

F l a r e - O n C h a l l e n g e 8 S o l u t i o n

B y B l a i n e S t a n c i l l

Challenge 6: PetTheKitty

Challenge 6: PetTheKitty | Flare-On 8

MANDIANT 2

Challenge Prompt
Hello,

Recently we experienced an attack against our super secure MEOW-5000 network. Forensic analysis discovered
evidence of the files PurrMachine.exe and PetTheKitty.jpg; however, these files were ultimately unrecoverable.
We suspect PurrMachine.exe to be a downloader and do not know what role PetTheKitty.jpg plays (likely a
second-stage payload). Our incident responders were able to recover malicious traffic from the infected machine.
Please analyze the PCAP file and extract additional artifacts.
Looking forward to your analysis,

~Meow

Solution
The challenge ZIP file (PetTheKitty.zip) contains two files:

1. IR_PURRMACHINE.pcapng
2. README.txt

README.txt explains that a company's "super secure MEOW-5000 network" was attacked, and the incident
responders were unable to extract malware from the infected machine. However, they recovered malicious
network traffic in the form a packet capture (PCAP) file and tasked us to extract any malicious artifacts.

PCAP Overview
A network protocol analyzer is required to start our investigation of the PCAP file IR_PURRMACHINE.pcapng (I'll be
using Wireshark). Opening the PCAP file in Wireshark and browsing the packets, we observe there are two IP
addresses utilized throughout the entire packet capture. The IP addresses are listed below denoted with the
names Client and Server used throughout the rest of this walkthrough.

• 172.16.111.139 - Client
• 172.16.111.144 - Server

Below is an overview of the events that occur within the PCAP file:

1. Client makes a DNS request for: xn--zn8hscq4eeafedhjjkl.flare-on.com
a. This is a Punycode domain that translates to:

"#$%&'()*+,$-./0123456789:;3<=>?@ABCDE=FGHI JKLMNGOPQR STUVWPXYZ[\ Y]^_` ^a bcdef ghij klmn .flare-on.com
2. Client communicates with Server over TCP port 7331 (TCP stream 0)
3. Client makes a DNS request for: xn--zn8hrcq4eeadihijjk.flare-on.com

a. This is a Punycode domain that translates to:

&#%$(,)*+'"52437;89:6?<>=AEBCD@IFHGJNKLMROQPSWTUV[XZY \`]_^a fi ghjl kmn bcde-./01.flare-on.com

4. Client communicates with Server over TCP port 1337 (TCP stream 1)

Right clicking a packet and following the TCP streams associated with Client to Server communicates over TCP
port 7331 and 1337 allows us to inspect the data sent/received as in Figure 1 and Figure 2 below.

Challenge 6: PetTheKitty | Flare-On 8

MANDIANT 3

Figure 1: Following TCP Stream 0

Figure 2: TCP Stream 0 (Hex Dump)

Custom Binary Protocol Observations

Challenge 6: PetTheKitty | Flare-On 8

MANDIANT 4

Looking closely at the data sent/received, reveals what appears to be a custom binary protocol. A custom binary
protocol is commonly used when malware communicates over raw TCP sockets and is generally defined by a
structure consisting of a header followed by data. The header is comprised of multiple fields and usually starts
with a magic value indicating data formatted according to the protocol structure.

Assuming there's a magic header value, what generally follows is size information. The size value indicates how
much data is expected to be sent/received. Some custom binary protocols may use multiple size values if the
data is compressed. One size indicates the amount of data sent/received, while the other indicates the size of the
data after decompression. Other common header fields are sequence numbers, checksums to validate data,
command identifiers, error codes, etc. The sky's the limit since it’s a custom binary protocol.

The observed custom binary protocol appears to use a magic header value of ME0W, followed by two size values,
followed by data. Figure 3 below outlines a C structure of the protocol header as we currently understand it.
Figure 4 and Figure 5 highlight these values visually.

struct meowHeader {

 DWORD magic; # ME0W

 DWORD size1;

 DWORD size2;

}

Figure 3: Initial Protocol Structure

Challenge 6: PetTheKitty | Flare-On 8

MANDIANT 5

Figure 4: TCP Stream 0, Protocol Structure

Challenge 6: PetTheKitty | Flare-On 8

MANDIANT 6

Figure 5: TCP Stream 1, Protocol Structure

Understanding the size values requires a bit of guess work at this point. We observe that the size values, size1
and size2, used in TCP stream 0 are equal for each communication and specify the amount of data following the
header. We also notice the data following the header does not appear to be compressed as we can identify
human readable strings as well as a PNG file data.

However, the size values are not equal for communications in TCP stream 1 and only the size value size2
specifies the amount of data following the header. Additionally, the data in each communication appears to be
compressed as there are no human readable strings. The size value size1 may indicate the size of the data after
decompression (original size) or the amount of relevant data – it's still an unknown at the moment, but we'll
assume it's the original size of the data after some form of decompression.

Figure 6 below outlines our updated C structure after incorporating the insights regarding the size values.

Challenge 6: PetTheKitty | Flare-On 8

MANDIANT 7

struct meowHeader {

 DWORD magic; # ME0W

 DWORD original_size;

 DWORD data_size;

}

Figure 6: Updated Protocol Structure

PA30 Data

Investigating the data following our protocol headers in TCP stream 0, we observe the following series of
communications:

1. Client requests:
a. "~meow~ (=^.^=) ~meow~.... can haz MeeooowwwMeme???"

2. Server responds with the PNG image displayed in Figure 7 below
3. Client requests:

a. "~meow~ (=^.^=) ~meow~.... can haz MeeeeeooooowwWare?????"
4. Server responds with data that begins with: PA30

Figure 7: PNG File Data

Challenge 6: PetTheKitty | Flare-On 8

MANDIANT 8

The first request and response make sense – the client requests a meme, and the server responds with a meme
(Figure 7). However, the second request and response does not make sense – the client requests malware, but
the server responds with data starting with PA30 and not MZ indicating a Windows executable.

Pivoting to TCP stream 1, we also notice that all data following our protocol headers start with PA30. At this point
we're stuck wondering what PA30 signifies as no common file formats come to mind. Our best bet is to try and
identify it via internet search engines. Below are a few queries I used, and the type of information returned.

Query String Information / Links Returned

PA30 Information about Piper PA-30 Twin Comanche 🛩

PA30 file Link to https://github.com/hfiref0x/SXSEXP
• Tool to expand compressed files in WinSxS folder
• Relevant files begin with DCN, DCM, or DCD and may be followed by PA30
• However, our data only begins with PA30
opqr

Link to https://reverseengineering.stackexchange.com/questions/19734/dll-starting-with-dcd
asking about a file format with PA30 in it

An answer referencing delta compression format (MSDelta)

PA30 msdelta Link to https://wumb0.in/extracting-and-diffing-ms-patches-in-2020.html
• Thoroughly covers Microsoft patches

CTRL+F for "delta" within this page jumps to the information we've been searching for –
MSDelta compression!

Table 1: Internet Search Engine Queries

The last search query navigates us to a blog post1 that outlines how Microsoft's MSDelta patch technology works,
how to apply deltas via the API ApplyDeltaB(), and references MSDN MSDelta documentation2. As an interesting
side note, the blog author created their own CTF challenge for the RITSEC 2019 CTF called patch-2sday3 that
leveraged MSDelta deltas! Based on the blog, it appears we need a source buffer and a delta buffer. Then we
apply the delta buffer to the source buffer resulting in a new file/buffer. Luckily for us, the blog also contains
Python3 code4 to apply deltas!

1

 https://wumb0.in/extracting-and-diffing-ms-patches-in-2020.html

2
 https://docs.microsoft.com/en-us/previous-versions/bb417345(v=msdn.10)#msdelta

3
 https://github.com/ritsec/RITSEC-CTF-2019/tree/master/Misc/patch-tuesday

4
 https://gist.github.com/wumb0/9542469e3915953f7ae02d63998d2553#file-delta_patch-py

Challenge 6: PetTheKitty | Flare-On 8

MANDIANT 9

Applying The Delta
The big question now, is what should we use for our source and delta buffers? Based on the logical flow of
communications in TCP stream 0, let's use the PNG data as the source and the PA30 data as the delta – this
makes sense as it has a delta header value of PA30 anyway.

We can extract the TCP stream data by right clicking a packet in each stream, following the TCP stream,
changing the displayed data to "raw", and saving each stream to its own file:

• TCP stream 0 saved to first_convo.bin
• TCP stream 1 saved to second_convo.bin

Starting with TCP stream 0, we'll create a Python3 script to parse the stream data using the magic header value,
ME0W, as a delimiter and apply the delta to the source buffer with the Windows API ApplyDeltaB(). Both header
size values are the same in TCP stream 0, but we'll use data_size. The script is attached in the Appendix A
(first_convo_delta.py). The script successfully applies the delta to the PNG data resulting in a Windows DLL as
shown in Figure 8 below.

Figure 8: Hex Dump of Payload DLL

Since this worked, let's attempt to apply the deltas found in TCP stream 1 to the same source buffer. Oh no, our
luck seems to have run out. The applied deltas resulted in garbage data as shown in Figure 9 below.

Challenge 6: PetTheKitty | Flare-On 8

MANDIANT 10

Figure 9: Hex Dump of Garbage Data

Seems we'll need to analyze the DLL to proceed.

DLL Analysis

To make quick work of the DLL, let's first triage it and see if we can find any low-hanging fruit. Opening the DLL in
a PE viewer of our choice (I'll use CFF Explorer), we notice it has a .rsrc section containing a Bitmap resource
with ID 102. The image is of an amazingly drawn kitten with a message saying "RELAX PET THE KITTY" as
shown in Figure 10 below.

Challenge 6: PetTheKitty | Flare-On 8

MANDIANT 11

Figure 10: DLL Bitmap Resource

For TCP stream 0 the source buffer was an image file, so perhaps this image will be the source buffer used in
TCP stream 1? Let's extract and use this image as our source buffer… Oh no, garbage data again! Either we
have the wrong source buffer or there's a layer of encryption, encoding, or obfuscation after the delta has been
applied. We'll assume the latter and dive deeper.

Opening the DLL in a disassembler of our choice (I'll be using IDA PRO), we can quickly navigate to locations
where the Windows API ApplyDeltaB() is used by cross-referencing this import function.

The API is referenced at location 0x100010FB within the function at 0x1000108E. Working our way backwards
from this function via cross-references leads us to 0x10001330. Scanning a few basic blocks below this location
we spy a tight loop with an XOR instruction! After applying the delta, the DLL is XORing the data with the hard-
coded XOR key "meoow" as shown in Figure 11 below.

Challenge 6: PetTheKitty | Flare-On 8

MANDIANT 12

Figure 11: Overview of XOR Decryption

Challenge 6: PetTheKitty | Flare-On 8

MANDIANT 13

Let's update our script and see if this works... SUCCESS! Our decrypted data, Figure 12 below, contains what
appears to be reverse shell communication but with extra data. Looking back to Figure 5, we can see the first
reverse shell communication had a data_size of 0xB4 and an original_size of 0x8B. The original_size
field appears to be just that, the original size of the data before delta compression.

Figure 12: Reverse Shell Communication

Let's update our script to account for original_size and search for the string "@flare-on.com" in each reverse
shell communication. Boom, SUCCESS!! Figure 13 below shows the data containing the flag.

Challenge 6: PetTheKitty | Flare-On 8

MANDIANT 14

Challenge 6: PetTheKitty | Flare-On 8

MANDIANT 15

Figure 13: Flare-On Flag

We've successfully extracted the artifact within the PCAP file – the Flare-On Challenge flag is:

1m_H3rE_Liv3_1m_n0t_a_C4t@flare-on.com

The final script to decode TCP stream 1 is attached in Appendix B (second_convo_delta.py).

Challenge 6: PetTheKitty | Flare-On 8

MANDIANT 16

Appendix A

Inspired by:

https://gist.github.com/wumb0/9542469e3915953f7ae02d63998d2553#file-delta_patch-py

from ctypes import (windll, wintypes, c_uint64, cast, POINTER, c_ubyte,

 LittleEndianStructure, byref, c_size_t, sizeof)

import struct

import pefile

DELTA_FLAG_TYPE = c_uint64

DELTA_FLAG_NONE = 0x00000000

class DELTA_INPUT(LittleEndianStructure):

 fields = [('lpStart', wintypes.LPVOID),

 ('uSize', c_size_t),

 ('Editable', wintypes.BOOL)]

class DELTA_OUTPUT(LittleEndianStructure):

 fields = [('lpStart', wintypes.LPVOID),

 ('uSize', c_size_t)]

class ME0W_PROTOCOL(LittleEndianStructure):

 fields = [('org_size', wintypes.DWORD),

 ('data_size', wintypes.DWORD)]

 def __new__(cls, tcp_data=None):

 return cls.from_buffer_copy(tcp_data)

 def __init__(self, tcp_data=None):

 s = sizeof(ME0W_PROTOCOL)

 self.data = tcp_data[s : s + self.data_size]

Challenge 6: PetTheKitty | Flare-On 8

MANDIANT 17

ApplyDeltaB = windll.msdelta.ApplyDeltaB

ApplyDeltaB.argtypes = [DELTA_FLAG_TYPE,

 DELTA_INPUT,

 DELTA_INPUT,

 POINTER(DELTA_OUTPUT)]

ApplyDeltaB.rettype = wintypes.BOOL

DeltaFree = windll.msdelta.DeltaFree

DeltaFree.argtypes = [wintypes.LPVOID]

DeltaFree.rettype = wintypes.BOOL

gle = windll.kernel32.GetLastError

def apply_diff_to_buffer(src_buf, src_size, delta_buf, delta_size):

 ds = DELTA_INPUT()

 dd = DELTA_INPUT()

 dout = DELTA_OUTPUT()

 ds.lpStart = cast(src_buf, wintypes.LPVOID)

 ds.uSize = src_size

 ds.Editable = False

 dd.lpStart = cast(delta_buf, wintypes.LPVOID)

 dd.uSize = delta_size

 dd.Editable = False

 status = ApplyDeltaB(DELTA_FLAG_NONE, ds, dd, byref(dout))

 if status == 0:

 raise Exception(f"ApplyDeltaB failed with error {gle()}")

 tgt_buf = bytes((c_ubyte * dout.uSize).from_address(dout.lpStart))

 DeltaFree(dout.lpStart)

 return tgt_buf

Challenge 6: PetTheKitty | Flare-On 8

MANDIANT 18

if __name__ == '__main__':

 with open('first_convo.bin', 'rb') as f:

 first_convo = f.read()

 # Use the magic header as the delimiter and skip the first empty value

 comms = first_convo.split(b"ME0W")[1:]

 # comms[0] == asking for MeeooowwwMeme

 # comms[2] == asking for MeeeeeooooowwWare

 png = ME0W_PROTOCOL(comms[1])

 delta = ME0W_PROTOCOL(comms[3])

 # Apply delta and save to disk

 patched_png = apply_diff_to_buffer(

 png.data,

 png.data_size,

 delta.data,

 delta.data_size

)

 with open('patched_png.bin', 'wb') as f:

 f.write(patched_png)

Figure 14: first_convo_delta.py

Challenge 6: PetTheKitty | Flare-On 8

MANDIANT 19

Appendix B

Inspired by:

https://gist.github.com/wumb0/9542469e3915953f7ae02d63998d2553#file-delta_patch-py

from ctypes import (windll, wintypes, c_uint64, cast, POINTER, c_ubyte,

 LittleEndianStructure, byref, c_size_t, sizeof)

import struct

import pefile

DELTA_FLAG_TYPE = c_uint64

DELTA_FLAG_NONE = 0x00000000

class DELTA_INPUT(LittleEndianStructure):

 fields = [('lpStart', wintypes.LPVOID),

 ('uSize', c_size_t),

 ('Editable', wintypes.BOOL)]

class DELTA_OUTPUT(LittleEndianStructure):

 fields = [('lpStart', wintypes.LPVOID),

 ('uSize', c_size_t)]

class ME0W_PROTOCOL(LittleEndianStructure):

 fields = [('org_size', wintypes.DWORD),

 ('data_size', wintypes.DWORD)]

 def __new__(cls, tcp_data=None):

 return cls.from_buffer_copy(tcp_data)

 def __init__(self, tcp_data=None):

 s = sizeof(ME0W_PROTOCOL)

 self.data = tcp_data[s : s + self.data_size]

Challenge 6: PetTheKitty | Flare-On 8

MANDIANT 20

class BITMAPINFOHEADER(LittleEndianStructure):

 fields = [('biSize', wintypes.DWORD),

 ('biWidth', wintypes.LONG),

 ('biHeight', wintypes.LONG),

 ('biPlanes', wintypes.WORD),

 ('biBitCount', wintypes.WORD),

 ('biCompression', wintypes.DWORD),

 ('biSizeImage', wintypes.DWORD),

 ('biXPelsPerMeter', wintypes.LONG),

 ('biYPelsPerMeter', wintypes.LONG),

 ('biClrUsed', wintypes.DWORD),

 ('biClrImportant', wintypes.DWORD)]

ApplyDeltaB = windll.msdelta.ApplyDeltaB

ApplyDeltaB.argtypes = [DELTA_FLAG_TYPE,

 DELTA_INPUT,

 DELTA_INPUT,

 POINTER(DELTA_OUTPUT)]

ApplyDeltaB.rettype = wintypes.BOOL

DeltaFree = windll.msdelta.DeltaFree

DeltaFree.argtypes = [wintypes.LPVOID]

DeltaFree.rettype = wintypes.BOOL

gle = windll.kernel32.GetLastError

def apply_diff_to_buffer(src_buf, src_size, delta_buf, delta_size, org_size):

 ds = DELTA_INPUT()

 dd = DELTA_INPUT()

 dout = DELTA_OUTPUT()

 ds.lpStart = cast(src_buf, wintypes.LPVOID)

 ds.uSize = src_size

 ds.Editable = False

Challenge 6: PetTheKitty | Flare-On 8

MANDIANT 21

 dd.lpStart = cast(delta_buf, wintypes.LPVOID)

 dd.uSize = delta_size

 dd.Editable = False

 status = ApplyDeltaB(DELTA_FLAG_NONE, ds, dd, byref(dout))

 if status == 0:

 raise Exception(f"ApplyDeltaB failed with error {gle()}")

 tgt_buf = bytes((c_ubyte * org_size).from_address(dout.lpStart))

 DeltaFree(dout.lpStart)

 return tgt_buf

def get_pe_rsrc(filename, id_num):

 pe = pefile.PE(filename)

 for rsrc in pe.DIRECTORY_ENTRY_RESOURCE.entries:

 for entry in rsrc.directory.entries:

 if entry.id == id_num:

 offset = entry.directory.entries[0].data.struct.OffsetToData

 size = entry.directory.entries[0].data.struct.Size

 return pe.get_memory_mapped_image()[offset:offset+size]

 return None

if __name__ == '__main__':

 with open('second_convo.bin', 'rb') as f:

 second_convo = f.read()

 # Extract kitty BMP

 kitty_bmp = get_pe_rsrc('patched_png.bin', 102)

 bmpinfo = BITMAPINFOHEADER.from_buffer_copy(kitty_bmp)

 bmp_data = kitty_bmp[bmpinfo.biSize:]

Challenge 6: PetTheKitty | Flare-On 8

MANDIANT 22

 # Use the magic header as the delimiter and skip the first empty value

 comms = second_convo.split(b"ME0W")[1:]

 with open('reverse_shell.txt', 'wb') as f:

 # XOR key

 key = b"meoow"

 for convo in comms:

 # Apply the delta to BMP data

 delta = ME0W_PROTOCOL(convo)

 patched_data = apply_diff_to_buffer(

 bmp_data,

 bmpinfo.biHeight * bmpinfo.biWidth,

 delta.data,

 delta.data_size,

 delta.org_size

)

 # XOR decrypt the data and write to disk

 decoded_data = bytearray()

 for i in range(len(patched_data)):

 decoded_data.append(patched_data[i] ^ key[i % len(key)])

 f.write(decoded_data)

 # Print to console if we find the flag

 if b"@flare-on.com" in decoded_data:

 print(decoded_data.decode('latin1').rstrip('\x00').replace('\r',''))

Figure 15: second_convo_delta.py

Challenge 6: PetTheKitty | Flare-On 8

©2021 Mandiant Inc. All rights reserved. Mandiant is a registered trademark of Mandiant, Inc. All other
brands, products, or service names are or may be trademarks or service marks of their respective owners.

