
Apigee Edge -
Pivotal Platform
Solution Paper

Ankur Shukla
December 2019

This paper describes a few approaches on enabling API Management
(using Apigee Edge) for your apps on Pivotal Application Service
(PAS). The steps captured in this document have been validated
for version 2.7 of PAS as of the publication date of this paper. You may
have to make modifications as necessary for future versions.

Definitions

Apigee Edge

Apigee is a full lifecycle API management platform that enables
API providers to design, secure, deploy, monitor, and scale APIs.
Apigee sits in-line with runtime API traffic and enforces a set of
out-of-the-box API policies, including key validation, quota manage-
ment, transformation, authorization, and access control. API providers
use the customizable developer portal to enable developers to con-
sume APIs easily and securely as well as measure API performance
and usage.

Apigee Microgateway

Apigee Microgateway is a lightweight, secure, HTTP-based message
processor designed especially for microservices. Its main job is to
process requests and responses to and from backend services
securely while asynchronously pushing valuable API execution data to
Apigee Edge, where it’s consumed by the Edge analytics system.

1

https://cloud.google.com/apigee/api-management/
https://cloud.google.com/apigee/api-management/
https://pivotal.io/platform/pivotal-application-service
https://cloud.google.com/apigee-api-management/
https://docs.apigee.com/microgateway/content/edge-microgateway-home

Apigee Microgateway depends on and interacts with Apigee Edge.
Apigee Microgateway must communicate with an Apigee Edge
organization to function. This Apigee Edge organization instance
could be running on cloud as a managed service provided by Google/
Apigee, within your data center on premises, or on your own private/
public cloud.

Apigee API Proxy

You expose APIs in Apigee Edge by implementing API proxies. API
proxies decouple the app-facing API from your backend services,
shielding those apps from backend code changes. An API proxy is
essentially a message flow that is comprised of policies (XML con-
figs) that execute in sequence when the API is invoked. These policies
enable you to control the behavior of the underlying APIs.

What are Route Services and how do
they work?

Cloud Foundry (CF) app developers may wish to apply security, trans-
formation, or processing to requests before they reach an app.
Common examples include authentication and rate limiting. Route

2

https://docs.apigee.com/api-services/content/understanding-apis-and-api-proxies
https://docs.apigee.com/api-services/reference/reference-overview-policy

3

Services are a kind of Marketplace Service that developers can use to
apply various transformations to application requests. This is typically
done by binding an app’s route to a service instance. Through integra-
tions with services, providers can offer these services to developers
with an automated, self-service and on-demand user experience. In its
current offerings, Cloud Foundry supports the following models for
route-based services:

 1. Fully brokered service
 2. Static brokered service
 3. User-provided service

Fully brokered and static brokered require a service broker, which is
typically deployed through Ops Manager as a Tile within your Cloud
Foundry foundation. A user-provided service does not require a ser-
vice broker and hence can be set up and configured completely by
your developer. We will be using the user-provided service model as
reference architecture pattern to demonstrate Apigee integrations.

The following diagram illustrates the traffic flow for a typical route-
based integration using the user-provided service discussed later in
this document.

Patterns

This section describes a few patterns/approaches that can provide
API Management for applications deployed on PAS. The patterns
differ depending on how the traffic flows and what components of
Apigee (Edge vs Edge Microgateway) end up servicing traffic.

Pattern: Apigee Edge Microgateway Service
on PAS

Apigee Edge Microgateway (EMG) can be hosted within the PAS
platform as an application. This application can then be used to
instantiate and provide a user-provided service. The user-provided
service is then available for ‘binding’ to your applications and pro-
vides services like API security using an API key or OAuth 2.0,
support for CORS, rate limiting, and so on. This integration relies
upon the Route Services-based integration pattern that is offered
natively by the PAS platform.

4

https://docs.pivotal.io/pivotalcf/2-6/services/route-services.html
https://docs.pivotal.io/pivotalcf/2-6/services/route-services.html
https://docs.pivotal.io/pivotalcf/2-6/services/route-services.html

5

The following sequence diagram illustrates the typical flow of traffic
within PAS:

Setting up Microgateway as a User-Provided
Service (UPS)

To use EMG as a user-provided service, we push EMG as an applica-
tion to our CF environment. Once EMG is up and running as a CF
application, we do the following:

 • Create an EMG-aware proxy within Apigee Edge to handle
 CF traffic.

 • Create a user-provided service by appending the CF
 application’s (EMG) URL to the EMG proxy's base path.

Setting up an EMG application in CF, creating an EMG proxy defini-
tion in Edge, and creating a UPS is only needed to be done once.
After you create the UPS, you will only need to bind each (target)
application that intends to use this service.

Prerequisite
Please follow the Microgateway Operation and Configuration docu-
mentation to ensure that you have a local copy of EMG set up to
communicate with your Apigee Edge organization. The “config.yaml”
file, key, and secret you'll create are required to push your EMG to CF.

Apigee Edge Microgateway (EMG) Plan using User Provided Service (Route Services Integration)

https://docs.apigee.com/api-platform/microgateway/3.0.x/operation-and-configuration-reference-edge-microgateway
https://docs.apigee.com/api-platform/microgateway/3.0.x/operation-and-configuration-reference-edge-microgateway

6

Create a User-Provided Service

a. Push EMG as an Application to CF:

 i. In a terminal, Git clone the EMG code repo and “cd” to the
 “microgateway” directory.

 ii. Edit the manifest.yml File and provide appropriate values
 for the following environment variables:
 EDGEMICRO_KEY,
 EDGEMICRO_SECRET,
 EDGEMICRO_ENV,
 EDGEMICRO_ORG
 EDGEMICRO_CONFIG_DIR - hardcode this to value
 to ‘./config’
 Note - To obtain key/secret, see the Microgateway
 Operation and Configuration documentation.

 iii. Copy your microcogateway’s config file from your home
 directory that was created during setup (see
 prerequisites), and open the new file in an editor.

 iv. Optimize the config file created in the previous step for CF
 by changing the port to 8080 and adding plugins as
 shown in the following example: (Note - The OAuth plugin
 is disabled to limit the scope of this solution paper).

https://docs.apigee.com/api-platform/microgateway/3.0.x/operation-and-configuration-reference-edge-microgateway
https://docs.apigee.com/api-platform/microgateway/3.0.x/operation-and-configuration-reference-edge-microgateway

7

 v. Include the custom plugin cloud-foundry-emg-service
 within the plugin sequence section (see previous
 example). This plugin handles the routing aspect of the
 calls to ensure that the handshake with the CF Router
 happens seamlessly. The sample code for this plugin is
 available here. (This is likely to be changed). Create a
 plugin directory and include the files (index.js & package.
 json) from the GitHub repo. For more information on how
 to use plugins with EMG, see Use plugins in the Apigee
 documentation.

 vi. In the Apigee EdgeUI, login to your Apigee organization
 and create an EMG-aware proxy with the base path set to
 net’. (Later, the ‘cloud-foundry-emg-service’ plugin will
 overwrite this URL with the target CF application's URL).
 For reference on how to create an EMG-aware proxy, see
 Setting up and configuring Edge Microgateway in the
 Apigee documentation.

Note - Since we have not enabled the OAuth plugin within our EMG
service, we do not need to follow the rest of the above documenta-
tion that details the process for creating API products, a developer,
and a developer application. However, If you would like to use EMG's
OAuth capabilities, you will need to create a product, developer, and
application.

 vii. Your EMG application is now ready to be pushed to
 Cloud Foundry:

https://github.com/ankurshukla80/cloud-foundry-emg-service
https://docs.apigee.com/api-platform/microgateway/3.0.x/use-plugins
https://docs.apigee.com/api-platform/microgateway/3.0.x/setting-and-configuring-edge-microgateway#part2createentitiesonapigeeedge-1createanedgemicrogatewayawareapiproxyonedge

8

b. Create the UPS using the cf create-user-provided-service com-
mand, providing the URL for EMG from step vii appended with the
basepath of the EMG-aware proxy from step vi) ‘/pcf’.

This completes the UPS one-time setup steps. The service is ready
to be used for binding by applications that require API management.

Bind a Target Application to the EMG Provided Service
Push your CF target application that requires API management
capabilities from EMG and take note of App Name and

Application’s URL.

a. Now we are ready to bind our sample application to the UPS
 (EMG) using the bind-route-service command:

b. Let's Test our binding by making cURL calls:

Now repeat the cURL call in quick succession and you should see a
spike arrest violation from EMG.

Congratulations!! You have now secured your sample application
with Apigee Edge Microgateway.

http://create-user-provided-service
https://cli.cloudfoundry.org/en-US/cf/bind-route-service.html

Pattern: Apigee Edge Integration with PAS

Similar to Apigee Edge Microgateway as a service (previous section),
you can create a user-provided service (UPS) with your Apigee Edge
organization to proxy your application hosted on PAS. The advantage
of using an Apigee Edge organization as a UPS is that you can use all
the capabilities of the Apigee Edge platform (45+ out of box policies)
and use advanced UI features like trace, since all your traffic will flow
through Apigee Edge. This Apigee Edge ‘organization’ can be hosted
in Apigee Cloud or your own on-premises datacenter (using Apigee on
Premise Deployment Kit - OPDK).

Similar to the user-provided EMG service, the organization service is
also available for ‘binding’ to your applications and provides services
like API security using an API key or OAuth 2.0, support for CORS,
rate limiting features, and more. The following sequence diagram
illustrates the typical flow of traffic within PAS:

9

ORG Plan Overview

Apigee Edge (ORG) Plan using User Provided Service (Route Services Integration)

10

Setting up Apigee Edge Organization as a
User-Provided Service (UPS)

To use the Apigee Edge organization (org) as a user-provided service,
we will create and deploy a proxy within Apigee Edge to make it avail-
able for API traffic. This proxy will handle CF traffic, and you'll use the
proxy path to create a UPS within the PAS environment. Again, in this
pattern too, creating a proxy in your Apigee org and UPS creation are
only done once. After you configure the UPS, you will only need to
bind each (target) application that intends to use this service.

Prerequisite
Signup and register for a free Apigee Edge Evaluation Organization.
See https://cloud.google.com/apigee.

Create a User-Provided Service

a. Create a proxy to act as a facade for your all applications on CF
 that require API management:

 i. Use the proxy bundle in this location to create a proxy within
 your Apigee Edge org by using the “Import a Proxy Bundle”
 dialog within the Apigee Edge UI. You can also import this
 proxy using the Apigee Management API.

 ii. Ensure that your proxy is deployed to the desired environ-
 ment, illustrated by the following image. Be sure that your
 virtual host in Edge uses HTTPs, as CF requires an HTTPS
 endpoint for the route services integrations to work.

https://cloud.google.com/apigee
https://github.com/ankurshukla80/cloud-foundry-emg-service/blob/master/Resources/Org-Plan-For-PCF_rev1_2019_12_05.zip
https://docs.apigee.com/api-platform/deploy/deploy-api-proxies-using-management-api#deployingapiproxies

11

Note - This proxy is a passthrough proxy and does not have any
security built in. However, since this proxy is running on Apigee
Cloud and will be picking up traffic from CF, you are free to use and
implement the OAuth 2.0 or Verify API Key policies in addition to any
of the other 45+ Apigee policies. The current implementation of this
proxy handles the routing of the CF call to the correct CF target
application that the original call was intended for.

 iii. Create the UPS using cf create-user-provided-service
 command (provide the URL for the Org Plan Proxy we
 deployed in Step ii).

 This completes the UPS one-time setup. The service is ready
 to be used for binding by applications that require API
 management.

Bind a Target Application to the Org UPS

b. Push your CF target application that requires API management
 capabilities from the Apigee org and take note of App Name and
 Application’s URL.

 i. Now you are ready to bind the sample application to the
 user provided service (org) using the b ind-route-service
 command:

 ii. Test the binding by making cURL calls:

 Now Turn on the trace feature within Apigee Edge and repeat
 the cURL call. You should be able to see the API call
 traversing through Apigee Edge.

Note: If you are unfamiliar with how to use Apigee Trace tool, see
Using the trace tool in the Apigee documentation.

https://cli.cloudfoundry.org/en-US/cf/create-user-provided-service.html
https://cli.cloudfoundry.org/en-US/cf/bind-route-service.html

12

Congratulations!! You have now secured your sample application
with and Apigee Edge org.

Summary - Final thoughts…

In this solution paper we discussed a couple of approaches on how
Apigee could be used within PAS for API Management. In both the
approaches we have relied on a single proxy creation within Apigee
Edge to manage our runtime traffic for all CF Applications. This is an
optimized approach as it induces less overhead by relying on one
proxy / service for ‘N’ apps; in this scenario the analytics for the N
apps, will be aggregated under the API proxy. Another approach
obviously will be to create a separate proxy within Apigee Edge and
then a new UPS using the proxy base paths. This will mean that you
have one proxy and one UPS for each application. This approach
induces extra overhead but has the side benefit of visualizing analyt-
ics of each individual app.

Resources

Microgateway custom plugin for the EMG pattern:
https://github.com/ankurshukla80/cloud-foundry-emg-service

Proxy bundle for running the Apigee org pattern:
https://github.com/ankurshukla80/cloud-foundry-emg-service/blob/
master/Resources/Org-Plan-For-PCF_rev1_2019_12_05.zip

https://github.com/ankurshukla80/cloud-foundry-emg-service
https://github.com/ankurshukla80/cloud-foundry-emg-service/blob/master/Resources/Org-Plan-For-PCF_rev1_2019_12_05.zip
https://github.com/ankurshukla80/cloud-foundry-emg-service/blob/master/Resources/Org-Plan-For-PCF_rev1_2019_12_05.zip

