

F l a r e - O n C h a l l e n g e 8 S o l u t i o n

B y J a m e s T . B e n n e t t

Challenge 4: My Aquatic Life

Challenge 4: My Aquatic Life | Flare-On 8

MANDIANT 2

Challenge Prompt
What would Flare-On do without a healthy amount of nostalgia for the abrasive simplicity of 1990's UI design?
Probably do more actual work and less writing fun challenges like this.

Solution
myaquaticlife.exe is a 32-bit x86 Windows executable file weighing in at almost 2.3 megabytes; a pretty hefty
size for a challenge binary. A quick glance at the PE headers show that it may be packed with UPX, and
successfully unpacking it with the UPX utility confirms this. Now we are at nearly 3mb.

Many of the strings contained in the binary refer to something named Multimedia Builder (MMB), the most telling
being the string Created with Multimedia Builder, version 4.9.8.13. A quick Web search reveals the
product’s Web page which has the following to say about it:

“With MMB you can develop autorun menus, multimedia apps, games, or front-ends for your CD's* without having
to spend months learning complex programming languages.

<…>

MMB creates small stand-alone exe applications and has many bells & whistles you will ever need. Create a cool
looking app or small game and send it to all your friends

<…>

Our first released product under Mediachance label was Multimedia Builder (aka MMB) in 1998. Since then we
created more than 50 different applications sold in various markets around the world.”

CDs?? 1998!? Clearly, we have come across some ancient technology… how exciting! Based on this information,
there is a good chance that this binary was generated by a What You See Is What You Get (WYSIWYG) app
building tool. And a closer look at the binary reveals, unsurprisingly, that it uses the Microsoft Foundation Classes
(MFC) framework. Our next step is attempting to locate the user-created content within this binary.

The Payload

Running the application presents us with a throwback to the wonder that was the Internet in the 90’s (Figure 1).

Challenge 4: My Aquatic Life | Flare-On 8

MANDIANT 3

Figure 1: Screenshot of the initial challenge page

Thankfully, it is quite easy to locate the app’s content. When the app is executed, file monitoring tools reveal a
directory named %TEMP%\MMBPlayer with many files being created within it. Most of these files are images used
by the challenge; at first glance, the interesting files appear to be index.html and fathom.dll.

The HTML File

The HTML file is quite small and contains our first clue towards finding the flag for the challenge. The HTML
aligns with what we see in the application, and the images presented in the app are all wrapped in anchor tags.
As shown in Figure 2, these tags contain peculiar hrefs that specify different scripts following the naming scheme
Script<number>.

Challenge 4: My Aquatic Life | Flare-On 8

MANDIANT 4

Figure 2: Contents of index.html

MMB’s documentation states that these hrefs are used to execute Script objects created by the user and
contained within the packaged app. A cursory look at the fathom.dll file does not reveal any traces of these
Script objects, so we turn back to the challenge binary.

The Script Objects

There are several ways in which one could locate the Script objects in the binary. One method could be to set
breakpoints on file parsing APIs such as SetFilePointer and ReadFile and discover that the binary reads
some values from the end of its file to locate the embedded project files and objects within itself. <> shows the
string STANDALONE located towards the end of the file, followed by a 32-bit value that specifies a negative offset
from the end of the file to seek to in order to find the start of the embedded objects and files.

Figure 3: EOF contents with payload length indicator

Challenge 4: My Aquatic Life | Flare-On 8

MANDIANT 5

Another way could be to simply search for the term Script and find the compiled Script objects. In any case,
each “object” in a project is compiled into the binary as a mixture of binary data and strings, as shown in Figure 4.
Writing a decompiler is not necessary, however; some simple guesswork will be enough here.

Figure 4: Compiled script object

The names of the scripts can be seen in this area of the binary, each followed by some strings that appear to be a
part of the script. Some variables with names like part1$, part2$, etc., are being assigned strings that are
colon-delimited into two parts. The first part is always one of the following strings: flotsam, jetsam, lagan,
derelict. The second part is some string data. After each of these variable assignments is always the string
PlugIn followed by <var name>, where <var name> is the name of the previously assigned variable. These
look to be arguments to a function, but which function? PlugIn is an interesting string, and we did observe the
fathom.dll file as part of the unpacked payload in the temp directory earlier. A little further digging confirms this
theory, as shown in Figure 5. The object labeled PlugIn assigns the embedded file fathom.dll.

Challenge 4: My Aquatic Life | Flare-On 8

MANDIANT 6

Figure 5: PlugIn object

It appears these variables are being fed to the plugin via some function, but unfortunately the function name
appears to be encoded as binary data here. Some study of the MMB documentation (Figure 6) strengthens this
theory and provides us with some more helpful information: the name of the function is PluginSet, the first
argument is the label of the plugin you wish to interact with, and the second argument is a variable containing the
data you wish to send to the plugin for later interaction using the function named PluginRun.

Challenge 4: My Aquatic Life | Flare-On 8

MANDIANT 7

Figure 6: MMB PlugIn documentation

The Plugin – fathom.dll

A quick look at the strings for fathom.dll reveals some familiar friends: flotsam, jetsam, lagan, and
derelict. They are all referenced in the same exported function: SetFile. This function splits the received
string by the colon delimiter and appends the second part of the split string to a specific global string variable,
depending on the value of the first part of the split string. Essentially, the first part of the colon delimited string is
the name of a variable to be appended with the string passed as the second part. The strings are of the MFC type
CString, which are quite messy to reverse engineer, but some debugging helps with this.

Checking the cross-references to these global variables, we find that only flotsam and jetsam are referenced in
another export. The export PluginFunc19 uses these two strings as part of its decryption routine. There does
not seem to be anything else interesting in the other exports. Could this be our flag? PluginFunc19 is passed as
an argument to a function within the Script object Script17, which is set to be executed when the user clicks on
the text What's your favorite aquatic animal?.

Challenge 4: My Aquatic Life | Flare-On 8

MANDIANT 8

Putting It All Together

The clues we have so far:
1. Each image in the app executes a specific script when clicked.
2. Each script appends a string to a global string variable in the plugin, and have names like part1$,

part2$, etc.
3. Only the flotsam and jetsam variables are used by the PluginFunc19 export, which is called when

clicking on the What's your favorite aquatic animal? link.

With these clues, one could deduce that clicking on the images in the right order, as specified by the Script object
variable names (part1$, part2$, etc.), would build the proper strings in the plugin required to decrypt the flag
when the text link is clicked.

In fact, the ordering is not entirely strict. Either flotsam or jetsam can be built first. Clicking the images in the
proper order yields us victory as shown in Figure 7.

Figure 7: Victory!

Challenge 4: My Aquatic Life | Flare-On 8

©2021 Mandiant Inc. All rights reserved. Mandiant is a registered trademark of Mandiant, Inc. All other
brands, products, or service names are or may be trademarks or service marks of their respective owners.

