
1

Developing Global
Multiplayer Games
Using Cloud Spanner
Yoojeong Choi and Paul Hyung Yuel Kim

2

Contents
Gaming industry Introduction 3

Common challenges of making a successful game 5

Gaming workload components 6

Database options for game platform services 9

How Spanner addresses the architectural complexity 10

 Scalability 10

 Integration with analytics 11

 High availability 11

 External strong consistency 11

 Productivity 12

 Security 12

Recommended Spanner adoption process 13

 Enablement 13

 Schema design 14

 Generate randomized value for primary key 14

 Define interleaved tables across frequently joined tables 14

 Conversion & migration 15

 Load test & pre-warming 15

 Game launch 17

Use case examples 18

 References 19

Other useful links 19

33

Gaming industry
introduction
Like any industry, the gaming industry also consists of
multiple parties. At the broadest level, entities involved in
gaming are 1. Game Developer (aka Game Studio) 2. Game
Publisher 3. First-Party 4. Third-Party and 5. Second-Party.

Game Studio is a company that designs and creates game
titles. Much like film, games can be developed by small
teams (Indie games) or by hundreds of people spread across
international geography with multiple studios with budgets
comparable to that of Hollywood films (AAA games).

Game Publishers provide services to Game Studio such as
funding, marketing, distribution, public relations, and more.
Publishers have long been mandatory to release games due
to the high entry barrier but modern digital distributions and
additional ways of funding (ex. Crowdfunding) is blurring the
line between Game Studios and Publishers.

First-Party publishers are companies with deep pockets
such as Microsoft for Xbox and Sony for Playstation. Third-
party companies develop and publish games without being
tied to a particular platform such as Xbox. Activision Blizzard,
Electronic Arts, Square Enix, Capcom, and Ubisoft are the
well known third-parties in the western market. With the
Rise of PC and Mobile gaming, new mega Game Developers/
Publishers have emerged in the Asian market such as NCSoft,
Nexon, Netmarble, Krafton, Tencent Games, and more.
Lastly, second-party is an informal term frequently used
to refer to third-party developers with platform exclusive
commitments/contracts.

3

4

Traditionally, publishers held a stronger position as they had the budget, and market
pipelines. With the advent of digital distribution and the blurring of platforms
(Console vs general consumer devices) with the rise of Android/iOS and Play/App
Store, Studios are gaining more power with the increased importance of mega games
such as AAA titles. Adding to this complexity is IP (intellectual property) deals
(Disney, Marvel Studios, etc.) added to the game title series.

New trends such as 5G/Edge Computing on Gaming and Game Streaming (Stadia,
XBox Cloud Gaming, Netflix Gaming) are expected to further shift the relationship
between various entities in the gaming industry.

From the computing requirements perspective, gaming genres (Action, Action-
adventure, Role-playing/MMORPG, Simulation, Strategy, Sports, Puzzle, etc.) can be
considered from 3 dimensions. Light vs Heavy compute bound, global networking
for an engaging multiplayer experience with global players, and scalability. Most
of the AAA games require DGS (dedicated game server) for providing a consistent
world state for immersive gaming experience and are therefore highly compute
bound. Gaming titles often take years to make and a ton of investment. Game players
expect global community co-play experience (multiplay) as a mandatory for most of
the modern game titles and therefore DGS is the single most important bottleneck
from the scalability perspective. The success of the game depends on how well it can
scale from thousands to millions of players in the first few weeks if it becomes a hit.
To summarize, it’s important to make sure DGS computing needs are met with high
performance machines, global network connectivity is satisfied with low latency
from major cities where the players are located, and achieve game scalability through
flexible architecture designs as well as securing adequate capacity for both organic
and sudden demand using Cloud provider infrastructure such as GCP.

5

Common challenges of
making a successful game
There are many challenges involved with launching a successful game in the current entertainment industry landscape.

Players expect not only compelling games but a myriad of online features such as friend lists, leaderboards, periodic
quests, multiple multiplayer modes, seasonal content add-ons, tournaments, e-sports, and much much more. Studios
invest enormous resources into developing games, often for more than 2 years for AAA grade games and capital
ranging in the two to three digit millions. To prevent re-inventing the wheel for every title, common components are
aggregated into a separate Game Platform Services, often unique combinations per gaming companies. There is an
active effort within the industry to commoditize such services. Some notable OSS solutions are Agones, Open Match,
Quilkin, and Open Saves.

All that investment and time relies on the successful game launch as any hiccups during the initial opening of the
game are often non-recoverable as the players don’t come back and the hype of the anticipation quickly fades away.
The ability to scale from handling thousands to millions of players on the day of the launch is what Google Cloud
can help to achieve with unprecedented ease via solutions such as Cloud Spanner and scale at which Google Cloud
operates globally.

Successful game launch requires elements such as Play Store ads with favorable rankings & ratings, reviews on popular
games channels for promoting and generating excitement, just like the film industry. In order to provide personalized
marketing and increase player retention, Game Analytics solutions are an essential part of any significant gaming
workloads. Data driven marketing helps create and keep the momentum of the game launch.

Let’s take a closer look into each of those component stacks and their requirements & challenges.

1 https://en.wikipedia.org/wiki/AAA_(video_game_industry)

5

https://github.com/googleforgames/agones
https://github.com/googleforgames/open-match/blob/main/docs/development.md
https://github.com/googleforgames/quilkin
https://github.com/googleforgames/open-saves
https://cloud.google.com/spanner
https://cloud.google.com/about/locations
https://en.wikipedia.org/wiki/AAA_(video_game_industry)

6

Gaming workload components

Player Profile, Leaderboards, Game Chat and other services are provided from Game Platform Services while Game state is
maintained on Dedicated Game Servers and Database.

Game Analytics stacks are often designed with both streaming and batch processing mode to provide personalized
gaming experiences in semi-realtime (ex. Marketing events such as discounted game items) as well as game player
trends for the game developers to continuously evolve the game for better gaming experiences.

2 https://cloud.google.com/architecture/cloud-game-infrastructure
3 https://cloud.google.com/architecture/mobile-gaming-analysis-telemetry

Frontend Backend

Game Platform Services Analytics Stack

Dedicated Game Servers Game Database

Fine-grained Course-grainedGame State

Mobile Game Client

PC/Laptop Game Client

Console / Handheld Game Client

2

Cloud Pub/Sub
Asynchronous

messaging

Cloud BigQuery
Analytics engine

Cloud Storage
Raw log storage

Cloud Dataprep
Visual data preperation

App Engine
Application

data

Cloud Dataflow
Parallel data processing

Real-time
events

Batch load

Google Data Studio
Visual analytics
& dashboarding

Co-workers

Google Sheets

Partner BI Tools

3

1 2 3

4 5

6 7 8

9

St
re

am
in

g
pi

pe
lin

e

Streaming pipeline

Batch pipeline

Ba
tc

h
pi

pe
lin

e

https://cloud.google.com/architecture/cloud-game-infrastructure
https://cloud.google.com/architecture/mobile-gaming-analysis-telemetry

7

4 https://cloud.google.com/spanner
5 https://cloud.google.com/pubsub
6 https://cloud.google.com/dataflow
7 https://cloud.google.com/dataprep
8 https://cloud.google.com/bigquery
9 https://cloud.google.com/looker

To support the various success elements for a game launch, it requires server backends. Some examples of the server
backends are DGS (dedicated game servers) and Platform Services such as Matchmaking Servers, Chat and Messaging
Servers, Leaderboard Services, Analytics for detecting bad actors as well as creating personalized services, and much more.
If the game launch goes viral as everyone hopes, the backend servers need to be scaled seamlessly to 100 or 1000 times
the initial size in a matter of hours.

Player Profiles Services: Players expect cross-device experience where they can freely move between the devices they
own with a single consistent view of data including saved games, profiles, and various other data. Global single source of
truth for player data is needed that can be accessed at a reasonable latency such as milliseconds range. Both RDBMS and
NoSQL are good candidates for this as long as the network fabric can support the latency requirements. Spanner is a great
solution that can meet the consistency requirements as well as the scalability requirements for all game sizes with a strong
security foundation.

Micro Payments Model: Game business model has made a significant shift in the last few years as they started
supporting free-to-play model where players can download and play the game for free with the ability to make IAP (In App
Purchases) such as weapons, outfits, and game items by purchasing game currency such as coins. This requires a highly
consistent datastore that supports transactions with full ACID properties that can also scale heavily should the game
succeed at the initial launch. Again, Spanner is a great match for this component.

Analytics: To support the Micro Payments Model, game companies need to maximize the long-tail revenue to realize the
full revenue potential. This requires collecting and analyzing a large number of metrics about player behavior patterns,
game items, purchase history, favorite game contents and more. Analytics will provide insights on how to keep the game
relevant by creating personalized game experiences. Streaming data pipelines that can process the semi-realtime EDW
requirements are needed to realize the required insights at the various levels mentioned above. Pub/Sub5, Dataflow6,
Dataprep7, BigQuery8, and Looker9 are often used for dataflow, EDW, and intelligence solutions.

https://cloud.google.com/spanner
https://cloud.google.com/pubsub
https://cloud.google.com/dataflow
https://cloud.google.com/dataprep
https://cloud.google.com/bigquery
https://cloud.google.com/looker

8

Leaderboards and Rankings: Players expect online communities
for competitive game play experience. Leaderboards are evolving
from a single global list to personalized leaderboards with friends and
clan rankings. Therefore, the leaderboards require sorting in multiple
keys with high performance. This is a simple solution to implement
on memory DB such as Cloud Memorystore10 using write-through
architecture for attaining the high update throughput requirements.

Game-State Authority: Players expect real-time interactions with other
players with low latency for online multiplayer experience. This requires
DGS to host synchronous network connections with game clients to
collect game events in order to maintain consistent game world states.
Since the update happens multiple times per second (aka Game Tick
Rate), highly accessed data is kept in memory to maintain the world state.
Game Studios understand the risk of the lack of HA design but focus on
performance to provide the best experience for players for genres such
as MMORPG. Google offers a secure and customizable Compute Engine11
that can meet the requirements of any kind of DGS.

Other notable components include Authorization/Log-in Services,
In-Game notification systems, Game Client error log collector,
Matchmaking Services, etc. Adoption of container orchestration
systems such as GKE12 is on the rise to manage the myriad of components
through a common platform to reduce operational burden.

Also, security is the common requirement for all of the components
such as encryption in-transit and at-rest. Special techniques may be used
such as adding authentication tokens to each ‘application level’ message
packet, byte offset matching (DPI13-lite) for network layer security, and
more. Such techniques require implementation at both the game client
and backend. Backend can have multi-tier architecture to offload the
security processing such as proxy based solutions.

10 https://cloud.google.com/memorystore
11 https://cloud.google.com/compute
12 https://cloud.google.com/kubernetes-engine
13 https://en.wikipedia.org/wiki/Deep-packet_inspection

https://cloud.google.com/memorystore
https://cloud.google.com/compute
https://cloud.google.com/kubernetes-engine
https://en.wikipedia.org/wiki/Deep-packet_inspection

9

Database options
for game platform
services
The biggest requirement for online games is consistent predictable
database performance with scale. Unlike, say, web applications
that consist largely of high number of read operations vs few
writes, game DB backend needs to handle both high number of
write requests and reads as the game state changes constantly
with every player interaction. In order to obtain both read and
write scalability, non relational choices that sacrifice ACID over
distributed, eventual consistency models have been embraced.
Gaming workloads typically have a mixture of NoSQL and RDBMS
to attain scalability while maintaining strict consistency on
gaming data selectively. On GCP, Datastore, Firestore, and Bigtable
options can be considered for NoSQL depending on the unique
requirements of the game such as mobile first or cross platform
support requirements. When it comes to RDBMS on GCP, nothing
matches Spanner in terms of offering both scalability and global
consistency via the interface that we’re all familiar with, SQL.

10

How Spanner addresses the
architectural complexity
NoSQL typically lacks the features on transactions and advanced querying. To overcome this limitation, dispersing data
over both NoSQL and RDBMS can be considered. However, this adds complexity to maintaining a single source of truth.
Spanner offers a unique opportunity to simplify this as it’s the only option that offers both scalability, consistency, security,
as well as high availability from a single database solution.

Scalability

Games are notoriously difficult to predict with regards to traffic demand. Depending on the success of the game, scaling
requirements can easily cross into millions of concurrent users in a matter of days or even hours. Sharded MySQL databases
are predominantly used for database scaling use cases where transactions are needed, increasing operational expense due
to the manual nature of sharding MySQL databases. The goal of the Spanner development was to create a data storage
service for those applications that have complex, evolving schemas, or those that want strong consistency with wide area
replication requirements. Spanner is able to scale to arbitrarily large database sizes and operations per second, supporting
well known Google applications such as Gmail, GCS and AdWords. In addition, regular/predictable fluctuations in traffic
can be satisfied by scaling the spanner nodes via api calls. Un-anticipated traffic demand can be addressed via Autoscaler
tool for Cloud Spanner, an open source tool that can scale up or down spanner nodes based on cpu utilization metrics and
help control costs. Spanner decouples compute from data storage which makes it possible to scale the pool of processing
resources separately from the underlying storage. This means that horizontal upscaling is possible for achieving higher
performance on dimensions such as operations per second for both reads and writes. With Spanner, customers don’t need
to concern themselves with read replicas and sharding anymore and consider scalability over read, write, and compute
dimensions separately. For example, compute power can scale separately from storage for compute intensive operations
such as random number generation. Storage can also grow separately without requiring a matching increase in compute
resources. Other scaling concerns, such as maintaining low latency for requests originating from multiple continents, multi
regional Spanner instances can satisfy the requirements.

10

https://cloud.google.com/architecture/autoscaling-cloud-spanner
https://cloud.google.com/architecture/autoscaling-cloud-spanner

11

Integration with analytics

Throughout the full game life cycle after launch, data engineers want to build and
maintain data pipelines as well as a matching analytic system in order to obtain
various KPIs and insights. ETLing or real time streaming ingestion is done by
integrating several solutions (Dataflow, Data fusion, Datastream etc.). Such solutions
can get complex very quickly depending on the number and variety of data sources
and relevant business logics. BigQuery federation query from Spanner can simplify
these pipelines to ingest dataset into BigQuery and enable easy exploration before
building complete pipelines in real time manner.

High availability

Unplanned game downtimes are the single most dangerous threat to destroying the
longevity of game titles. That’s why game companies seek highly available backend
databases to minimize game service interruption in case of unplanned failures. Cloud
Spanner delivers industry-leading 99.999% availability for multi-regional instances—
10x less downtime than four nines—and provides transparent, synchronous
replication across both regional and multi-regional configurations. This multi-region
configuration can also meet Disaster Recovery requirements from regulation or
compliance perspectives. In addition, Spanner is a fully-managed service with
automatic no-downtime patches and upgrades, even schema changes are applied to
Spanner without downtime.

External strong consistency

Most games need to provide Leaderboards that should return consistent ranking at
any given time across the game players all over the world. The periodic rank update
operation can be simplified by delegating the relevant query to Spanner and keeping
the results on memory DB such as Memorystore for fast lookups. Spanner can provide
accurate rank query results as it can always serve strongly consistent reads based on
the unique power of TrueTime that doesn’t need any multi-phase consensus protocols
or additional locks. Strongly consistent reads are default which means that there’s no
additional required work from the game developers to achieve this. Of course, Cloud
Spanner also provides ‘global bounded-staleness reads’ with TrueTime when required.

11

https://www.google.com/url?q=https://cloud.google.com/dataflow&sa=D&source=docs&ust=1634825337758000&usg=AOvVaw2Qb4OZ4EEqVWm7zSF65jRz
https://www.google.com/url?q=https://cloud.google.com/data-fusion&sa=D&source=docs&ust=1634825352189000&usg=AOvVaw3L2iShF3ytvrovAm8lnn3I
https://www.google.com/url?q=https://cloud.google.com/datastream/&sa=D&source=docs&ust=1634825364838000&usg=AOvVaw3RhDwPqFa3GgU_8gADczPu
https://cloud.google.com/spanner/docs/timestamp-bounds

12

Productivity

Generally speaking, NoSQL recommends schema denormalization
to avoid table joins and to cover diverse access patterns. This adds
complexity for games as schema changes are inevitable after the
game launch and periodic updates are mandatory to meet the end
users’ requirements through the entire game life cycle. In that case,
it’s painful to change schemas due to data redistribution operation
which requires enduring a long game downtime. Contrary to this
limitation, Spanner supports relational semantics like ANSI SQL
and schema (no need to denormalize) and enables easy updates
to your game service databases online. ANSI SQL can shorten the
learning curve for developers and DBAs. In addition, ORM support
can also reduce development time. Another common constraint
that frequently requires a lot of work from developers are strongly
consistent reads with secondary indexes in distributed databases
that require application retry logic with cushioning techniques such
as exponential backoff algorithms. Spanner supports read-on-write,
strongly consistent reads without any additional work/code from
the developers.

Security

Spanner has compliance certifications which game services
might need depending on the regional jurisdiction, like PCI, SoC
compliance, and FedRamp. In addition, VPC-SC support, Audit
Logging including not only admin jobs but also user activities (DML,
DDL, even Query) and Access transparency which is where GCP
really differentiates itself that if a GCP person or SRE has to touch
your data for whatever reason, it can be tracked and logged which
can increase your game database’s security level even further.

https://cloud.google.com/vpc-service-controls/docs/supported-products#table_spanner

13

Recommended Spanner
adoption process

Enablement

Most engineers in the gaming industry are still much more familiar with relational databases like MySQL, PostgreSQL
and SQL Server and so forth over NoSQL technologies. Even though Spanner supports relational semantics, the first
and most important step for accelerated Spanner adoption is to get acquainted with the differences compared to
traditional relational DB with emphasis on the distributed architecture. It is recommended that the development team
start evaluating Spanner at the earliest stages of the game development lifecycle to avoid investing in undifferentiated
work. Cross team collaboration between the DBA and the dev team needs to happen early on to prevent re-inventing
the wheel.

Enablement Conversion & migration Load test & pre-warming Game launch

13

14

Schema design

Most gaming workload data flows are based on individual player activity, which means that data access paths are based on
game end user id (e.g. player id). Hence, the most important thing for increasing performance is choosing the right primary
keys to prevent hotspots.

In addition, each game user related information needs to be clustered as much as possible to query the required data
at once with only a small I/O overhead. For instance, player profile, guild and achievement information are mostly
queried together.

Interleaved tables Sample query

+ Parent Table

 + Child Table 1

 + Grandchild Table 1

 + Grandchild Table 2

 + Grandchild Table 3

 + Child Table 2

→ Key: player_id

SELECT ….

FROM `Parent Table` a

JOIN `Child Table 1` ui

 ON a.player_id = ui.player_id

JOIN `Grandchild Table 1` us

 ON a.player_id = us.player_id

WHERE …...

Define interleaved tables across frequently joined tables

Generate randomized value for primary key

Sample Go code to generate randomized INT64 value

func RandomInt64() int64 {
 val, _ := rand.Int(rand.Reader, big.NewInt(int64(math.MaxInt64)))
 return val.Int64()
}

Sample Node.js code to generate version 4 UUID

import { v4 as uuidv4 } from ‘uuid’;
uuidv4(); // ⇨ ‘9b1deb4d-3b7d-4bad-9bdd-2b0d7b3dcb6d’

15

Load test & pre-warming

Spanner is a distributed database that divides your data into
chunks called splits. Until meeting the target performance
requirements such as throughput and latency, continuous
load testing and optimizations need to be conducted. Query
statistics give insights into which queries put heavy load on
your database. After figuring out the major slow queries,
visualized query execution plans indicate which execution step
takes a long time and consumes much CPU and which steps
returns many rows. (Figure1. Sample query execution plan)
This information enables you to tune slow queries intuitively
with ease. Additionally, Transaction statistics and Lock statistics
help you find out the cause of the slow running transactions
regarding the write workloads.

To secure the minimum required throughput on the launch day,
Spanner needs to be in a warm state with enough splits already
balanced across all of the nodes via pre-warming the database.

14 https://www.striim.com/

Conversion & migration

The ANSI SQL and Schema support of Spanner allows
customers to easily convert existing Relational DB schemas
as well as relevant queries compared to efforts required
for converting from relational to NoSQL. It is proven that
several gaming customers completed this conversion in
about 2~3 weeks. In addition, an evaluation and migration
open source tool, Harbourbridge can accelerate the
conversion from MySQL and PostgreSQL to Spanner. If
zero downtime data migration is required for business
continuity, serverless replication service, Datastream as well
as 3rd party CDC and data stream solutions like Striim14 can
enable you to minimize the downtime during the cutover.

https://cloud.google.com/spanner/docs/schema-and-data-model#database-splits
https://cloud.google.com/spanner/docs/introspection/query-statistics
https://cloud.google.com/spanner/docs/introspection/query-statistics
https://cloud.google.com/spanner/docs/query-execution-plans
https://cloud.google.com/spanner/docs/introspection/transaction-statistics
https://cloud.google.com/spanner/docs/introspection/lock-statistics
https://cloud.google.com/architecture/best-practices-cloud-spanner-gaming-database#pre-warm_the_database_before_launch
https://www.striim.com/
https://github.com/cloudspannerecosystem/harbourbridge

16

Figure 1. Sample query execution plan

(Please refer to the Tuning a
query using the query plan
visualizer for more detail)

https://cloud.google.com/spanner/docs/tune-query-with-visualizer
https://cloud.google.com/spanner/docs/tune-query-with-visualizer
https://cloud.google.com/spanner/docs/tune-query-with-visualizer

17

Game launch

Launching new games requires specific activities at specific
times of the game development stages such as Architecture
Review, Load Testing, Capacity & Quota assessment, Risks
and Issues tracking, War Room, escalation procedures,
and much more to ensure a smooth game success. GCP
Professional Services Organization (PSO) can help these
processes through specifically designed programs such as
Game Title Launch Assist and Event Management Service
(EMS). These programs are designed to partner the right GCP
professional resources such as Consultants and SREs to gain
a deep understanding of the game and provide architectural
and scaling guidance for the launch event.

This graph is from a real world case with a big game launch through pre-warming. After the peak traffic on the launch day,
the number of nodes could be decreased for optimization as the traffic from the opening hype went down.

Figure 2. Flexible Spanner Node Count through game life cycle

Game LaunchWarming up

18

Use case examples

Use case requirements
for gaming workload

How Spanner addresses
these requirements

Online Read/Write Scalability Spanner scales out/in without downtime to deal with unpredictable game
workload, not only Read but also Write.

Zero downtime for
continuous game service

Online Schema change and no maintenance downtime keep game DB alive.

Capability to cover
diverse access patterns

Strong consistent secondary indexes support any access pattern without
additional apps. code as opposed to other NoSQL DB with eventual consistency.

Development productivity ORM (Hibernate/Spring Data/ Django (Beta)) support, OSS JDBC driver and local
emulator help increase programming productivity. In addition, Operation suites
and OpenCensus integration enable easy monitoring and introspection.

Minimize RTO, RPO Spanner Point-in-time Recovery can recover old versions of data from any point-
in-time within retention (1 hour~7 days) immediately without bringing up the old
version whole DB.

Audit Logging to meet
regulatory

Spanner Audit logging supports any changes on game DB including admin
activity as well as Data Read/Write. Cloud Logging can sink Audit logs into
BigQuery for easy access, cost-effective long-term archiving and analysis.

Unlimited scale Limitless scale from GBs to PBs; Trillions of rows and millions of columns; Linear
scalability; Separately scale compute and storage;

Business-critical reliability Availability SLA of 99.99% with replication across multiple zones and 99.999%
with replication across regions; Automatic failover in case of a zonal failure; Proven
track record of powering core Google services

Easy to manage Fully managed service

https://cloud.google.com/products/operations
https://cloud.google.com/spanner/docs/pitr
https://cloud.google.com/logging

19

References

• Using Memorystore for Redis as a game leaderboard
[Tutorial, Github]

• Cloud Spanner Emulator [Blog, Github]

• Spanner Client libraries [Java (Tutorial), Go (Tutorial),
Node.js (Tutorial), Python (Tutorial), PHP (Tutorial),
Ruby (Tutorial), C# (Tutorial), C++ (Tutorial)]

• Spanner JDBC Drivers [Google’s OSS (Tutorial - Recommended),
Simba (Tutorial)]

• ORMs [Spring Data, Hibernate ORM, Django]

Other useful links
Spanner Schema design best practices

Cloud Spanner Ecosystem - An open source community for Cloud Spanner

Best Practices for using Spanner as a gaming database

How Pokémon Go scales to millions of requests with Cloud Spanner - Video

How Vimeo uses Cloud Spanner - Video

https://cloud.google.com/architecture/using-memorystore-for-redis-as-a-leaderboard
https://github.com/GoogleCloudPlatform/memstore-gaming-leaderboard
https://medium.com/google-cloud/cloud-spanner-emulator-bf12d141c12
https://github.com/GoogleCloudPlatform/cloud-spanner-emulator
https://googleapis.dev/java/google-cloud-clients/0.119.0-alpha/com/google/cloud/spanner/package-summary.html
https://cloud.google.com/spanner/docs/getting-started/java
https://pkg.go.dev/cloud.google.com/go/spanner
https://cloud.google.com/spanner/docs/getting-started/go
https://googleapis.dev/nodejs/spanner/latest/
https://cloud.google.com/spanner/docs/getting-started/nodejs
https://googleapis.dev/python/spanner/latest/index.html
https://cloud.google.com/spanner/docs/getting-started/python
https://googleapis.github.io/google-cloud-php/#/docs/google-cloud/v0.171.0/spanner/readme
https://www.google.com/url?q=https://cloud.google.com/spanner/docs/getting-started/php&sa=D&source=docs&ust=1634825869851000&usg=AOvVaw2h290mZP9F25PDkb68JlWC
https://googleapis.dev/ruby/google-cloud-spanner/latest/Google/Cloud/Spanner.html
https://cloud.google.com/spanner/docs/getting-started/ruby
https://cloud.google.com/dotnet/docs/reference/Google.Cloud.Spanner.Data/latest/Google.Cloud.Spanner.Data
https://cloud.google.com/spanner/docs/getting-started/csharp
https://github.com/googleapis/google-cloud-cpp
https://cloud.google.com/spanner/docs/getting-started/cpp
https://github.com/googleapis/java-spanner-jdbc
https://cloud.google.com/spanner/docs/use-oss-jdbc
https://cloud.google.com/spanner/docs/partners/drivers
https://www.google.com/url?q=https://cloud.google.com/spanner/docs/adding-spring&sa=D&source=docs&ust=1634826012133000&usg=AOvVaw2Sy2TDfDy0LZkIgj3vIQRO
https://cloud.google.com/spanner/docs/use-hibernate
https://github.com/googleapis/python-spanner-django/
https://cloud.google.com/spanner/docs/schema-design
https://www.cloudspannerecosystem.dev/
https://cloud.google.com/architecture/best-practices-cloud-spanner-gaming-database
https://www.youtube.com/watch?v=YG7GXjZ8En4
https://www.youtube.com/watch?v=ggpAUgEL2iE&t=4s

