

Privacy dashboard and permission manager 24

Lockdown mode 24

Private compute core 25

Screen recording detection 25

Private space 25

Data Protection 26

Encryption 26

Adiantum 27

Backup encryption 27

Hypervisor and Virtualization 28

Hypervisor 29

Virtual machine monitor 29

Microdroid 29

PVM Firmware 30

VM Attestation 31

Secretkeeper 31

App security 32

Google security services 32

App signing 33

App permissions 34

Enhanced user privacy controls 35

Google Play Protect: Powerful protection for your device 37

Enhanced security for developers 38

Google Play app review 39

Jetpack security 41

Contents

2

Android security updates 42

Device manufacturer partner updates 43

Google Play system updates 43

Conscrypt 44

App management 45

Managed Google Play 45

Private apps 46

Managed configurations 47

Applications from unknown sources 47

Programs 48

Android Enterprise Partner Program 48

Android Enterprise Recommended 48

Android security rewards program 49

Android partner vulnerability initiative 49

App security improvement program 49

Advanced Protection Program 50

App Defense Alliance 50

Industry standards and certifications 51

ISO and SOC certification 51

Government grade security 52

Conclusion 53

Contributors 54

Contents

3

4

In today’s modern world, mobile devices play a critical role in both our work and personal lives.
They accompany us everywhere – whether at home, on the go, or at the office – which means
protecting them against cyber threats has never been more important.

And because mobile devices play such a critical role in our lives, they’re an attractive target for bad
actors—with 83% of all phishing sites specifically targeting mobile devices.

That’s why we’ve updated the Android Security Paper detailing our latest security measures
designed to help protect your devices.

We’re firmly committed to helping you navigate the complexities of the modern digital landscape.
By combining Zero Trust principles, enhanced privacy features, and advanced security capabilities,
Android continues to set the standard for a secure and user-friendly mobile platform.

Keep reading to learn more.

About the Android
Security Paper

https://get.zimperium.com/2024-global-mobile-threat-report/?utm_medium=organic-search&utm_source=zimperium&utm_term=2024-global-mobile-threat-report&utm_campaign=701Uh00000E7kJ3IAJ&Lead_Source_SFDC=Marketing%20-%20Website&Campaign_Auto_Trigger=701Uh00000E7kJ3IAJForm_Fill

About Android
When Android was being developed, the state of the art in consumer operating system security was
provided by memory management systems. Both Windows and Unix workstations had protected memory
features that were used to provide robust security between users of a device: multiple users could have
their own logins to the device, with fully protected separation of all their apps and data, as if they were on
different devices.

However, within an individual user’s logged-in session, security was more limited. Protected memory was
used to prevent applications from gaining highly privileged access to the kernel or accidentally corrupting
each other, but with very little security between the applications themselves. A single user could install
applications on their device that would function independently from other users, while still having
substantial access to the device's capabilities.

In these operating systems, installing an application essentially gave it
the same privileges as the user. This posed a security risk, as users had
to implicitly trust every application they installed. The web addressed
this problem by treating web pages as inherently untrusted, limiting
their capabilities.

Compare using a web-based email service versus installing an email app. You can safely try a web-based
email with little worry, as it has limited access to your device unless you explicitly grant it more. Installing an
email app, however, requires careful consideration. You're essentially trusting the app developer with
potentially gaining full access to your device. Even after uninstalling the app, in some cases, your device
might not function the same way it did before.

The lack of security in traditional desktop apps was already pushing users away. This issue was even more
critical for mobile devices, which were becoming increasingly central to people's lives. Users were less
willing to trust apps with full access to their personal data.

5

Leverage Web Technology
This option utilized the web's robust security model. However, it required significant
modifications to support mobile application functionalities and enhance security.
It also lacked support for native code, posing challenges for performance-intensive
apps like games. Additionally, web technology, initially designed for desktops, was
too resource-intensive for mobile hardware at the time.

About Android

Several approaches emerged to address the growing security concerns on mobile platforms:

Adopt a Virtual Environment
Technologies like Java offered a closer fit for mobile app development. However, they
shared a critical limitation with the web-based approach: apps had to be written in
a specific language, and native code was unsupported.

Implement Security Gatekeeping
This involved code signing, app source restrictions, or other methods
to ensure users could only install safe apps. Apps could still run with extensive device
access, similar to desktop apps, and could utilize native code. The key difference was
a 'gatekeeper' vetting all apps before installation. This approach was gaining traction
in carrier stores and other distribution channels.

6

About Android

The traditional relationship between users, apps, and system services in Linux is represented in the image:

Therefore, Android implemented
a security solution based on the Linux
kernel, utilizing protected memory and
a unique process isolation mechanism.

Figure 1. Relationship between users, apps, and system services in Linux.

Android aimed to be an open and secure platform,
not just for mobile devices, but for a wide variety
of devices. This meant more than being open source;
Android also wanted to emulate the openness of
traditional desktop operating systems. Users should
be able to freely install apps without fear of malicious
activity. Android's vision was clear: if mobile was the
future of computing, controlling app installations
and compromising security and privacy should not
be in the hands of a few powerful entities.

The goal of an open Android platform ruled out
the option of restricting app sources for security.
Instead, Android itself needed a stronger security
model, preventing installed apps from gaining
excessive control over the device. To create an open
and secure Android platform, we needed to allow
native code in apps. Relying solely on virtualized
languages was not feasible, as it limited the
performance needed for gaming, media, and other
demanding applications. Moreover, these virtualized
languages often had security vulnerabilities due to the
complexity of managing multiple security domains.

Another developing area in operating systems
was capability-based systems where processes
initially have no access rights (to things like files
or hardware). They are then granted specific
capabilities depending on their intended function.
However, at that time, these implementations were
mainly research projects or tailored for embedded
systems, not general-purpose operating systems.

Widely used for years in millions of security-sensitive
environments, Linux has become a stable and
secure kernel trusted by many corporations and
security professionals. This is due to continuous
research, attacks, and fixes by thousands of
developers. Modern Android devices must use
the latest long-term support (LTS) kernel, which
receives regular security updates and bug fixes.

7

About Android

The resulting security architecture looks like this:

Figure 2. Security architecture

Rather than treating applications as full-fledged users, Android assigns a UID to each app. This ensures
apps remain isolated from each other at the kernel level. Android also limits the amount of code running
with root privileges (UID 0). For instance, a dedicated service called installd handles essential filesystem
management, and most system components operate within their own isolated UID environments.

Any interactions between UIDs must be explicitly allowed by Android, much like a capability-based system.

To define the sandboxes for applications, there must be the concept of a secure identity for that
application. A well-established way to do this is with a signing certificate, where the application provides
a public key identifying who its source is, and a private key to sign the code. The operating system then
uses the public key to verify that the application came from the author it claims by verifying it against its
signing certificate. In traditional implementations of code signing, the public certificate is chained to a root
certificate. This root certificate can come only from a limited set of Certificate Authorities who are
responsible for controlling the public certificates charged to them, so their identities can be trusted.

8

About Android

In the development of mobile platforms before
Android’s creation, the Certificate Authority was
often the platform owner, device manufacturer,
carrier, or some combination of the three. For each
app being installed, the platform would verify the
app was signed by a certificate granted by one
of these certificate authorities, effectively making
them gatekeepers for which apps the user was
allowed to install.

Android deliberately avoids built-in gatekeepers.
Instead, it relies on a robust system to securely identify
apps. While apps still use cryptographic certificates,
there's no central authority verifying them. Each app's
certificate is self-contained, only confirming if two
apps share the same author, not who the author is.
This lets Android ensure key security measures like
"this app update is from the original developer,"
without external restrictions on app authorship.

Apps are typically designed to run within the
Android Runtime and interact with the operating
system through a framework that defines system
services, platform APIs, and message formats.
Developers can use various programming
languages, like Java, Kotlin, C/C++, and Rust, all
operating within the same application sandbox.
Importantly, Android's security model isn't affected
by the choice of language. Both native and VM
code within an app share the same sandbox and
have the same security restrictions.

The overall layers of the Android software stack
can be visualized as below; though the actual
security sandboxing layers are much more
fine-grained.

9

About Android

Figure 3. The Android software stack

Android is an open-source software stack designed
for a wide array of devices and form factors. It
incorporates industry-leading security features, and
the Android team collaborates with developers and
device manufacturers to maintain a safe platform and
ecosystem. A robust security model is vital for
fostering a thriving ecosystem of apps, devices, and
cloud services built on and around Android.

Consequently, Android evolves by continually
undergoing rigorous security testing throughout
its entire development lifecycle.

Applications running on Android are signed and
isolated within application sandboxes linked to
their signature. The application sandbox defines
the privileges available to each app.

10

Apps
Alarm, Browser, Calculator, Calendar, Camera, Clock, Contacts, IM Dialer,
Email, Home, Media Player, Photo Album, SMS/MMS, Voice Dial

Framework
Content Providers, Activity Manager, Location Manager, View System, Package Manager,
Notification Manager, Resource Manager, Telephony Manager, Window Manager

Native Libraries
Audio Manager, LIBC, SSL, Freetype, Media,
OpenGL/ES, SQLite, Webkit, Surface Manager

Runtime
Core Libraries,
Android Runtime (ART)

HAL
Audio, Bluetooth, Camera, DRM, External Storage, Graphics, Input, Media, Sensors, TV

Linux Kernel
Drivers (Audio - Binder (IPC), Bluetooth Camera Display,
Keypad Shared Memory USB Wi-fi), Power Management

Secure Element
Trusted Execution Environment

In the wake of the modern workplace’s shift toward
distributed and edge work models, businesses have
fully embraced the flexibility and productivity these
work arrangements offer. In this modern workplace,
securing and managing mobile business devices is
more important than ever.

Android 15 addresses the needs of distributed and
edge work use cases with enhanced device protection
and more management options for company-owned
devices. Android 15 introduces several new features to
protect devices from theft and unauthorized access.
Android theft protection uses machine learning to lock
the device screen when it suspects a theft has occurred.
Additionally, Google’s machine learning and AI features
come with the controls to manage them on your terms,
to include turning them off.

AICore offers on-device generative AI capabilities on
selected Android devices and is compliant with Private
Compute Core - a specialized sandbox to privately
process data on-device and provide functionality
without calling apps gaining access to the underlying
data. Additionally, you can learn more about AI Privacy
on our Security Blog.

For company-owned devices, Android 15 provides IT
admins with more control over personal profiles while
still preserving user privacy. This includes the ability to
choose what apps are available in personal profiles on
company-owned devices, as well as the ability to
manage and deploy eSIMs.

What’s new in
Android 15
Empowering the Modern Mobile Workplace

11

https://security.googleblog.com/2022/12/trust-in-transparency-private-compute.html
https://security.googleblog.com/2022/12/trust-in-transparency-private-compute.html
https://security.googleblog.com/2024/08/android-private-ai-approach.html

What's new in Android 15

1Theft Detection Lock, Offline Device Lock, and Remote Lock requires Android 10+ and an internet connection. Android Go devices are not
supported. Support may vary based on your device model. The user must be using the phone while it is unlocked. All theft protection
features will be available in October.
2Private space on COPE devices are subject to the same security requirements as the personal profile. IT admins will be able to block the
user from having a private space and remove an existing private Space in COPE. Private space is not available on Fully Managed devices.

12

Android theft protection
A suite of theft protection features, designed to protect users before, during and
after a theft, is available through a combination of Android 15 and Google Play
services updates. The suite includes features like Theft Detection Lock, which uses
machine learning to automatically lock a device when a theft motion is detected, and
Offline Device Lock, which activates when a device is off the network for too long.
Remote Lock allows a user to lock their device screen by entering their phone
number at android.com/lock from any device.1

Private space
Give users more control to organize and hide sensitive apps with private space—
a separate folder that requires a password or biometrics to unlock.2

NIAP audit logging requirements
Ensure compliance with industry standards and facilitates security reviews through
improved audit logging.

Android 15 prioritizes the security and privacy of both employees and their devices. Key features include:

https://support.google.com/android/answer/15146908
http://android.com/lock

What's new in Android 15

Android 15 introduces enhanced management capabilities for company-owned devices,
streamlining IT operations and improving control. Key features include:

Simplified eSIM management

Empowers IT admins with granular control over
eSIMs. Enabling them to streamline device setup
and management by programmatically adding,
removing, and provisioning eSIMs, which
simplifies large-scale deployments.

Security restrictions for apps outside the
Work Profile on company-owned devices

Apply a limited set of security restrictions in a
privacy preserving way to selected apps outside
the Work Profile. IT admins will be able to apply
their existing personal app policies to the new
private space feature. In the future, additional
privacy-safe security configurations for core
apps will be made available, and backportable
to Android 15.3

01 02

Enforce the default app selection for calls,
messaging, and web browsing when setting
up company-owned devices

Default selection for the dialer, messaging, and
browser for the personal profile on
company-owned devices allows IT admins to set
these defaults and prevent the end user from
changing them.4

Controls for Circle to Search on
Android Work Profile

Circle to Search is a new way for employees to
search within apps by circling, highlighting,
scribbling, or tapping. Admin controls are
available for Circle to Search on fully managed
devices or within Android Work Profile.5

03 04

13

3AMAPI managed devices will have the ability from Android 15 onward. Managed configurations apply only to company-owned, personally
enabled (COPE) devices.
4Available only on company-owned, personally enabled (COPE) devices. IT admins can only make an app the default if it’s already in the
user’s personal profile. To ensure OEM defaults for dialer and browser are set, this feature should be configured prior to set up. To enforce
defaults after set up, the control must be combined with an app allowlist.
5Circle to Search requires internet connection and compatible apps and surfaces. Results may vary depending on visual matches. For
Android Enterprise managed devices, the feature is available on fully managed devices and devices with Android Work Profile. For
company-owned, personally enabled (COPE) devices, Circle to Search is subject to the IT admin’s ability to turn off screen capture, which
will disable the feature. For employee-owned devices with an Android Work Profile, Circle to Search within the personal profile remains
unaffected by IT admin policies. Available on Pixel P8, P8 Pro, P6 series, P7 series, Pixel Fold, Pixel Tablet, Samsung S24 series, S23 series
(incl. FE), S22 series, S21 series, Z Flip 3/4/5, Tab S9 series, Tab S8 series.

Improvements to
customer sign-up &
account governance

Launched in 2024, the updated Android Enterprise
sign-up process now provides organizations with a
Managed Google domain for enhanced IT security.
Organizations register with their actual company email,
replacing the need for throwaway Gmail accounts. IT
admins gain an enterprise-grade Managed Google
account to configure Android Enterprise and other
Google services within the Google admin console.
These accounts bolster security with two-factor
authentication (2FA), improved recovery, and single
sign-on (SSO) support using third-party identity
providers (OIDC & SAML).

Once IT admins verify ownership of their
organization's domain, they can deploy Managed
Google Accounts to all employees. This can be
done manually or by synchronizing accounts from
their existing identity provider. Employees then
benefit from enhanced account security (like 2FA
and SSO), the ability to sign in to Android devices
with work credentials, and increased productivity
through access to Google services and
multi-device experiences. IT admins always have
full control over which services are available.

14

Improvements to customer sign-up & account governance

Security by design

Android uses a combination of hardware and software
protections to create strong defenses. Security starts
at the hardware level, where the user is authenticated
with lock screen credentials and/or combined with
biometrics. Once installed, the Android operating
system is unchangeable, or immutable. This means
attackers cannot permanently modify the system.
For example, Verified Boot ensures the integrity of
the system software as a device boots, while
hardware-assisted encryption and key management
protect both data in transit and data at rest.

Figure 4. Security by design

Built-in software protection is crucial
for Android device security.

Application sandboxing isolates and protects
Android, preventing malicious apps from accessing
private information. Android also safeguards access
to internal operating system components, making it
harder to exploit vulnerabilities. Mandatory, always-on
encryption helps keep data safe, even if a device is lost
or stolen. Encryption is further protected by Keystore
keys, which store cryptographic keys securely, making
them difficult to extract. Developers can easily
leverage the Android Keystore capabilities by using
Jetpack, a suite of libraries to help developers follow
best practices, reduce boilerplate code, and write
code that works consistently across Android versions
safely. Overall, Android uses both hardware and
software capabilities to keep devices safe and
data private.

15

Google Play Protect the world's most widely used
threat detection service, actively scans over 200 billion
apps daily for harmful behavior. This scanning covers
all applications, including public apps from Google
Play, system apps updated by device manufacturers
and carriers, and even apps installed from sources
other than the official app store.

https://source.android.com/security/verifiedboot
https://www.google.com/url?q=https://developer.android.com/reference/java/security/KeyStore.html&sa=D&source=editors&ust=1730267060135499&usg=AOvVaw0qcJDiGFUSyTQkuUcvtbV-
https://developer.android.com/jetpack/androidx/releases/security
https://developers.google.com/android/play-protect

Trusted Execution Environment
The ARM based processor on Android devices provides
a Trusted Execution Environment (TEE), often
implemented as TrustZone. This secondary, isolated
environment virtualizes the main processor, creating a
secure trusted execution environment for confidential
operations like device unlock, credential verification, and
biometric operations.

Android's main operating system, the Rich Execution
Environment (REE), is considered "untrusted." It cannot
access sensitive areas of RAM, hardware registers, or
write-once fuses where manufacturers store secret
data, such as device-specific cryptographic keys. Any
operations on a device requiring this data are delegated
to the TEE.

A TEE environment consists of a small, separate
operating system (TEE OS) and mini-apps that provide
critical security services to Android. Although running
on the same processor, ARM hardware isolates the
Android kernel and apps from the TEE. This
hardware-enforced isolation adds another layer of
defense, protecting critical user data and device
secrets. Google Pixel devices utilize the open-source
TEE OS called Trusty.

Only the TEE can access device-specific keys needed to
decrypt protected content. The REE only sees encrypted
content, providing strong security and protection
against software-based attacks.

The TEE is vital for various security-critical
operations, including:

Lock screen passcode verification

Available on devices with secure lock
screens, this is handled by the TEE unless a
more secure environment, like the Titan M
security chip, is present.

Fingerprint template matching and Face Unlock

Available on devices with fingerprint sensors
and secure camera hardware.

KeyStore key protection and management

Available on devices with secure lock screens.

Digital Rights Management (DRM)

An extensible framework for apps to manage
rights-protected content.

Protected Confirmation

Uses a hardware-protected Trusted UI for
high-assurance transactions, an optional feature
for Android devices.

The TEE's role in handling these sensitive operations
underscores its importance in maintaining Android's
overall security.

16

Hardware-backed
security
Android leverages underlying hardware features to enable strong device security.

https://source.android.com/docs/security/features/trusty

Hardware-backed security

Protected Confirmation

This is very important to help confirm a user's intentions, for example, when they initiate a
sensitive transaction like making a banking payment or approving an insulin pump injection. App
developers can utilize the feature to display a prompt to the user, asking them to approve a short
statement that reaffirms their intent to complete a sensitive transaction.

If the user approves the action, the app can use a key from the Android Keystore to sign the
message shown in the prompt that is cryptographically authenticated and tamper-proof when
conveyed to the relying party. This provides users with more assurance that a critical action has
been executed securely and helps developers verify a user’s intent with a very high degree of
confidence. Transactions utilizing Protected Confirmation have higher protection and security
relative to other forms of secondary authentication, for example, an SMS code.

17

Android Protected Confirmation leverages a hardware-protected user interface
(Trusted UI) to perform critical transactions outside the operating system on
modern Android devices.

Memory safety
Memory safety bugs, and errors in handling memory in native programming languages like C and
C++, are an industry-wide problem with negative consequences to software stability, security,
and ultimately user experience.

Throughout the industry, across different companies and products, these bugs represent a large
fraction of reported security vulnerabilities. Additionally, we have provided guidance on how to
Eliminate Memory Safety Vulnerabilities at the Source.

https://developer.android.com/training/articles/security-android-protected-confirmation
https://security.googleblog.com/2024/09/eliminating-memory-safety-vulnerabilities-Android.html

Hardware-backed security

18

GWP-ASan and KFENCE
GWP-ASan and KFENCE are probabilistic memory
detection tools for production usage in userspace
and the kernel, respectively. When enabled, a small
number of allocations are guarded against memory
safety bugs. Even with a small sample rate for the
guarded allocations, when deployed at scale they
can effectively detect memory safety bugs. This is
used for some 1P apps and is available for 3P
applications. Android 14 introduced a "recoverable"
GWP-ASan mode that is enabled by default for all
3P applications.

Rust
Android 12 introduced Rust as a language for
platform development. Rust provides memory
and thread safety at performance levels similar to
C/C++. Rust is the preferred choice for new native
projects in the Android platform.

Sanitizers such as HWASan help find memory safety bugs in pre-release testing.

GWP-ASan and KFENCE allow probabilistic detection of memory safety bugs in production.

Rust is a modern native programming language that is memory safe.

Sanitizers
Android has supported HWASan since Android 10.
This tool has been used extensively for Android
platform development, preventing many bugs from
making it into Android releases. The app developer
workflow for using HWASan has been significantly
improved in Android 14 and we hope it will gain more
widespread usage.

To improve the security and user experience of the operating system, Android
has been investing in the development of technologies to address this problem:

Operating
system security
Android utilizes a “defense in depth” approach
to help keep the operating system secure.

With each version of Android, the operating system is further hardened to have
the right defenses for the ongoing threats that consumers and enterprises face.

Sandboxing
Enforcement of Android’s security model starts with
sandboxing of applications and system services.
Hardware components like a TEE help further isolate
sensitive processes and data such as cryptographic
operations and key storage. Process isolation provides
the foundation for sandboxing of userspace
processes. Every app runs in its own UID and is thus
isolated from the operating system components and
other apps. SELinux enforces Mandatory Access
Control policies and is the primary means by which
the isolation among processes, apps and system
services is achieved.

● Kernel restrictions are imposed on what actions
the kernel may take and puts limitations on
userspace access to kernel entry points such as
device drivers.

● System process sandboxing ensures separation
of all processes such as the media frameworks,
telephony stack, Wi-Fi services, and Bluetooth
components.

● Application sandboxing uses SELinux combined
with a unique user ID to isolate apps from each
other and the system. This sandbox keeps the
application and its data secure.

● Other areas of separation include the TEE
and userspace components. For example, the
Android Keymint integrates the keystore into the
TEE, which guards cryptographic key storage
from exposure and tampering. An attacker
cannot read key material stored in the Keymint
even if the kernel is fully compromised.
Android 9 and above devices with dedicated
tamper-resistant hardware can store keys in the
StrongBox Keymint. This implementation
mitigates against the most sophisticated attacks
such as cold boot memory attacks, power
analysis, and other invasive attacks that could
allow privileged escalation.

19

https://source.android.com/security/trusty
https://source.android.com/security/keystore

Operating system security

20

Unix permissions
Android uses Linux/Unix permissions to further
isolate application resources. Android assigns a
unique user ID to each app and runs each app in a
separate process. Apps are not allowed to access
each other’s files or resources just as different
users on Linux are isolated from each other.

SELinux
Android uses Security-Enhanced Linux (SELinux)
to strictly control what every process can access,
even those with root privileges. This helps Android
protect system services, limit access to app data
and system logs, isolate potentially harmful apps,
and safeguard users from security flaws.

SELinux operates on a default deny basis so if
something isn't explicitly allowed, it's blocked.
Android includes SELinux and a security policy for
core components. Any denied actions are logged
using Linux tools like dmesg (kernel messages) and
logcat (system messages).

SELinux also enforces separation between the core
Android framework and device-specific vendor
components. These run in separate processes and
communicate through approved Hardware
Abstraction Layers (HALs).

https://source.android.com/security/selinux
https://source.android.com/devices/architecture
https://source.android.com/devices/architecture/hal-types/
https://source.android.com/devices/architecture/hal-types/

Android also uses Scudo, a hardened memory
allocator which employs multiple defense-in-depth
strategies to detect and prevent use-after-free,
double-free, and bounds-violations. This provides
additional hardening of the platform and prevents
memory unsafe errors from becoming exploits.

Android provides exploit mitigations such as Control
Flow Integrity and Integer Overflow Sanitization. New
compiler-based mitigations have been added to make
bugs harder to exploit and prevent certain classes of
bugs from becoming vulnerabilities. This expands
existing compiler mitigation capabilities, which direct
the runtime operations to safely abort the processes
when undefined behavior occurs.

Android uses BoundsSanitizer (BoundSan), which adds
instrumentation to insert bounds checks around array
accesses. These checks are added if the compiler
cannot prove at compile time that the access will be
safe and if the size of the array will be known at
runtime. BoundSan is deployed in Bluetooth, media
codecs, and other components throughout the
platform.

Unintended integer overflows can cause memory
corruption or information disclosure vulnerabilities in
variables associated with memory accesses or memory
allocations. To combat these types of overruns, Clang,
which is the compiler used to build Chrome, was added
to support UndefinedBehaviorSanitizer (UBSan) to
signed and unsigned integer overflow sanitizers to
harden the media framework. UBSan covers more
components to improve build system support.

This is designed to add checks around arithmetic
operations / instructions—which might overflow—to
safely abort a process if an overflow does happen.
These sanitizers can mitigate an entire class of memory
corruption and information disclosure vulnerabilities
where the root cause is an integer overflow, such as
the original Stagefright vulnerabilities. As a side effect,
components hardened with these mitigations also
have better quality and stability.

21

In summary, Android has fortified
its security against exploits through
compiler-based mitigations, making
bugs harder to exploit and preventing
certain classes of bugs from becoming
vulnerabilities.

Android’s BoundsSanitizer and the expanded
UndefinedBehaviorSanitizer provide higher
capabilities to detect and prevent memory-related
issues. Additionally, the hardened memory allocator
Scudo further enhances platform security by
mitigating vulnerabilities like use-after-free and
double-free errors.

Anti-Exploitation

https://source.android.com/devices/tech/debug/scudo
https://android-developers.googleblog.com/2019/05/queue-hardening-enhancements.html
https://source.android.com/devices/tech/debug/cfi
https://source.android.com/devices/tech/debug/cfi
https://source.android.com/devices/tech/debug/intsan
https://source.android.com/devices/tech/debug/bounds-sanitizer
https://source.android.com/devices/tech/debug/intsan
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://android-developers.googleblog.com/2016/05/hardening-media-stack.html
https://android-developers.googleblog.com/2018/06/compiler-based-security-mitigations-in.html
https://android-developers.googleblog.com/2018/06/compiler-based-security-mitigations-in.html

Protecting user privacy is fundamental to Android.
Limiting background apps’ access to device sensors,
restricting information retrieved from Wi-Fi scans, and
implementing new permission groups related to phone
calls and phone states help ensure more user privacy.
This affects all apps, regardless of target SDK version or
version of Android.

Android 10 extended the privacy and
controls that users have over data and
app capabilities. In total, they provide
users and IT admins with better clarity
about how data and user location can
be accessed.

Android Work Profile creates a separate,
self-contained enterprise controlled space on
Android devices that isolates corporate apps and
data from personal apps and data. Work Profiles can
be added to personal devices in a BYOD setting or
on a company-owned device used for both work
and personal purposes. With this separate profile,
the user’s personal apps and data in the personal
profile are outside of IT control.

To provide clear visibility to the user, when a Work
Profile is applied to a device, the EMM Device Policy
Controller (DPC) presents the terms of use and
provides information relevant to data collection.
The user must review and accept the user license
agreement to set up the Work Profile.

Developers are encouraged to ensure their apps
are compliant with the latest privacy changes.
Android 10 and above places restrictions on
accessing data and system identifiers, accessing
camera and networking information, and making
several changes to the permissions model.

Restricting access
to device identifiers
To protect the privacy of its users, Android limits
the visibility of device identifiers. Android limits
access to device identifiers like IMEI, IMSI, and serial
numbers to protect user privacy. In Android 10 and
higher, only certain apps with special permissions or
carrier privileges can access these identifiers.

Android uses random MAC addresses when
searching for new networks on Android 10 and
higher by default. This enables a randomized MAC
address assigned when connecting to a Wi-Fi
network to enhance privacy.

User and
data privacy

22

https://developer.android.com/about/versions/10
https://developer.android.com/about/versions/10
https://developer.android.com/work/managed-profiles
https://developers.google.com/android/work/terminology#fully_managed_device_with_a_work_profile
https://developer.android.com/about/versions/15/summary

Privacy indicators
Runtime permissions in Android let users decide
when apps can access their device's microphone
and camera. Before an app can record, the system
prompts the user to grant or deny this permission.
Additionally, Android 12 enhances transparency by
showing indicators when an app uses the camera
or microphone.

User and data privacy

Location control
Apps can provide relevant information to the user
using location APIs. For example, if an app helps the
user navigate a delivery route, it needs to continually
access the device location to provide the right
assistance. Location is useful in many scenarios and
Android provides tools for developers to request the
necessary permissions while granting users choice in
what they allow.

Apps that use location services must request location
permissions so the user has visibility and control over
this access. In Android 10 and above, users see a dialog
to notify them that an app wishes to access their
location. This request can be to allow access only while
using the app or provide access all the time.

When users grant apps continuous access to their
device's location, the system sends a reminder
notification the first time an app uses this access in the
background.

In Android 12, users gained the ability to grant an app
access to their approximate location, rather than their
precise location. A lot of apps require location
permissions in order to operate properly but these
permissions expose more information than a lot of
users are comfortable sharing. Giving users the ability
to choose between approximate and precise location
allows apps to function without the app knowing the
user’s precise location.

23

Storage access
To enhance user control over their files and reduce
clutter, apps designed for Android 10 and newer
versions have restricted file access capabilities by
default. This is known as scoped storage. Apps can
freely access their own dedicated directory, but
they need permission to create files in shared
storage areas.

To access media files (like images, videos, or audio)
created by other apps in shared storage, an app
needs the corresponding permission
(READ_MEDIA_IMAGES, READ_MEDIA_VIDEO, or
READ_MEDIA_AUDIO). The user must grant these
permissions at runtime.

To access location metadata for photos or videos,
an app need an additional permission:
ACCESS_MEDIA_LOCATION. Even with read access,
an app needs explicit user approval to modify or
delete any media files.

EMM IT admins are able to prevent their
organization's users from accessing external storage
as well, such as an SD card connected to their
device, to further mitigate the potential for any data
theft or loss.

https://developer.android.com/training/location
https://developer.android.com/training/location/receive-location-updates#permissions
https://developer.android.com/training/data-storage#scoped-storage

Lockdown mode
On Android 9 and above, a user can enable a
lockdown option to further restrict access to the
device. This mode displays a power button option
that turns off Smart Lock, biometric unlocking,
and notifications on the lock screen. On managed
devices, Enterprise IT admins can remotely lock
the Work Profile and evict the encryption key from
memory.

User and data privacy

Limited access to
background sensors
Android apps running in the background have limited
access to user input and sensor data:

● The app cannot use the microphone or camera.
● Sensors like accelerometers and gyroscopes that

continuously report data won't function.
● Sensors that only report data when something

changes or once (on-change or one-shot) are
also disabled.

If an app needs to detect sensor events on devices,
it must use a foreground service.

24

Privacy dashboard and
permission manager
Android’s privacy dashboard provides users with
valuable insights into how their data is being
accessed by apps. The dashboard provides users a
clear overview of which apps have accessed their
location, camera, microphone, and other device
data. Giving users this information helps them make
informed decisions about allowing or revoking
permissions to their apps.

Users can also check which apps have the same
permission setting and change an app's permission
in the Permission manager.

https://developer.android.com/guide/components/services.html#Foreground
https://android-developers.googleblog.com/2021/05/android-security-and-privacy-recap.html

User and data privacy

Private Compute Core
Android’s Private Compute Core is an open source,
secure environment that is isolated from the rest
of the operating system and apps. Private
Compute Core (PCC), introduced in Android 12,
brings a new layer of privacy to the Android
ecosystem. PCC enables on-device processing for
features like live caption, now playing, Smart Reply,
AI core and many others by eliminating the need to
send data to the cloud for processing.

25

Screen recording
detection
Screen recording is a common use case for
capturing contents on users devices. Android 15
adds support for apps to detect that they are
being recorded. This enables developers to take
appropriate action to safeguard user privacy and
inform the user that their screen is being viewed or
recorded.

Private space
Private space lets users create a separate space on
their device where they can keep sensitive apps
away from prying eyes, under an additional layer of
authentication. The private space uses a separate
user profile. The user can choose to use the device
lock or a separate lock credential for the private
space.

Apps in the private space show up in a separate
container in the launcher, and are hidden from the
recents view, notifications, settings, and from
other apps when the private space is locked.
User-generated and downloaded content (such as
media or files) and accounts are separated
between the private space and the main space.
The system share sheet and the photo picker can
be used to give apps access to content across
spaces when the private space is unlocked.

Users can't move existing apps and their data into
the private space. Instead, users select an install
option in the private space to install an app.

Apps in the private space are installed as separate
copies from any apps in the main space (new
copies of the same app).

When a user locks the private space, the profile is
stopped. While the profile is stopped, apps in the
private space are no longer active and can't
perform foreground or background activities,
including showing notifications.

.

https://security.googleblog.com/2022/12/trust-in-transparency-private-compute.html

Most apps store all data in CE storage and run
only after credentials are entered. Apps such as
alarm clocks or accessibility services such as
Talkback can take advantage of the Direct Boot
APIs and run before credentials are entered, using
DE storage while CE is unavailable.

On devices with more than one user, each user has
their own CE and DE keys. Each user's CE key is
protected by that user's lockscreen PIN, pattern, or
password. Encryption keys are 256 bits long and are
generated randomly on-device.

An additional layer of encryption called metadata
encryption protects filesystem metadata such as
directory layouts, file sizes, permissions, and
creation/modification times. The metadata
encryption key is protected by Keymaster and
Verified Boot.

Encryption
Mandatory encryption on Android protects user data
if an Android device is lost or stolen. Android uses
file-based encryption (FBE), which enables different
directories to be encrypted with different keys.

With file-based encryption, the device boots directly
to the lock screen and is fully usable almost
immediately when unlocked.

Apps can use two kinds of storage locations:

● Device Encrypted (DE) storage is available once
the device boots, before the user unlocks the
device. This storage is protected by a hardware
secret and software running in the TEE that
checks that Verified Boot is successful before
decrypting data.

● Credential Encrypted (CE) storage is available
only after the user has unlocked the device. In
addition to the protections on DE storage, CE
keys can only be unlocked after unlocking the
device, with protection against brute force
attacks in hardware.

Data Protection
Android uses industry-leading
security features to protect user data.
The platform provides developer tools
and services to aid in securing the
confidentiality, integrity, and
availability of user data.

26

https://developer.android.com/training/articles/direct-boot.html
https://source.android.com/security/encryption/metadata
https://source.android.com/security/encryption/metadata
https://source.android.com/security/encryption/file-based

Data Protection

Backup encryption
Devices that run Android 9 and higher support end-to-end encrypted backup, a capability
whereby the backup data is encrypted on the device using a device and user specific key.
The backup server has no ability to decrypt the backup archive.

The backup is encrypted with a randomly generated key that is further encrypted with a hash
of the user's lockscreen PIN, pattern, or password. This encrypted key is securely shared with a
cohort of secure enclaves located across Google's data centers. None of the data shared with
the secure enclave is known to Google, and the device verifies the identity of the secure
enclave by checking its root of trust.

27

.

With this secure enclave, there is a limited number of incorrect
attempts strictly enforced by the custom firmware. By design,
this means that no one (including Google) can access a user's
backed-up application data without specifically knowing their
PIN, pattern, or password.

Adiantum
Adiantum is an encryption method designed for devices running Android 9 and higher
whose CPUs lack AES instructions. Adiantum provides encryption to such devices with little
performance overhead and enables a class of lower-powered devices to use strong
encryption. The Android Compatibility Definition Document (CDD) requires that all new
Android devices be encrypted using one of the allowed encryption algorithms.

27

https://security.googleblog.com/2018/10/google-and-android-have-your-back-by.html
https://source.android.com/security/encryption/adiantum
https://source.android.com/compatibility/cdd

28

The Android Virtualization Framework (AVF)
unifies various hypervisors within a single framework,
offering standardized APIs for executing sandboxed
workloads. Protected virtual machines (pVMs)
powered by AVF offer a novel isolation primitive,
superior to the standard mechanisms offered by
the operating system alone, while remaining readily
accessible to Android developers. These pVMs
represent the next generation of Isolated Execution
Environments (IEE), essential for numerous Android
applications today. As the hypervisor guarantees the
isolation and confidentiality of a pVM, a pVM
maintains its security and integrity, even if the
Android system is compromised.

The Android Virtualization Framework offers
several key advantages. It enables isolation without
requiring elevated privileges, unlike TrustZone,
where isolation is coupled with higher privilege
levels. Additionally, it reduces fragmentation by
providing a standardized virtual machine
environment that abstracts the complexities of
various implementations. Finally, it improves the
updatability and portability of applications running
within protected virtual machines (pVMs) by
allocating resources on demand. These features
contribute to a more secure, flexible, and efficient
Android ecosystem.

Figure 5. AVF framework

Hypervisor and
Virtualization

Hypervisor and Virtualization

The Android Virtualization Framework comprises
several key components. The foundation of this
framework is the Hypervisor, the underlying
technology responsible for its operation. Google
provides its own hypervisor known as pKVM
(protected Kernel Virtual Machine), while AVF also
accommodates third-party hypervisors. The Virtual
Machine Monitor (VMM) works in conjunction with
the hypervisor, facilitating the management and
execution of virtual machines.

Within these virtual machines, an operating system
is required, and Android offers Microdroid, an
Android-based OS specifically designed for this
purpose. However, OEMs retain the flexibility to
utilize alternative operating systems within the pVM
if they so choose. Finally, the VirtualizationService
API provides developers with the necessary tools
and interfaces to interact with and leverage the
capabilities of the framework.

29

Hypervisor
The hypervisor creates a secure environment, or
sandbox, for the virtual machine and ensures its
isolation from other processes. AVF is compatible
with various hypervisors, each providing the
necessary features to implement the AVF APIs.

pKVM, or protected kernel-based virtual machine,
is an open-source hypervisor created by Google.
It is integrated into the Android Common Kernel and
distributed as part of the Generic Kernel Image (GKI).
pKVM is built upon the field-tested Linux KVM
hypervisor, with added capabilities to restrict access
to designated "protected" virtual machines. The
integration of the hypervisor with the Linux kernel
enables seamless communication between them. This
facilitates the use of existing tools, device drivers, and
development processes, streamlining development.

Virtual machine monitor
A virtual machine monitor (VMM), a process within the
host Android user space, manages the virtual
machine's (VM) virtual platform. It allocates CPU
resources to the VM and controls the kernel resources
the VM utilizes. Each virtual machine has its own VMM
process, and terminating this process ends the virtual
machine. The hypervisor ensures that the VMM cannot
violate any isolation properties.

Crosvm is a virtual machine monitor (VMM) built upon
Linux's KVM hypervisor, prioritizing simplicity, security,
and speed. It helps provide a secure environment for
running native applications.

Microdroid
Microdroid is a minimal OS based on Android,
designed to run within a virtual machine and execute
native code built against Bionic, communicating via
Binder. Its purpose is to facilitate developers in
seamlessly transferring parts of their app into a pVM.

Microdroid loads app code from APKs, permits
importing APEXes from Android, and provides access
to a subset of the Android APIs. In essence,
Microdroid offers developers a familiar environment
equipped with the tools they've come to rely on
within the full Android OS.

https://www.linux-kvm.org/page/Main_Page

User and data privacy

PVM Firmware:
Secure bootloader for isolated virtual environments

30

Secure verification
Before the guest operating system starts, the hypervisor loads the pVM firmware
into the pVM. This firmware verifies the integrity and authenticity of the guest
operating system. This ensures that only trusted VM images execute within a
secure virtual environment.

Trusted Execution Environment
The pVM firmware operates in a protected guest environment that is inaccessible
to the host Android kernel. While having fewer privileges than the hypervisor, this
isolation effectively prevents tampering from the host system or other
applications, ensuring integrity without compromising the core security
components of the system.

Streamlined updates
 Guest operating system images are distributed as APEX modules, and pVM
firmware as an Android partition. This facilitates over-the-air (OTA) updates
without requiring platform-specific modifications. This streamlined process
enables efficient patching of vulnerabilities, bolstering the overall security of
Android devices.

User and data privacy

VM Attestation:
Enhancing trust and
security in protected
virtual machines

31

While Protected VMs offer isolation, verifying their
integrity and contents is essential. This is where remote
attestation becomes critical.

Remote attestation assures a server that a client's
virtual machine (VM) is genuine, running valid
components, and operating on a trusted device.
However, direct attestation is challenging due to the
dynamic nature of client VMs and their boot stage
records, or DICE chain. To address this, a hardcoded
RKP (Remote Key Provisioning) VM serves as a trusted
intermediary. The process involves two main steps:

RKP VM Attestation

The RKP VM is periodically verified against a
trusted server (RKP server) using its DICE chain
and secure boot mechanisms, establishing it as
a reliable platform for further validation.

Client VM Attestation

The client VM generates a challenge, a
public/private key pair, and a Certificate Signing
Request (CSR) containing its DICE chain. The
trusted RKP VM verifies the client VM's DICE chain
and issues a certificate rooted in the server's trust
chain. The client VM can then use this certificate
for secure interactions with other services.

Secretkeeper
Another key element in the security architecture is the
Secretkeeper. Traditionally in Android, each boot stage
is responsible for rollback protection of the next boot
image in the process. The Android Bootloader (ABL)
has access to tamper-evident storage to ensure this
protection.

However, protected VMs do not have direct access to
such tamper-evident storage. To enable VM core
components and payload upgrades while preserving
VM secrets and associated data, and preventing
access to potentially downgraded images, the rollback
protection scheme in Android was enhanced.

The Secretkeeper HAL was introduced to provide DICE
Policy gated storage. Microdroid VMs utilize it to store
their secrets, ensuring that only that VM instance or its
upgrades can access the secrets, thereby protecting
against rollback of boot images.

In mobile device security, especially
when using sensitive machine learning
models, trust is paramount.

32

Apps are an integral part of any mobile platform. Users increasingly rely on
mobile apps for core productivity and communication tasks. Android protects
your apps with multiple layers of security, enabling users to download apps for
work or personal use to their devices with the peace of mind that they’re getting
a high level of protection from malware, security exploits, and attacks.

Google security services
Google Play Protect and Play Integrity API are
services on Google Mobile Services (GMS)
certified devices that help detect malware and device
compromise. Exploitation code is often delivered to
devices via malware. Android devices using managed
Google Play have a Potentially Harmful Application
(PHA) installation rate around 0.009%. Google Play
Store security is further enhanced through the work
of the App Defense Alliance, a collaboration with
industry security partners.

In addition, IT admins can create allow-lists and
block-lists for the managed Google Play Store to
provide greater specificity over which apps are
allowed on devices. On company-owned devices
with a Work Profile, these controls extend to the
Google Play store in the personal profile too.
These resources all help to reduce the likelihood
of unwanted apps from being installed.

The Play Integrity API helps app and SDK developers
check that interactions and server requests are coming
from their genuine app binary running on a genuine
Android device. By detecting potentially risky and
fraudulent interactions, such as from tampered app
versions and untrustworthy environments, the app’s
backend server can respond with appropriate actions
to mitigate attacks and reduce abuse.

Customers using an Enterprise Mobility Management
(EMM) platform can also use these services to prevent
users from sideloading applications. They can ensure
users only install applications from Google Play or
trusted app stores. EMMs can receive the signals via
the Play Integrity API from these on-device services to
help detect and mitigate compromises.

App security

http://g.co/play/integrityapi
https://developers.google.com/android/play-protect/app-defense-alliance

App security

App signing
Android requires all apps to be digitally signed with a
developer key. APK key rotation, introduced in Android
9, lets apps change their signing key during updates.
This is made possible by updating the APK signature
scheme from v2 to v3, allowing both old and new keys.

When an app rotates its key, the previous key attests
to the new one, becoming part of the app's signing
lineage. The previous keys can be granted certain
capabilities to allow the app to interact with other
apps still signed by previous keys that are still trusted.

Since its introduction, key rotation-related issues have
surfaced. To address this, APK signature scheme v3.1
was launched with Android 13. This allows the rotated
key to sign the APK in the v3.1 block and the original
key in the v3.0 block, ensuring compatibility with older
Android versions. New key rotations using apksigner
will default to v3.1 for Android 13 and later. Apps that
have already rotated their key can specify Android’s
SDK version as the minimum for rotation. The v3.1
scheme also supports verified SDK targeted signing
configs, allowing for stricter capabilities in newer
releases while maintaining flexibility for older ones.

Android verifies app updates by comparing
certificates. With key rotation, the system checks the
signing lineage, allowing updates if the existing
version's key attests to the new one.

Apps signed with the same key, or previously
in the app's lineage with the SHARED_USER_ID
capability, can run in the same process, treated as
a single application by the system. This is done via
sharedUserId in the manifest.

Android's signature-based permissions allow apps
with the same key to share functionality. Even with
key rotation, this is possible if both apps share a
common signer and the declaring app granted the
PERMISSION capability to the previous key. This
enables secure code and data sharing.

Developers on Google Play use Play App Signing,
delegating key management to Google. This
ensures developers can regain update access if
they lose their upload key. Google securely stores
these keys using Google Cloud Platform's service.
Developers can request key upgrades, letting
Google handle the complexities of key rotation
across Android versions.

Note: sharedUserId is deprecated in Android 11.
Apps can specify the sharedUserMaxSdkVersion
to control its use in new installs.

33

https://developer.android.com/about/versions/pie/android-9.0#apk-key-rotation
https://source.android.com/security/apksigning/v3
https://source.android.com/security/apksigning/v3
https://source.android.com/docs/security/features/apksigning/v3-1#rotation-issues
https://source.android.com/docs/security/features/apksigning/v3-1
https://developer.android.com/tools/apksigner
https://support.google.com/googleplay/android-developer/answer/9842756

34

App security

App permissions

Permissions safeguard Android users' privacy and provide transparency about the data and
resources apps request access to. Android apps must explicitly request permission to access
system features like the camera and internet. They also need permission to access user data
such as contacts and SMS. Permission prompts are designed to give users clear visibility into
the request and the opportunity to approve or deny it.

The Android security architecture is built on a fundamental principle: no app has automatic
permission to perform harmful actions. This means apps cannot, by default, engage in activities
that would negatively impact other apps, the operating system, or the user. In other words, apps
need explicit permission before they can access sensitive user data (like contacts or emails),
modify another app's files, connect to the network, or even keep the device awake.

Android uses runtime permissions, which display a dialog for the user to grant access at the
time the app needs it. This approach gives users more control than install-time permissions
and streamlines the installation process.

When an app requests permissions, users can choose between:

In the world of Android apps, permissions act as gatekeepers, ensuring
that apps only access the data and resources they genuinely need.

While using the app

The granted permissions are only valid while the app is actively running.

Only this time

Grants permission then revokes them when the app is closed. The app
must request the same permissions again the next time they are needed.

Don’t allow

The requested permissions are not granted to the app.

These options are presented for each permission requested by the app. Granting location
permissions doesn't automatically grant storage access. For example, a user can give a camera
app access to the camera but not to the device's location. Users can revoke permissions at any
time, even if the app targets a lower API level.

App security

Enhanced user privacy controls
Android 13 (API level 33) and higher supports a runtime permission for sending non-exempt
notifications from an app (notifications that aren't critical to the app's core functionality).
This gives users even more control over which permission notifications they see.

Android has implemented several mechanisms to enhance user privacy
and control over sensitive data access:

Foreground app restrictions

Starting with Android 9, only foreground apps or services can access
the microphone, camera, or sensors.

Permission auto-reset

Android 11 also introduced permission auto-reset for apps that target
Android 6 or higher and haven't been used for a few months.

Stricter background location access

Android 10 introduced stricter background location access, requiring
an additional background location permission.

Approximate location

Android 12 introduced the option for users to grant apps access
only to their approximate location.

One-time permissions

Android 11 further enhanced user control with one-time permissions for
location, camera, and microphone, allowing users to grant permissions
only for a single use.

35

36

App security

Users also have access to provide better control over the use of device identifiers.

Device Identifiers

Privacy-sensitive identifiers are either no longer accessible or
require specific permission at runtime.

Wi-Fi MAC Address

APIs accessing the Wi-Fi MAC address have been removed,
except on fully managed devices.

For enterprise devices, device policy controllers (DPCs) can deny permissions on behalf of the
user, ensuring better control over privacy settings. These controls prioritize user privacy and give
enterprises more control over data access on their managed devices.

Data sharing transparency
In Android 14, starting with apps that share location data with third parties, the system
runtime permission dialog now includes a clickable section that highlights the app's data-sharing
practices, including information such as why an app may decide to share data with third parties.

https://android-developers.googleblog.com/2017/04/changes-to-device-identifiers-in.html?m=1

37

Android security updates

Google Play Protect:
Powerful protection for your device
Google Play Protect provides
comprehensive security for Android
devices, whether apps come from the
Play Store or other sources. It actively
monitors for threats, removes harmful
apps, and helps you make informed
decisions about app installations.

Built-in security

Google Play Protect is automatically included on devices with Google Play,
actively safeguarding more than 3 billion devices from threats like malware.

Daily scans

It scans your device daily for harmful activity and security risks, notifying
you if an app contains malware.

Automatic removal

It can automatically remove or disable malicious apps to prevent harm
and improve future threat detection.

Unknown app analysis

You can choose to send unknown apps to Google for further analysis.

Protection beyond Google Play

Google Play Protect checks apps from outside the Play Store
before installation, stopping known malware.

Real-time scanning

Real-time threat detection scans are suggested for apps that have
not been scanned previously from any installation source.

38

App security

Enhanced security for developers
The Play Integrity API empowers developers to verify that user actions and server requests are
originating from their genuine app, installed from Google Play, and running on a trusted Google
Play Certified Android device. This verification process now includes a strong guarantee of system
integrity using Android Key Attestation, ensuring a higher level of confidence in the app's
environment.

Furthermore, the API introduces an app access risk verdict, enabling developers to check if other
apps running on the device could potentially capture the screen, display overlays, or control the
device. This valuable information helps protect against social engineering attacks or scams,
especially during sensitive actions like money transfers. Developers can take appropriate action,
such as prompting the user to close risky apps or restricting access to sensitive features until the
risk is mitigated.

Additionally, developers can now verify the status of Google Play Protect and whether it has
detected any risky apps installed on the device. This is particularly beneficial for safeguarding
sensitive actions or enforcing strict device policies in enterprise environments.

Lastly, the API provides an attestation counter indicating the device's recent activity level, without
disclosing specific numbers to protect user privacy. This allows developers to limit access to
protected functionality if the device has exhibited a high volume of requests in the past hour,
which could be a sign of suspicious activity.

The Play Integrity API equips developers with a robust set of tools to bolster
app security, defend against emerging threats, and provide a secure user experience

39

App security

If an app is flagged, developers receive immediate notification,
guidance on improvements, and a timeline for addressing the issue.
This prioritizes swift action to enhance app security, which is crucial
for protecting users from potential threats.

If anything suspicious is found, a security analyst manually reviews the app. Developers whose
apps violate policies face account suspension. This multi-layered approach helps weed out bad
actors and their malicious apps before they can reach users.

Google Play app review
The Google Play Store takes user protection seriously with policies that prevent malicious actors
from distributing harmful apps. This is important because it helps maintain the trust and safety of
the Android ecosystem, ensuring users can confidently download and use apps without fear of
encountering malware or other security risks.

Developers are thoroughly vetted through a two-stage process.

First, their real-world identity is verified when creating a developer account. 01

Then, further checks are conducted upon app submission, including
automated analysis to detect potential harmful behaviors.

02

https://play.google.com/intl/us/about/developer-content-policy

40

App security

 In certain cases, updates may be blocked until necessary security improvements are made. This
ensures that users are not exposed to new vulnerabilities while developers work on fixing their
apps. Encouraging the use of updated APIs is another crucial aspect of risk mitigation. This ensures
apps support the latest features, optimizing security and performance.

This is important because newer Android versions often include security enhancements and
performance optimizations that help protect users and improve their overall experience. Both
new and updated public apps must target at least Android 13 to meet API requirements, further
promoting the adoption of the latest security standards.

Each new Android version brings security, performance, and user experience enhancements.
Some changes are exclusive to apps that explicitly declare support through their targetSdkVersion.
Developers can refer to Google Play Developers documentation for detailed guidance on updating
to the appropriate target API level. This is important because it incentivizes developers to keep their
apps up-to-date with the latest Android features and security improvements, ultimately benefiting
users with a safer and more enjoyable app experience.

Overall, the Google Play Store's efforts to protect users from malicious apps through developer
vetting, app reviews, and API requirements are vital for maintaining a secure and trustworthy
Android ecosystem. This benefits both users, who can confidently download and use apps, and
developers, who can build and distribute their apps in a safe and supportive environment.

App security

Jetpack security
Android developers can use the Android KeyStore with Jetpack Security for enhanced data
protection. This allows them to easily create strong AES 256 GCM encryption keys or use advanced
options for specific needs. Jetpack Security also simplifies encrypting files and shared preferences.
It's recommended for all types of apps, especially those managing device policies or sensitive data.

Android KeyStore and Jetpack Security

Work together for robust data encryption.

MasterKeys

Makes creating strong encryption keys simple.

Advanced options

Advanced options: Developers can customize key authorization settings.

File & shared preferences encryption

Easy-to-use encryption for different data types.

41

Recommended
for all apps:
Especially for those
handling device policies
or sensitive information.

https://developer.android.com/jetpack/androidx/releases/security
https://developer.android.com/reference/androidx/security/crypto/MasterKeys.html#AES256_GCM_SPEC

42

Monthly device updates are a crucial aspect of Android security.
Google releases Android Security Bulletins every month to inform
users, partners, and customers about the latest fixes.

These security updates are available for Android versions for a period of three and a half years
from their initial release date. Device manufacturers can choose to extend this support period by
upgrading the Android version on their devices.

Android OS leverages a feature called Project Treble to accelerate the delivery of security fixes,
privacy enhancements, and consistency improvements. Treble enables device manufacturers and
silicon vendors to develop and deploy Android updates more rapidly than was previously possible.
Modern Android devices are Treble-compliant and fully benefit from its architecture.

For fully managed devices, IT admins can install system updates manually using a system
update file on Android 10 and above devices. This manual control offers several advantages to
IT admins. They can test an update on a small group of devices before deploying it widely, thereby
minimizing potential risks.

Additionally, they can avoid duplicate downloads on networks with limited bandwidth, saving
valuable resources. Finally, IT admins can stagger installations or schedule updates for times
when devices are not in use, minimizing disruption to users.

Android
security updates

https://source.android.com/security/bulletin/index.html
https://source.android.com/devices/architecture#hidl

43

Android security updates

Device manufacturer partner updates
Security updates for Pixel devices are sent directly
from Google every month. You can also update Pixel
devices manually using firmware images from the
Google Developer site. Many other device makers like
Nokia, Samsung, LG, Motorola, and Zebra have a
similar update schedule and provide their own
security bulletins.

You can check if your device is up-to-date by looking
at the Security Patch Level. This is in your device
settings and is also available in the attestation
certificate chain. Enterprise Mobility Management
(EMM) partners can use an API to see which security
update is installed and enforce policies for devices
that are out of date.

Google Play system updates
Google Play System Updates provide a quicker
and easier way to deliver important updates to your
Android device. Key parts of the Android system are
now modular, so they can be updated individually,
just like apps, through the Google Play Store or
directly from your device manufacturer.

These updates come in the form of APK or APEX files.
APEX files load earlier during device startup, which
can be important for security and performance
improvements. This means you can get critical updates
without waiting for a full operating system upgrade.
And, of course, all updates are cryptographically signed
to ensure their security.

https://www.nokia.com/en_int/phones/security-updates
https://security.samsungmobile.com/securityUpdate.smsb
https://lgsecurity.lge.com/bulletins/mobile
https://motorola-global-portal.custhelp.com/app/software-security-page/g_id/6806
https://www.zebra.com/us/en/support-downloads/lifeguard-security.html

44

Android security updates

Conscrypt

The Conscrypt module plays a crucial role in enhancing Android's security by
delivering accelerated security improvements and bolstering device protection
through regular updates via Google Play System Updates.

It leverages Java code and a native library to provide
the Android TLS implementation, along with a
substantial portion of Android's cryptographic
functionality, such as key generators, ciphers, and
message digests. While Conscrypt is available as an
open-source library, it incorporates specific
optimizations when integrated into the Android
platform.

Furthermore, the Conscrypt module utilizes BoringSSL,
a native library that serves as a Google fork of

OpenSSL. BoringSSL is widely employed in numerous
Google products for cryptography and TLS, notably
Google Chrome. The Conscrypt module is distributed
as an APEX file encompassing the Conscrypt Java
code and a Conscrypt native library that dynamically
links to Android NDK libraries. Importantly, the native
library also includes a copy of BoringSSL that has
undergone validation through NIST's Cryptographic
Module Validation Program (CMVP), further reinforcing
its security posture. The most recent certified version
is identified by certificate #4735.

https://source.android.com/devices/architecture/modular-system/conscrypt
https://boringssl.googlesource.com/boringssl/
https://csrc.nist.gov/projects/cryptographic-module-validation-program
https://csrc.nist.gov/projects/cryptographic-module-validation-program
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4735

45

Android Enterprise provides IT admins with powerful, easy-to-use tools to
deploy, configure and manage applications on a variety of device form factors.

Managed Google Play
On devices managed by an Enterprise Mobility
Management (EMM) provider, the IT admins can
control which work apps may be installed. On
GMS devices, managed Google Play can be used
for application management. Managed Google Play
is an enterprise version of Google Play that allows
IT admins to easily find, deploy, and manage work
apps while minimizing the threat of malware with
Google Play Protect. Managed Google Play provides
APIs and iframes to EMM partners that allow their
customers to manage apps on Android devices.

Using Managed Google Play, organizations can
build a customized mobile application storefront
for their teams, featuring public and private
applications that are available to their employees.
This eliminates the need to sideload any applications
onto devices. Managed Google Play is available for
all fully managed devices and devices with a Work
Profile, whether they are personally owned (BYOD)
or company owned (COPE).

Organizations have two methods ofidentifying
allowed applications:

● Allowlist: Users may be restricted to a specific
allow-list of permitted applications in the company
policy (default behavior). This protects company
data by blocking unknown applications from being
installed.

● Blocklist: When using an EMM that uses Android
Management API, IT admins also have the option of
blocking one or more apps. Users may only install
applications that are not explicitly marked as
‘blocked’ in the organization’s application policy.
EMMs using Android Management API may also set
application block lists in the personal usage policies
of a company owned device with Work Profile.

Installation of apps in the Work Profile on BYOD & COPE
or fully managed devices is possible via two main
mechanisms:

● Users may install permitted applications on-demand
through the managed Google Play application, in
their organization’s custom store front.

● The organization may push an application to a
device using their EMM. Organizations can silently
(without user interaction) install applications on to
fully managed devices and inside of the work profile.

Additionally, IT admins can enforce update preferences
through managed Google Play. IT admins can push an
urgent update, such as security updates, to devices
automatically as high priority.

App management

https://developers.google.com/android/management/reference/rest/v1/enterprises.policies#personalusagepolicies

46

App management

Private apps
With managed Google Play, enterprise customers and developers can publish apps and target them
privately (that is, they’re only visible and installable by users within that enterprise). Private apps are
logically separated in Google’s cloud infrastructure from public Google Play for consumers. There are
three modes of delivery for private and web apps:

Google-hosted
By default, Google hosts the APK in its secure, global data centers. This is the
recommended option to take full advantage of Google's enterprise-grade
security, including SSL downloads and malware security scanning.
Google-hosting also allows organizations to take advantage of Google Play
app signing. With Google Play app signing, Google manages
and protects the app's signing key on behalf of an organization and uses
it to sign optimized distribution APKs. Google Play app signing stores the app
signing key on Google’s secure key enclaves and offers upgrade options to
increase security.

Externally-hosted
Enterprise customers host APKs on their own servers, accessible only on their
intranet or via VPN. When managed Google Play makes a request to download
an APK from an external server, the request includes a cookie containing a
JSON Web Token (JWT). We recommend that the organization decodes the
JWT to authenticate the download.

Web apps
A web app turns a web page into an Android app, making it easier to find and
simpler to use on mobile devices. A web app looks like a native app in a
device's launcher, and when the user opens it, Android renders the web page
in the selected display mode (minimal UI, standalone or full screen).

In all cases, Google Play stores the app metadata (such as, title, description, graphics, and
screenshots). Private apps are held to Play Policies for preventing mobile unwanted software
and malware. Private apps cannot be made public.

https://github.com/google/play-work/blob/master/externally-hosted-apks/README.md#authenticating-the-download-on-the-enterprise-server

App management

Managed
configurations
Managed configurations allow an organization’s
IT admin to control the availability of features,
configure settings, or set credentials within an
app via their EMM’s management console. As an
example, an app may have an option to only sync
data when a device is connected to Wi-Fi, or
allowlist or blocklist specific URLs in the web
browser. App settings exposed through managed
configurations are managed by the developer.

Google Chrome is an example of an
enterprise-managed app that implements policies
and configurations that can be managed according
to enterprise policies and restrictions.

Applications from
unknown sources
IT admins may need to prevent the installation
of applications from outside Google Play or trusted
installers. According to the Android Transparency
Report, Devices & data can be at an increased risk
when apps are installed from unverified sources.

To prevent the installation of apps from unknown
sources, IT admins deploying fully managed
devices and Work Profiles can set a restriction
using their EMM. On devices using a Work Profile,
these restrictions apply only to the Work Profile
by default. However, IT admins can also set a
device-wide policy to also prevent apps from
unknown sources being installed into the
personal profile.

47

https://developer.android.com/work/managed-configurations
http://www.chromium.org/administrators/policy-list-3
http://www.chromium.org/administrators/policy-list-3
https://transparencyreport.google.com/android-security/overview
https://transparencyreport.google.com/android-security/overview

A number of Google-backed initiatives and collaborations help
advance the Android ecosystem that supports partners and
customers in their use of Android in enterprise settings.

Android Enterprise
Partner Program
The Android Enterprise Partner Program empowers
partners to build, sell, and support Android products,
services, and solutions specifically designed for the
enterprise market. Collaborating with a validated
partner guarantees that they fulfill essential
requirements across three key pillars: Partner
Expertise, Product Excellence, and Performance.

Android Enterprise
Recommended
Within the Android Enterprise Partner Program,
the Android Enterprise Recommended technical
product validation establishes a higher standard
for enterprise-ready devices and solutions.
Devices that satisfy the advanced validation
requirements represent the top tier of Android
Enterprise specifications, encompassing
hardware, deployment processes, and user
experience. Organizations can confidently
choose devices from this curated list, knowing
they meet the rigorous criteria for inclusion in
the Android Enterprise Recommended program.
Furthermore, participating device manufacturers
gain access to enhanced technical support and
specialized training.

Android Enterprise Recommended enterprise
mobility management solutions have the most
advanced management features and deliver a
consistent deployment experience. Knowing that
these solutions are backed by enhanced training
and technical support allows organizations to
choose a mobility solution with confidence.

48

Programs

https://androidenterprisepartners.withgoogle.com/glossary/overview/
https://www.android.com/enterprise/recommended/
https://androidenterprisepartners.withgoogle.com/glossary/device/
https://androidenterprisepartners.withgoogle.com/glossary/emm/
https://androidenterprisepartners.withgoogle.com/glossary/emm/

49

Programs

Android security rewards program
The Android Security Rewards (ASR) program incentivizes researchers to find and report security
issues, providing key assistance to Android security efforts. This program covers security
vulnerabilities discovered in the latest available Android versions for Pixel phones and tablets.

Android partner vulnerability initiative
The Android Partner Vulnerability Initiative (APVI) aims to manage security issues specific to
Android OEMs. The APVI is designed to drive remediation and provide transparency to
users about issues we have discovered at Google that affect device models shipped by
Android partners.

App security improvement program
The App Security Improvement Program is a service that helps Google Play developers
improve the security of their apps. The program provides tips and recommendations for
building more secure apps and identifies potential security issues and mitigations when apps
are uploaded to Google Play.

https://www.google.com/about/appsecurity/android-rewards/
https://developer.android.com/google/play/asi

50

App Defense Alliance

Together, with its members, ESET, Lookout, Zimperium, McAfee, and Trend Micro, the alliance
has been able to reduce the risk of app-based malware and better protect Android users.

In 2022, the App Defense Alliance expanded to include App Security Assessments where
authorized lab partners perform testing services for apps distributed through the Play Store,
or Google Partners connecting to Google Cloud Services. Building on the success of the App
Defense Alliance, in 2023 Google partnered with Microsoft and Meta as steering committee
members in the newly restructured ADA under the Joint Development Foundation, part of the Linux
Foundation family. The Alliance supports industry-wide adoption of app security best practices
and guidelines, as well as countermeasures against emerging security risks.

50

The mission of the App Defense Alliance is to protect Android users
from bad apps through shared intelligence and coordinated detection
between alliance partners.

Programs

Advanced Protection Program
The Advanced Protection Program safeguards users with high visibility and sensitive
information from targeted online attacks. New protections are automatically added to
defend against today’s wide range of threats.

Here are some of the protections:

● Protects your account from phishing by requiring the use of a passkey or a security key
to verify your identity and sign in to your Google Account

● Provides extra protection from harmful downloads by utilizing Safe Browsing and
Google Play Protect

● Keeps your personal information secure by allowing only Google apps and verified
third-party apps to access your Google Account data, and only with your permission

https://security.googleblog.com/2023/11/evolving-app-defense-alliance.html
https://linuxfoundation.org/
https://linuxfoundation.org/
https://appdefensealliance.dev/
https://landing.google.com/advancedprotection/
https://support.google.com/accounts/answer/13548313?hl=en
https://support.google.com/accounts/answer/6103523?hl=en&co=GENIE.Platform%3DDesktop&sjid=814782024205225936-NC

Devices running Android and the cloud services they utilize comply with various
industry standards and have received numerous security certifications which
demonstrate our strong commitment to the highest security standards.

ISO and SOC certification

51

Android Enterprise has received ISO 27001 certification
and SOC 2 and 3 reports for information security
practices and procedures for Android Management
API, zero-touch enrollment and managed Google Play.
This designation ensures these services meet strict
industry standards for security and privacy.

Granted by the International Organization for
Standardization, ISO 27001 outlines the requirements
for an information security management system.

The SOC 2 and 3 reports are based on American
Institute of Certified Public Accountants (AICPA)
Trust Services principles and criteria. To earn this,
auditors assess an organization’s information
systems relevant to security, availability,
processing integrity, confidentiality, and privacy.

Independent credentialed auditors perform
thorough audits to ensure compatibility with
the established principles.

The entire methodology
of documentation and
procedures for data
management are
reviewed during such
audits, and must be made
available for regular
compliance review.

Industry standards
and certifications

52

Industry standards and certifications

Government grade security

NIST FIPS 140-3/140-2 CMVP & CAVP

Federal Information Processing Standards (FIPS)
are standards and guidelines for Federal computer
systems that are developed by the National Institute of
Standards and Technology (NIST) in accordance with
the Federal Information Security Management Act
(FISMA) and approved by the Secretary of Commerce.
Although FIPS standards are developed for use by the
federal government, many in the private sector
voluntarily use these standards as well. The National
Institute of Standards and Technology’s (NIST)
Cryptographic Algorithm Validation Program (CAVP)
provides validation testing of approved cryptographic
algorithms and their individual components. The goal
of the Cryptographic Module Validation Program (CMVP)
is to promote the use of validated cryptographic
modules and provide Federal agencies with a security
metric to use in procuring equipment containing
validated cryptographic modules.

Common Criteria/NIAP mobile device
fundamentals protection profile

Common Criteria is a driving force for the widest
available mutual recognition of security products
with 31 participating countries. The National
Information Assurance Partnership (NIAP) serves
as the U.S. representative to the Common Criteria
Recognition Arrangement (CCRA). In partnership
with NIST, NIAP approves Common Criteria Testing
Laboratories to conduct security evaluations in private
sector operations across the U.S. This certification
process has enabled the Android team to build some
of the requirements to achieve this certification
directly into the Android Open Source Project (AOSP),
which enables device manufacturers with the ability
to attain certification in much less time. The Android
Management API (AMAPI) client has also achieved
certification as part of the mobile device evaluation.

DISA security technical implementation
guide (STIG)

The Security Technical Implementation Guides
(STIGs) are the configuration standards for
Department of Defense Information Assurance (IA)
and IA-enabled devices/systems. The STIGs contain
technical guidance to “lock down” information
systems/software that might otherwise be
vulnerable to a malicious computer attack.

https://csrc.nist.gov/Projects/cryptographic-algorithm-validation-program
https://csrc.nist.gov/Projects/cryptographic-algorithm-validation-program
https://csrc.nist.gov/Projects/cryptographic-algorithm-validation-program
https://csrc.nist.gov/Projects/Cryptographic-Module-Validation-Program
https://www.commoncriteriaportal.org/
https://www.niap-ccevs.org/
https://www.niap-ccevs.org/
https://public.cyber.mil/stigs/

Conclusion

53

The open source development approach of Android is a key part of its security. Developers,
device manufacturers, security researchers, SoC vendors, academics, and the wider Android
community create a collective intelligence that locates and mitigates vulnerabilities for the
entire ecosystem.

With Android, multiple layers of security support the diverse use cases of an open platform
while also enabling sufficient safeguards to protect user and corporate data. Additionally,
Android platform security keeps devices, data, and apps safe through tools like app sandboxing,
exploit mitigation and device encryption. A broad range of management APIs gives IT
departments the tools to help prevent data leakage and enforce compliance in a variety of
scenarios. The Work Profile enables enterprises to create a separate, secure profile on users’
devices where apps and critical company data are kept secure and separate from personal
information.

Google Play Protect, the world’s most widely deployed mobile threat protection
service, delivers built-in protection on every device. Powered by Google machine learning,
it works to catch and block harmful apps and scan the device to detect and prevent PHAs or
malware. Google Safe Browsing in Chrome and WebView protects enterprise users as they
navigate the web by warning of potentially harmful sites.

Enterprises rely on smart devices for critical business operations, collaboration,
and accessing proprietary data and information.

Google continues to invest in resources to further
strengthen the security of the Android platform,
and we look forward to further contributions from
the community and seeing how organizations will
use Android to drive business success.

54

Contributors

Thank you to the following people, and so many others, for contributions to this
paper and the work it represents.

Al Chappelle

Amy van den Berghe

Andrew Scull

Armelle Laine

Brian Wood

Brooke Davis

Colin Hacker

David Still

Dom Elliot

Eileen Lucey

Eric Biggers

Eric Lynch

Eugene Liderman

Güliz Seray Tuncay

Irene Ang

James Nugent

Jeffrey Vander Stoep

Jui Tamhane

Luke Haviland

Melanie Aley

Michael Groover

Mike Burr

Nithan Sannappa

Oli Gaymond

Paul Crowley

Pete Bentley

Raz Lev

Rishika Hooda

Ryan Kim

Sandy Leung

Shailesh Saini

Shannon Morales

Steve Kafka

Vivek Bhavsar

Zhou Zhou

Conclusion

© 2024 Google LLC 1600 Amphitheatre Parkway, Mountain View, CA 94043.

Learn more about Android security

https://www.android.com/safety/security/

