MANDIANT

YOUR CYBERSECURITY ADVANTAGE

Flare-On Challenge 8 Solution

By Moritz Raabe

Challenge 7: spel

Challenge 7: spel

Challenge Prompt

Pro-tip: start disassembling this one then take a nice long break, you've earned it kid.

Solution

This challenge was inspired by multiple malware samples we've analyzed over the last year. It all starts with a
Windows 64-bit executable. To get the flag we need to understand and overcome various executable stages, anti-
analysis techniques, and obfuscations.

This writeup focuses on the key components and does not describe every functionality in detail. The main
analysis tools we use are FLARE VM, IDA Pro, Sysinternal Suite tools, FakeNet-NG, capa, FLOSS, and
CyberChef.

Basic Analysis

With a file size of more than 4 MB this is a larger binary with many sections, imports, resources, and strings. In
the file properties the program self-identifies as Spell FON Application (see Figure 1). Browsing through the
strings the program appears to use the Microsoft Foundation Class (MFC) library which can be used to create
applications with complex user interfaces. Malicious code can hide easily in statically linked MFC binaries which
contain a lot of MFC library functions and binary resources.

Property Value

CompanyName FLARE <3

FileDescription Spell FON Application
FileVersion 1,0,0,1
InternalName Spell

LegalCopyright Copyright (C) 2021

OriginalFilename Spell.EXE

ProductName Spell Application

Figure 1: Challenge file properties

To get a first idea of the file, we run capa on the binary. Since version 2.0 capa can identify library code and is
able to skip about 6,800 library functions (82% of all identified functions) in this binary. Library code identification
focuses the results on program-unique functionality and significantly speeds up the analysis. The capa results are
shown in Figure 2.

Challenge 7: spel

contain obfuscated stackstrings
log keystrokes via polling
section

contain a resource (.rsrc)

contain a thread local storage (.tls) section
extract resource via kernel32 functions
set environment variable

delete file

get file attributes

get file size

read .ini file

get graphical window text

get disk information
print debug messages (17 matches)
allocate RWX memory

create or open registry key (5 matches)
query or enumerate registry value (3 matches)
set registry value (3 matches)
delete registry key (2 matches)
delete registry value
link function at runtime

(11 matches)

parse PE header (8 matches)

(8 matches)

anti-analysis/obfuscation/string/stackstring

collection/keylog

executable/pe/section/rsrc

executable/pe/section/tls

executable/resource

host-interaction/environment-variable

host-interaction/file-system/delete

host-interaction/file-system/meta

host-interaction/file-system/meta

host-interaction/file-system/read

host-interaction/gui/window/get-text

host-interaction/hardware/storage

host-interaction/log/debug/write-event

host-interaction/process/inject

host-interaction/registry

host-interaction/registry

host-interaction/registry/create

host-interaction/registry/delete

host-interaction/registry/delete

linking/runtime-1linking

load-code/pe

Figure 2: capa results for the challenge binary

Challenge 7: spel

capa identifies various interesting capabilities in the program. Before we investigate these in the disassembled
file, we start the program and observe its run-time activities.

Instead of running the program in a sandbox we use FLARE VM and the included analysis tools Process Hacker,
Process Monitor, and FakeNet-NG. This enables us to easily control and change the analysis environment. After
starting the program, we see the application window shown in Figure 3.

%4 spell =Sl
&n error occurred. Please close the application and try again. -

—

Figure 3: Challenge application window

At run-time nothing extra-ordinary happens, but after closing the application window the attentive analyst notices
that the process continues to execute. If you're patient (or if your analysis environment shortcuts execution
delays) eventually the process terminates but there’s still no interesting activity observable in the dynamic
analysis tools used here.

Advanced Analysis

After loading the binary into IDA Pro, it's time to take a break. On my system the initial analysis run took almost an
hour!" Even with IDA’s library function identification there’s potentially thousands of functions to analyze and it can
be challenging to follow the execution flow of MFC applications. To find the interesting code sequences we use
one of the verbose capa output modes (-Vv or -vv) or the capa explorer IDAPython plugin.

capa leads us to the suspicious function shown in Figure 4 that allocates RWX (read, write, execute) memory,
contains a stackstring and links a function at runtime.

1
Side note: compiling the binary took almost as long.

Challenge 7: spel | Flare-On 8

, ModuleName

; dwFlags

Sorry

y, this node is too big to display

loc_140002D42: ‘ loc_14017973B:

lea rcx, [rsp+ ar__ 3 lea rcx, [rsp

call sub_140002BD0O call sub_140002BD0O
eax, [rsp+ ar_2Fo0 mov eax, d ptr

loc_140179749

Figure 4: Suspicious function identified by capa

In graph view IDA Pro shows an unusual message indicating that a node is too big to be displayed. Switching to
flat view (via the Space key) we see why. In the basic block a massive shellcode array is created byte by byte on
the stack. The data is then moved to a newly allocated RWX memory region and executed as shown in Figure 5.

]

; nndPreferred

; flProtect

s] ; hProcess
; allocate RWX memory

RWX_Memory] ; void *
; move data from stack to RWX memory
] ; execute RWX memory (shellcode)

Figure 5: Moving shellcode array from the stack to RWX memory and executing it

Using a debugger, we can break before the call to the RWX memory and then dump the memory. Alternatively,
we execute the program, suspend it, and then dump the RWX memory section at runtime. Note that the memory
is not allocated until the user closes the application window. Figure 6 shows the RWX memory in Process Hacker.

Challenge 7: spel | Flare-On 8

Base address Type Size Protect... Use e ‘ |

0x7fef5b81000 Image: Commit 4kB RX , 18003 ere.
Ox7fef2d81000 Image: Commit 212k8 RX 206221 e 858) (0. o]0
0x180001000 Private: Commit 8kB RX 00000000 €8 00 00 00 00 59 49 89 c& 48 81 c1 23 0b 00 00 YI..H..#... -
0x13fe31000 Image: Commit 3,364k RX 00000010 ba aa Sc a7 45 43 81 c0 23 ed 02 00 41 b3 05 00 ..\.EI..#...A...
0x774b1000 Image: Commit 1,032k8 RX 00000020 00 00 56 42 89 e6 48 83 e4 £0 48 83 ec 30 c7 44 ..VH..H...H..0.D
0x77351000 Image: Commit S16k8 RX 00000030 24 20 00 00 00 00 e8 05 00 00 00 48 89 £4 Se €3 § H..~.
729100 inage: ot 62018 X 30000050 50 20 55 56 57 41 54 41 55 41 56 41 57 46 ca ce P.VANIAGRVANA.1
0181000 Private: Comnit 5248 RX 00000060 24 90 48 81 ec 70 01 00 00 :5 33 ££ ¢7 :s ;§ Y *
Dx1e50000, Brivate: Copt, IBBLE RWX 00 65 00 48 &b £1 4c 89 7d £2 b3 13 9¢ bf bd L
0x11b000 Private: Commit 8kB RW+G 89 7d 8 4c 89 7d 08 45 8d 4f 65 4c 89 7d 10 D
0x7fffffde000 Private: Commit 8k RW 88 4d bc 44 88 4d a2 4c 89 7d 00 4c 89 7d £0 .L
Ox7FFFfd9000 Private: Commit 4k8 RW 89 7d 18 44 89 7d 24 44 89 7c 24 2c c7 45 dc .r
0x7feff475000 Image: Commit 8Kk8 RW 000000b0 00 6e 00 c7 45 €0 65 00 6c 00 c7 45 ed 33 00 2
Ox7Fef292000 Image: Commit 3k RW 000000c0 00 c7 45 eg 2e 00 64 00 c7 45 ec 6c 00 6c 00
DI inage: Conmt BE AW || ooeD de 6f 61 o4 < 48 24 sc de 89 62 72 o7 44 24 60 Tead DEVLADE.DY
Ox7feffoda000 Image: Commit e RW 00000020 61 72 79 41 c7 44 24 48 56 69 72 74 c7 44 24 4c aryA.D$HVirt.DsL
Ox7feffb7000 Image: Commit 48 RW 00000100 75 61 6c 41 c7 44 24 50 6c 6c 6f 63 c7 44 24 68 ualA.DsPlloc.Dsh
0x7feffo2f000 Image: Commit 8k RW 00000110 56 63 72 74 c7 44 24 6c 75 61 6c 50 c7 44 24 70 Virt.DslualP.Dsp
Ox7fefee48000 Image: Commit 12k8 RW 00000120 72 65 74 €5 66 c7 44 24 74 63 74 c7 45 a8 46 6c rotef.DStct.E.FL
0x7fefed7c000 Image: Commit sk RW 00000130 75 73 c7 45 ac 68 49 6e 73 c7 45 b0 74 72 75 63 us.E.hIns.E.truc
Ox7fefec29000 Image: Commit k8 RW 00000140 c7 45 bd 74 69 6£ 6e c7 45 be 43 61 63 68 c7 44 .E.tion.E.Cach.D
QaRRGGN | Inage: it Y8R obu0ien a5 g5 53 79 73 &7 45 o4 74 65 54 43 66 47 45 26 esge.E.cemir .
0 & 24 7 88 .eSys.E.temIf.E.
g:x:g?}?ﬁ; :::z:g::::: i‘;: Et:: 00000170 6e 66 c6 45 2 6£ C7 45 90 52 74 6c 41 C7 45 94 nf.E.0.E.RCIA.E.
00000180 64 64 46 75 c7 45 98 6e 63 74 69 7 45 9¢ 6f 6e ddFu.E.ncti.E.on
0x7fefds64000 Image: Commit 4k8 RW 00000190 54 61 66 c7 45 a0 62 6c e2 7 08 00 00 b9 1
0x7fefd861000 Image: Commit 8k RW 00000120 d9 Se 48 &b de e8 72 08 00 00 4c &b eg 48 il
ox7fefd741000 Image: Commit ak8 RW AAAAATIA dn 40 64 4C 4B a7 4T An 16 AR 10 AN 4 oa
0x7fefd2fb000 Image: Commit 4kB_RW [Re-read][Write][Goto...] 16 bytes per row
0x7fefc20c000 J 1

T

Figure 6: Viewing the RWX memory in Process Hacker

Shellcode Analysis

To see any useful strings from the shellcode we use FLOSS with the shellcode option (-s). The tool shows us
that the file contains two DOS stub strings and a couple of stackstrings including VirtualProtect,
LoadLibraryA, and FlushInstructionCache.

We disassemble the shellcode file as 64-bit code and notice the large function starting at offset 0x40. FLOSS can
export an IDAPython script to annotate extracted stackstrings or you can use our jironstrings script whose
annotations are shown in Figure 7.

; stackstring: 'Sleep’

; stackstring: 'LoadLibraryA’
; stackstring: 'VirtualAlloc'

; stackstring: 'VirtualProtect'

; stackstring: 'FlushInstructionCache’

; stackstring: 'GetNativeSystemInfo'

; stackstring: 'RtlAddFunctionTable’

B e e e S e e e S S S S S S S S S S S S

O+
'+
+
O+
O+
+
+
O+
p+
p+
+
+
p+
p+
+
+
D+
O+
+
+
O+
O+
+
)+
O+
p+
p+
)+

Figure 7: Annotated stackstrings in the function starting at shellcode file offset 0x40

This function loads a PE file into memory and executes it. The function receives the file data offset as its first
argument in the rcx register. At the beginning of the shellcode rcx is set to the current memory location via a
call/pop sequence. After adding 0xB23 rcx then points to the start of the PE file at file offset 0xB28. We extract
the file using IDA or a hex editor.

Challenge 7: spel | Flare-On 8
If you encounter files with this structure in the future there’s a good chance that they’ve been generated using
sRDI which converts DLLs to shellcode. By default, these files end with the string dave (here renamed to flare).

Intermediate DLL Analysis

The extracted PE file is a 64-bit DLL. Figure 8 shows it's disassembled D11Main function.

; BOOL _ stdcall D11Main(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID lpvReserved)
D11lMain proc near

unk_1800168F0
sub_180001FD0O
[rsp+4sh+var_18], ra
dx, aStart

, [rsp+
sub_1800027D0

=55

Figure 8: Disassembled DIlIMain function

We skip most of the details here, but in summary the first function loads the PE file located at 0x1800168FO0 (file
offset 0x14EF0) into memory and the second function resolves the loaded file’s export named Start. Before
exiting D11Main calls the resolved export. To load the binary in-memory and resolve its export this DLL uses
code from the MemoryModule project.

We again extract the embedded PE file and continue analyzing it.

Main DLL Analysis
This PE file is another 64-bit DLL. Unfortunately, we don’t see many useful strings and capa doesn’t provide
helpful results either. So, we disassemble the file.

As expected, the DLL exports one function called Start which seems to implement the main functionality. We
call this function MainFunction. Browsing through the disassembly we notice that the file uses string and API
obfuscation.

Deobfuscating Strings

The disassembly in Figure 9 shows the general string obfuscation pattern. Just before using a string, the program
creates a stackstring and XOR decodes it.

Challenge 7: spel | Flare-On 8

Figure 9: String deobfuscation pattern

Approaches to overcome this obfuscation include using the debugger or writing a decoding script for example in
IDAPython. Here we use the script shown in Figure 10 that leverages flare-emu to semi-automatically
deobfuscate strings. flare-emu integrates IDA Pro and the Unicorn emulator which is perfect for this task.

1 import idc
2 import flare emu
3

4 BASE = 0x690000

7 def get ea after xor jb(ea):

8 found xor = False
9 while True:
10 if idc.print insn mnem(ea) == "xor":
11 found_xor = True
12
13 if found xor and idc.print insn mnem(ea) == "jb":
14 return idc.next head(ea)
15
16 ea = idc.next head(ea)
17
18

19 def main():

20 # user-selected start ea, like

Challenge 7: spel

21 # mov [rbp+57h+var AC], 5F2CB53Fh
22 # mov [rsp+1DOh+var 184], 667B585Ah
23 start ea = idc.here()

24 end ea = get ea after xor jb(start ea)
25

26 # init emulator and allocate memory

27 eh = flare emu.EmuHelper ()

28 eh.allocEmuMem (0x100, BASE)

29

30 # emulate string deobfuscation code with "stack registers" set to allocated memory
31 eh.emulateRange (start ea, end ea, registers={"rbp": BASE, "rsp": BASE})
32

33 # read deobfuscated ASCII string

34 string ea = idc.get operand value(start ea, 0) + BASE
35 sl = eh.getEmuString(string ea)

36 sl = sl.decode("ascii")

37 s = sl

38

39 if len(sl) == 1:

40 # may be a UTF-16LE string

41 s2 = eh.getEmuWideString(string ea)
42 s2 = s2.decode ("utf-16le")

43 if len(s2) > 1:

44 s = s2

45

46 # annotate deobfuscated string

47 idc.set cmt(start ea, s, False)

48

49

50 if name == "' main ':

51 main ()

Figure 10: IDAPython script that uses flare-emu to deobfuscate strings

To deobfuscate a string we select the start address of the decoding sequence and run the IDAPython script. The
script automatically determines the sequence end address just after the XOR loop. flare-emu emulates the
instructions in the identified range and the script then adds the decoded string as a comment. An example result
is shown in Figure 11.

Challenge 7: spel | Flare-On 8

; ws2 32.d11

loc_180001406

Figure 11: Deobfuscated string annotation after running the IDAPython script
While an analyst needs to manually run this for all string deobfuscation sequences it's possible to extend this to
automatically decode all strings at once.

Resolving APIs

After exploring the first function call sequences, we understand that APIs are resolved via function name hashing.
The used hashing algorithm centers around the ROL and XOR instructions. Luckily the flare-ida shellcode-hashes
plugin already comes with pre-calculated hashes for this algorithm (rol17XorHash32, see Figure 12).

@ Shellcode Hash Search ? X

rol3XorEax
rol3XorHash32
rol5AddHash32
addRol5HashOncemore32
rol7AddHash32
rol7AddXor2Hash
rol7XorHash32
rol5XorHash32
rol8Xor0xBOD4D06Hash32
chAddRol8Hash32
rol9AddHash32

Options
DWORD Array Create Struct

Instr Operands
Use XOR seed

Use Decompiler if available

Cancel

Figure 12: Running the Shellcode Hashes IDAPython plugin

The script automatically recovers and annotates about 120 locations with APl hames in the disassembly and in
the decompiler view (see Figure 13). Thanks, Jay!

10

Challenge 7: spel | Flare-On 8

<ernel32.d11!FindResourceA

8C] fastcall *)(_Q char *, _ int64))ResolveApiByHas
1

dul

; kernel32.d11!SizeofResource

eApiByHash

; kernel32.d11!LoadResource 64))ResolveApiByHash(0i64
iByHash
char *))ResolveApiByHas

; kernel32.d11!LockResource

iByHash

Figure 13: Recovered and annotated shellcode hashes in the disassembly and decompiler view

Core Analysis

Next, we focus on the third function called in MainFunction. This function is called a second time at the end of
MainFunction. We name it CoreFunction. The function receives two arguments: a pointer to 0x1EO allocated
bytes and an integer.

The second argument determines the execution path taken in CoreFunction. For the first call the argument
value is 1, so we follow the respective path first. Throughout execution there’s many references to offsets into the
0x1EOQ allocated bytes. To keep track of the references we create a struct named struc_1E@h.

Among other things the first execution path sets the following offsets in the struct:
e Offset 0x1AQ: a pointer to the ASCII string d41d8cd98f00b204e9800998ecf8427¢e
e Offset 0x28: the module file path (obtained via GetModuleFileNameA)
e Offset 0x18: a pointer to data loaded from a resource with name PNG
CoreFunction then returns execution to MainFunction. The function called next receives the struct pointer

and reads the module file path from it. The function returns 1 if the module file name is equal to Spell. EXE.
Otherwise, the function returns 0.

Back in MainFunction the program sleeps for five to six minutes before calling CoreFunction a second time.
If the module file name is not Spell. EXE the second argument value is 8. Otherwise, the program uses the
value 2 defined during the first CoreFunction execution.

In CoreFunction the value 8 execution path terminates the process via the ExitProcess API. To continue
executing the program expects to be run with the file name Spell.EXE.

We rename the file accordingly and perform another basic dynamic analysis run. After closing the application
window and waiting for a couple of minutes the program sends a TCP packet with the ASCII character @ (0x40)
to inactive.flare-on.com:888.

The disassembled code sending the @ is shown in Figure 14.

1"

Challenge 7: spel

; wsock32.dll!send

ResolveApiByHash

cc‘lsumozlau

, [rl4+struc_1E@h.RecvBuffer]
; lean
; buf

3y S

1800023F1

Figure 14: Disassembly of sending @ character and receiving data

After sending data, the program stores up to 32 received bytes into struc_1E®h at offset 0x1C0. The program
then compares the received data to the strings exe, run, or flare-on. com. If the received data is equal to the
string flare-on. com, the function returns 1. Otherwise, it returns 0.

We run the program one more time and now provide the expected TCP response data. This blog post describes
how to set up a custom TCP response in FakeNet-NG. In short, we:

e Edit fakenet/configs/default.ini to enable the custom response settings via the
sample_custom_response.ini file

o Edit fakenet\configs\sample_ custom_response.ini to configure the TcpRawFile custom
response via the file flare_command.txt

o Create fakenet\configs\flare_command.txt with the custom response data flare-on.com

Figure 15 shows the edited and created configuration files in the FLARE VM setup. Alternatively, to this approach
we can use other tools like netcat or an interactive proxy to respond with arbitrary data.

12

Challenge 7: spel | Flare-On 8

[&f cAPython27\Lib\site-packag: configs\default.ini - Notepad++ [= |[& |[52|
@U"). » Computer » LocalDisk (C) » Python27 » Lib » site-packages » fakenet b configs File Edit Search View Encoding Language Settings Tools Macro Run
Plugins Window ? X
Organize ¥]| Open v Print New folder sEBEEB R LAl dhHD| e gl x| BB >
/¢ Favorites dame Date modified Type Size Eldefautni £ |
I Desktop | burpini 3/10/2021337PM Configuration sett... 2KB ZoGh © 0
L [RawTCPListener]
D load: 3/ 3:37 PM sett... 2
& Downloads 4 debug.ini 10/2021 3:37 PM Configuration sett. KB Enabled: True
I\ FLARE | defaultini 8/5/20211:02PM Configuration sett... 13KB Port: 1337
£ Recent Places | flare_command.tt 8/5/2021 1:03 PM Text Document 1KB Protocol: TCP
| Utilities 4| sample_custom_response.ini 8/5/2021 1:03 PM Configuration sett... 1KB Listener: RawListener
UseSSL: No
o Timeout: 10
ﬁr'-"’”"es Hiaden: False il
5| Documents # To read about customizing responses, see docs/Custol |
Jﬁ Music Custom: sample custom response.ini
Pfctules [&f c:\Python27\Lib\site-packages\fakenet\configs\sample_custom_respo... [= |[@ |[52 |
idecs T O Y TS o
Plugins Window ? X
h - 1 13| =
o Homegroup cHEHE B 4DDI2enelt2RE|H
18 Computer Esample_wstom_response.iniﬂl
17 LHttprnamlc: CustomProviderExample.py \E
€
‘M Network El [ExampleTCP]
20 InstanceName: RawICPListener
21 ListenerType: TCP B
22 TcpRawFile: flare command.txt
[cPython27\Lib\site-packag £ - N.. oo [0]
File Edit Search View Encoding Language Settings Tools Macro Run
Plugins Window ? X

cHEHEB LA 4D/ e | dip|l x| BEE|=>

[& flare_command bt E3 l
1 flare-on.com

Ln:1 Col:1 Sel:12|1 Windows (CRLF) UTF-8 INS

Figure 15: Configuring a custom TCP response in FakeNet-NG

Figure 16 shows the filtered Process Monitor events of this execution.

£ Process Monitor - Sysinterals: www.sysinternals.com [E=3 E=H =)

File Edit Event Filter Tools Options Help

BRI XABE|(vASG B M5

Time of Day Process Name PID Operation Result Detail

1:09:52.024... BflSpel EXE 1496 &% Thread Create SUCCESS Thread ID: 3216

1:09:52.047... BMSpell EXE 1496 A% UDP Send WIN-APNRFHLUCS6 localdomain:64121 -> WIN-APNRFHLUCGE6 localdomain:domain SUCCESS Length: 39, seqnum: 0, connid...
1:09:52.053... BMSpell EXE 1496 A%UDP Receive WIN-APNRFHLUC66 localdomain:64121 -> WIN-APNRFHLUC66 localdomain:domain SUCCESS Length: 55, seqnum: 0, connid...
1:09:52.060... BMSpell EXE 1496 ANTCP Connect WIN-APNRFHLUC66 localdomain:1309 -> 192.0.2.123:888 SUCCESS Length: 0, mss: 1460, sackopt:...
1:09:52.063... BfSpell EXE 1496 A% TCP Send WIN-APNRFHLUC66 localdomain: 1309 -> 192.0.2.123:8388 SUCCESS Length: 1, startime: 1346421, ...
1:09:52.087... BMsSpell EXE 1496 &TCP Receive ~ WIN-APNRFHLUCS6 localdomain: 1309 -> 192.0.2.123:888 SUCCESS Length: 12, seqgnum: 0, connid...
1:09:52.088... B#Spel EXE 1496 ‘RegClea‘teKey HKCU\Software\Microsoft\Spell SUCCESS Desired Access: Maximum Allo....
1:09:52.088... % Spel EXE 1496 @%RegSetValue HKCU\Software\Microsoft\Spell\1 SUCCESS Type: REG_BINARY, Length: ...
1:09:52.090... % Spell EXE 1496 @%RegSetValue HKCU\Software\Microsoft\Spell\0 SUCCESS Type: REG_BINARY, Length: ...
1:09:52.091... BMSpell EXE 1496 &% Thread Exit SUCCESS Thread ID: 2132, User Time: 0...
1:09:52.092... BMSpell EXE 1496 &% Thread Exit SUCCESS Thread ID: 3216, User Time: 0...
1:09:52.084... BMSpel EXE 1496 &% Process Exit SUCCESS Exit Status: 0, User Time: 0.04..
1:09:52.094... BfSpell EXE 1496 A% TCP Disconnect WIN-APNRFHLUCES localdomain: 1309 -> 192.0.2.123:888 SUCCESS Length: 0, seqnum: 0, connid: 0
Showing 13 of 3,630,581 events (0.00035%) Backed by virtual memory

Figure 16: Filtered Process Monitor events after sending TCP response data fLare-on. com

The program now additionally sets binary data for two registry values under
HKEY_CURRENT_USER\Software\Microsoft\Spell\ (see Figure 17).

13

Challenge 7: spel | Flare-On 8

@ Registry Editor E@@
File Edit View Favorites Help
"1 SideShow “ || Name Type Data
Speech REG_SZ (value not set)

Spell REG_BINARY 8097 4 90 88 df f7 be f7 f0 6 65 bd ed 8e 8 bl Se cd 70 f1 &4 73 00

. J
SQMClient
QMClient)1 REG_BINARY ec71 e867 71 b2 ae 73 b7 1d €5 76 00
SystemCertific

VisualStudio

WAB

wfs

Windbg

Windows

Windows Mail | =

Windows Med

, Windows NT

-1 Windows Sean

Windows Sidel

Wisp

< I » < Ll »

-

Computer\HKEY_CURRENT_USER\Software\Microsoft\Spell

Figure 17: Registry Editor showing the created registry values

In IDA Pro we determine that there’s one function that uses the RegSetValueExA API2. This function is called
twice in the program. We name the function SetRegistryValue. SetRegistryValue takes four arguments: a
struc_1E®h pointer, a data pointer, the data size, and the value name pointer.

Recovering Registry Value 1
CoreFunction calls SetRegistryValue to set the registry value 1. The written registry data is stored in
struc_1E®h and XORed with a globally defined key.

After browsing to the global address of the XOR key, we use IDA’s export dialog (Shift + E) to export the data as a
hex string (see Figure 18).

2
| recommend using the ApplyCalleeType plugin to get function prototype annotations for obfuscated API calls.

14

Challenge 7: spel | Flare-On 8

xmmword_180015170 xmmword

D Export data X

jata to dipboard

5 14 9F C1 1D 99 7E 8A 1B 00 00 00 00

Line:1 Column:1

Qutput file expor

Figure 18: Exporting the XOR key as hex string

Using CyberChef we XOR the HKEY_CURRENT_USER\Software\Microsoft\Spell\1 data with the
extracted key. Figure 19 shows the resulting output flare-on. com.

Recipe S BN Input
EC 71 E8 67 71 B2 AE 73 B7 1D ES5 76 60
From Hex
Delimiter
Auto
XOR

8A 1D 89 15 14 9F C1 1D 99 7E 8A 1B HEX ~

Scheme

Standard I:] Null preserving

Output

flare-on.com.

Figure 19: XOR decoding the registry data (1) using CyberChef

Recovering Registry Value 0

The function shown in Figure 20 contains a large switch case statement and then calls SetRegistryValue to
set HKEY_CURRENT_USER\Software\Microsoft\Spell\0.

15

Challenge 7: spel | Flare-On 8

Figure 20: Graph overview of function setting registry value 0

The function first initializes the registry data it writes with globally defined bytes. The function then XORs the data
byte-wise with values obtained from struc_1E®h. An annotated disassembly of this is shown in Figure 21.

Figure 21: Data initialization and byte-wise XOR before setting the registry data

We follow the same steps as above to export the XOR key and use CyberChef to decode the
HKEY_CURRENT_USER\Software\Microsoft\Spell\0 data. Figure 22 shows the results of this.

16

Challenge 7: spel | Flare-On 8

. o length: &3 total: 2
Recipe S] Input lires: 2 loaded: 2
80 97 C4 906 88 DF F7 BE F7 F@ E6 65 BD ED 8E C9 B1 9E CD 7@ F1 E4 73
From Hex
Delimiter
Auto
XOR

Ke

E2 A4 B7 A7 D7 AC 87 8D 9B 9C 85 @D D8.. HEX~

Scheme

Standard [J Null preserving

Output

b3s7_sp3llcheck3r_ev3rg

Figure 22: XOR decoding the registry data (0) using CyberChef

We combine both decoded registry values and obtain the challenge flag:
b3s7 sp3llcheck3r ev3r@flare-on.com.

Following the solution approach provided here we were able to skip over a bunch of details in the program. If you
got lost and would like to learn more please contact the challenge author directly, for example on Twitter.

17

Challenge 7: spel | Flare-On 8

©2021 Mandiant Inc. All rights reserved. Mandiant is a registered trademark of Mandiant, Inc. All other
brands, products, or service names are or may be trademarks or service marks of their respective owners. M A N D I A N T

