
Forecasting
The Value
Of DevOps
Transformations

Measuring ROI of DevOps

Copyright © DORA, March 2017 DevOps–Research.com

Introduction

Copyright © DORA, March 2017 Forecasting The Value of DevOps Transformations

Traditionally, IT has been viewed as a cost center and, as such,
was expected to justify its costs and return on investment (ROI)
up front. However, IT done right is a value driver and innova-
tion engine. Companies that fail to leverage the transformative,
value-generating power of IT risk being disrupted by those who
do. What has been missing is an analytical, data-driven frame-
work to forecast the value and justify investment in DevOps
transformations. This white paper helps to fill that gap. While
the methodology is not exhaustive, it does outline important
considerations.1

Using key metrics from the 2016 State of DevOps Report2 and
industry averages, we will forecast the value of implementing
DevOps practices for High, Medium, and Low IT Perform-
ers—important characterizations that are described in this
report. We will also show how you can use these metrics to
calculate your productivity and estimate the potential ROI of
your transformation initiative by increasing your capabilities
and improving your IT performance.

The information presented is particularly well-suited for
technology leaders and executives and/or finance partners to
help drive technology transformation within an organization.
You should be able to make a strong business case for under-
taking a technology transformation by quantifying the costs
and returns possible, using your own numbers and the indus-
try benchmarks provided. This guide also provides insight into
the gains possible as you continually improve and progress. If
you are a Low or Medium Performer, take note of the bench-
marks set by the High Performers, and be aware that the
industry is improving every year. If you aren’t improving, you
will be left behind. If you are a High Performer, see how you
compare to other High Performers and strive to continually
improve and raise the bar, noting that we report the median
benchmarks, and the industry continues to improve year over
year, particularly among High Performers.3

01

IT as a Value Driver and Innovation Engine

Companies that fail
to leverage the
value-generating
power of IT risk being
disrupted by those
who do.

High IT
Performers

Medium IT
Performers

Low IT
Performers

Realize the highest benefits
from superior software
delivery, such as low unnec-
essary rework and high
employee satisfaction.

Have the most to gain by
burning down technical
debt and optimizing for
speed and value over cost.

Have the most opportuni-
ties for improvement by
addressing low-hanging
fruit and setting measur-
able goals.

SOFTWARE DEVELOPMENT
SPEED AND STABILITY

Copyright © DORA, March 2017 Forecasting The Value of DevOps Transformations

02Table of Contents

Introduction: IT as a Value Driver and Innovation Engine.

IT and Organizational Performance. .

What Makes up ROI?. .

 Value-Driven Categories .

 Cost-Driven Categories .

Calculating Return Using Value and Cost. .

 Value Calculations. .

 Value Gained from Unnecessary Rework Avoided per Year

 Potential Value Added from Reinvestment in New Features

 Cost Savings Calculations. .

 Cost of Downtime per Year. .

 Adding it All Together. .

Demonstrating Return on Investment .

 Payback Period. .

 Profitability. .

Conclusion: Technology Transformation Pays Off .

Authors .

About DORA. .

Acknowledgments & References. .

01

03

05

05

06

07

07

08

14

19

19

23

25

26

27

28

29

30

31

Copyright © DORA, March 2017 Forecasting The Value of DevOps Transformations

03

IT and Organizational Performance

The State of DevOps Reports, coauthored by DORA,
classify technical patterns of software development
and delivery teams along the dimensions important
to the core disciplines of DevOps. These include
agility (or throughput) of development and reliability
for operations. We captured agility by measuring
how often code was deployed and how long it took
code to be deployed. We also captured reliability by
measuring mean time to restore service (MTTR) and
change failure rate (i.e., how often changes to code
or infrastructure need to be rolled back or hotfixed).

These measures were selected for several key reasons.
Measures of agility capture the goals of developers
well, and help to emphasize the importance of
moving fast to deliver features to customers.
Similarly, measures of reliability capture the goals of
IT operations well, and help to emphasize the
importance of reliable code and infrastructure The
advantage of using both approaches is that these
measures are in tension with one another, keeping
teams from “gaming” the metrics, and providing a
good holistic view of the overall ability of the team to
develop and deliver software.

Statistical analysis shows that teams fall into distinct
groups based on these measures: High, Medium,
and Low IT Performers. (More detailed information
can be found in the 2016 State of DevOps Report,
but basic information is outlined in Table 1.a) High

Performers show high achievement in terms of both
throughput and stability, demonstrating good
performance in software development and delivery
without tradeoffs. That is, they apply principles and
practices that enable them to improve both through-
put and stability in tandem.

One important note about IT performance: Each team
in an organization is on its own journey. Therefore,
different teams within a single organization can—
and often do—have different IT performance
profiles. By identifying where your own team falls,
you can see where you are in your own journey for
continuous improvement and set goals for the
future. In the context of this ROI exercise, you can
use these IT performance profiles for data points
from industry benchmarks if you do not have the
data easily available within your own team or your
own organization. For example, later in the report
we will use percentage of unnecessary work in
calculations of waste. If you don’t have those num-
bers readily available for your own engineers, you
can use the industry benchmarks provided and
select the one based on the IT performance profile
that best fits your current technical performance.
However, we point out that there can be wide
variation in these measurements and teams may
vary greatly from these benchmarks; therefore, we
strongly encourage teams to provide their own
measurements.

a In addition to the 2016 report, we strongly recommend readers refer to the 2014 and 2015 State of DevOps Reports, which contain additional infor-
 mation and guidance on IT and organizational performance, and the technical, managerial, and cultural practices important for improvement work.

CHANGE FAIL RATE
For the primary application or service you
work on, what percentage of changes result
in degraded service or subsequently require
remediation (e.g., lead to service impairment,
service outage, require a hotfix, rollback,
fix forward, patch)?

0 - 15% 31 - 45% 16 - 30%

04

Statistics from the 2016 State of DevOps Report

DEPLOYMENT FREQUENCY
For the primary application or service you
work on, how often does your organization
deploy code?

LEAD TIME FOR CHANGESb

For the primary application or service you work
on, what is your lead time for changes (i.e., how
long does it take to go from code commit to
code successfully running in production)?

On demand
(multiple deploys

per day)

Copyright © DORA, March 2017 Forecasting The Value of DevOps Transformations

b We focus on the point of time from code commit to code deploy because the point when changes are introduced into version control represents
the dividing point between different parts of the value stream.

The first phase of work includes design and development and is akin to Lean Product Development. It is highly variable and uncertain, often requiring
creativity and work that may never be performed again, resulting in highly variable process times.

In contrast, the second phase of work, which includes testing and operations, is akin to Lean Manufacturing. It too requires creativity and expertise,
but we expect testing and operations to be predictable, fast and mechanistic, with the goal of achieving work outputs with minimized variability (e.g.,
short and predictable lead times, near zero defects).
c Low IT Performers were lower on average (at a statistically significant level), but had the same median as Medium Performers.
d Our research doesn't conclusively account for why this is observed, but there may be an explanation, which is supported by other data: Low
Performers spend more time on new work and less time on rework when compared to Medium Performers. We believe this greater amount of new
work could be occurring at the expense of ignoring critical rework, thus racking up technical debt.

This would match scenarios where Low Performers see short-term efficiencies by ignoring technical debt, but at some point (as they start to mature
and progress), they have to pay for their shortcuts. These inefficiencies are paid for as Low Performers undergo technology transformations, becoming
Medium Performers. These Medium Performers then deal with greater complexity and resulting failure rates in their systems.

High IT
Performer

Between once
per week and once

per month

Medium IT
Performer

Between once
per month and once

every six months

Less than
one hour

Between
one week and

one month

Between
one month and

six months

Low IT
Performer

MEAN TIME TO RESTORE (MTTR)
For the primary application or service you
work on, how long does it generally take
to restore service when a service incident
occurs (e.g., unplanned outage, service
impairment)?

Less than
one hour

Less than
one day

Less than
one dayc

TABLE 1

High IT Performers were superior in all four measures at statistically significant levels. They deployed code most
often and in the fastest cycles, and had the shortest MTTR when they did have failures, which were also the lowest.

Medium IT Performers were middle-of-the-road on most of the measures at a statistical level, lower than
the High Performers group and higher than the Low Performers group. Change fail rate is the exceptiond.

Low IT Performers were inferior in three of the four measures at statistically significant levels. They deployed code
the least often and took the longest to release. They report the longest MTTR on average, but report a change fail rate
lower than Medium Performers.

IT and Organizational Performance

05

Copyright © DORA, March 2017 Forecasting The Value of DevOps Transformations

What Makes up ROI?

When organizations and technology leaders evaluate
whether to undertake a technology transformation
initiative with a focus on continuous improvement,
they often ask about the return on investment. This
exercise requires two sequences of numbers:

 THE INVESTMENT, or how much money and
 resources (converted to a dollar amount)
 will be devoted to the technology, process,
 training, and cultural improvements

 THE RETURN, or how much money and
 resources can be expected from their
 investment

While this white paper focuses on calculating the
return aspect of ROI, remember to include costs
beyond the technology acquisition in your invest-
ment calculations. Important considerations include
training, lost productivity from learning and integrat-
ing a new technology or way of working, long-term
maintenance costs, and any lost time spent re-archi-
tecting and replacing existing systems. Which costs
are included in these investments will depend on
the team and the organization, and where they are
in their journey.

When calculating return, organizations have two
categories of costs and resources they should
always consider. The first is value-driven; the second
is cost-driven.

Value-Driven Categories

High-performance organizations have demonstrated
that a value-driven approach should take priority (or
at least have equal importance with cost-reduction
efforts), with a strong appreciation for market pressures
and the ability to respond to those pressures—such
as customer demands, the availability of new
technologies, and competitor pressure—quickly and
reliably, and without requiring heroics from their
technology teams. Visionary technical leaders
understand this and are notably optimizing for speed
over cost, which is a significant shift in mindset (a
strategy cited by DevOps leader Courtney Kissler4).

Value lost can include opportunity cost or the
resources you are currently spending on non–val-
ue-added work (such as unnecessary rework and
manual testing) but which you could be spending on
value-added work (such as new features or addition-
al automated testing).

Value lost from postponing new products or
features is also a key concern, but is often skipped
because it is difficult to estimate. This lost value can
include the revenue and customers that an organi-
zation does not earn, but would have, if it had
released software more quickly. This can be thought
of as an opportunity cost, or cost of delay: the costs
incurred from not releasing features in a timely
manner.

06

Copyright © DORA, March 2017 Forecasting The Value of DevOps Transformations

The ability to more rapidly discover and deliver value
to customers and your top line is a key benefit of the
lean / agile paradigm, and is a true competitive
advantage that remains relevant year over year and
quarter over quarter. Furthermore, just because
something is difficult to estimate doesn’t mean it
shouldn't be done. A high level of precision is not
required in order to calculate return on investment,
and we show how to calculate useful values for this
number later on.

Cost-Driven Categories

In a cost-driven approach, the focus is on cost savings
and efficiencies realized by implementing DevOps—
for example, time savings from implementing a
technology, time and cost savings from automating
manual processes, etc. Cost savings, such as time
and efficiency-based savings, are easy to identify
and are often the only category used when justifying
investments in IT. These can include the cost of
downtime and the cost of manual vs. automated
work. These savings can be achieved by adopting
lean practices and continually improving your work
to achieve efficiencies, such as eliminating sources
of waste and unnecessary rework. Lean thinking is a
strong foundation for improved economics and ROI
arguments. However, considering these expenses
exclusively is insufficient and rarely yields systemic,
long-term gains—efficiencies that are realized in
year one “no longer count” beyond year two as the
organization adjusts to a new baseline of costs and
performance. Worse, only focusing on cost savings
signals to technical staff that they will be automated
out of a job rather than being liberated from drudge
work to better drive business growth, which has ad-
ditional negative effects on morale and productivity.

What Makes up ROI?

In 2008, AOL was struggling with installs
that were taking longer and longer to
deploy to production. Gene Kim was
working with Eric Passmore, who was the
Senior Vice President of Global Engineer-
ing at AOL at the time. Gene says of the
project, “It took [months] for the ops team
to update the Linux kernel from 2.4 to 2.6,
and the Dev teams required the multi-
threading support that the 2.6 kernel
provided. For the company, the absence
of multi-threading support was as
debilitating to the company as a code
freeze.” In other words, the development
team had completed the new software
features, but customers couldn’t use it or
get value from it until Ops finished the
kernel upgrade.

Gene and Eric realized this was much
more than a Dev or Ops problem – the
delay of getting software functionality to
customers was a business problem. This
translated into real money lost for the
business.

By improving the software development
and delivery process, Eric and his team
were able to improve deployment time
from six hours to 45 minutes, removing
bottlenecks in the process to allow AOL
to deliver features and value to the
customer faster5.

EXAMPLE

07

Copyright © DORA, March 2017 Forecasting The Value of DevOps Transformations

Calculating Return Using Value and Cost

Let’s see how ROI calculations break down in terms
of both value and savings, keeping in mind that all
costs that a business avoids are considered returns
to the business.

We used conservative estimates for these calculations.
Your numbers may be higher or lower based on your
specific circumstances. We present the complete
methodology for the calculations so you can calculate
return using your own numbers. We also supply
industry benchmarks and estimates to help you fill
in any numbers you may not have on hand.

Value Calculations

The best, most innovative companies undertake their
technology transformations with an eye to the value
they can deliver to their customers and the business
in addition to the cost savings and efficiencies they
can realize. However, many companies focus only
on cost savings, because the concept is generally
well-understood and commonly used to justify
investments in technology.

“By installing a rampant innovation culture,
we performed 165 experiments in the
peak three months of tax season. Our
business result? Conversion rate [in our
customer acquisition funnel] is up 50%.
Employee result? Everyone loves it,
because their new ideas can make it to
market.”
—Scott Cook, Founder Intuit6

EXAMPLE

 Costs avoided by a business are
 considered returns because any
changes in costs and revenue are compared to a
starting budget, which acts as a baseline for
comparison. For example, if the baseline budget has
accounted for $100 million in expenses for the year in
IT spend, but through technology improvement initiatives
that spend is reduced to $80 million, there is now an
“additional” $20 million available that was not previously
planned for. Therefore, this additional $20 million is a
return to the business.

KEY IDEA

08

Copyright © DORA, March 2017 Forecasting The Value of DevOps Transformations

Value Gained from Unnecessary
Rework Avoided per Year

The amount of time, and therefore money, spent
and lost on unnecessary rework each year is a
significant hit to productivity and the technical
economy8. And yet, many organizations overlook
this cost. All costs avoided represent returns to
the business and can generate significant value.
Because unnecessary rework represents work that
can be avoided through improved processes, some
organizations calculate gains in efficiency simply as
cost savings. However, we point out that these cost
savings are only realized if costs are fully avoided;
that is, a reduction in workforce equivalent to the
accumulated time savings. However, we strongly
recommend organizations do not adopt this strate-
gy, which has a negative impact on morale and
organizational culture, can reduce efficiencies, and
even incentivize workers to not improve their work
processes. Because hiring and retention in the
technical sector is a serious challenge right now,
companies can instead recoup this time and reinvest
it in the business, essentially getting “free” head-
count. Retaining and training existing talent is more
cost-effective, preserves institutional knowledge,
and gives organizations an advantage by having a
strong technical workforce that is engaged and
continuing to learn.

While a focus on cost savings is a good first step, it is
not sufficient on its own. Cost savings can have good
impacts early, but provide diminishing returns in
future years. In addition, treating cost savings as
valuable in and of itself is shortsighted. Pioneering
companies that use technology to win in the market
focus on value: They reinvest the returns they see
from these savings to discover new customers and
increase the value they deliver to existing customers.
By leveraging superior software development and
delivery capabilities, they are able to continuously
deliver valuable new products and features, delight-
ing customers, employees and investors.

We include two types of value in our calculations of
return. The first is the value gained from reducing
inefficiencies in work. This comes from continuous
improvement initiatives, where teams reduce waste
and increase efficiency. Many organizations catego-
rize this type of improvement work as cost savings,
but we make the case for this to be a value calcula-
tion instead. The second type of value included in
our calculations of return is the value gained from
new development work that contributes to revenue.
These are discussed in detail below.

Calculating Return Using Value and Cost

Pioneering companies that
use technology to win in the
market focus on value.

e A study by the Center for American Progress found that the typical cost of turnover is 21% of an employee’s annual salary.
 https://www.americanprogress.org/wp-content/uploads/2012/11/CostofTurnover.pdf

 Recognize the value of labor hours
 recovered by reducing inefficiencies.
Organizations are essentially getting additional capacity
without having to recruit and hire – just by improving
processes. Our research also shows that improving
DevOps practices leads to higher employee satisfaction
and employees in high-performing teams were 2.2x
more likely to recommend their organization as a great
place to work. This is a huge win where current compe-
tition for technical talent is fierce and costs of turnover
far outstrip costs of retaining talent.e

09

Copyright © DORA, March 2017 Forecasting The Value of DevOps Transformations

By retaining your workforce and utilizing the time
recovered by decreasing inefficiencies, organizations
gain value through additional manpower hours.
Therefore, we categorize this as the value gained
from unnecessary rework avoided, and accumulate
it per year. While the exact steps undertaken to
improve processes and become more efficient will
differ for each organization and even each team,
using lean thinking and continuous improvement
can enable teams to reduce waste and achieve
efficiencies.

Calculating Return Using Value and Cost

Retaining existing talent is more
cost-effective, preserves institutional
knowledge, and gives organizations

an advantage by having a strong
technical workforce that is engaged

and continuing to learn.

EXAMPLE

"[In the beginning], we brought prices
down, down, down, so they are now
essentially commodities. [Now…] to
succeed in the business, we had to move
in a direction of adding other value to the
relationship with our clients."
—Charles Schwab7

KEY IDEA

To calculate Value Gained from Unnecessary Rework Avoided per Year, we use the following equation:

10

Copyright © DORA, March 2017 Forecasting The Value of DevOps Transformations

Technical Staff Size
Organizations should include the total number of
technical employees they have, since unnecessary
rework affects everyone along the value chain, from
development, QA, and test, all the way to opera-
tions. For illustrative purposes, we use the following
groups for different-sized organizations:

 For large organizations whose primary
 business relies on software largely created
 in-house (e.g., financial services), we
 estimate 8,500 technical employees.

 For medium to large technical
 organizations, we estimate 2,000
 technical employees.

 For small to medium businesses and
 non-technical enterprises, we estimate
 250 technical employees.

Of course, when calculating the cost of unnecessary
rework for your own organization, you should use
the number of technical staff involved in software
development and delivery at your company.

Average Salary
According to a 2015 report by Incapsula, the overall
median salary for DevOps professionals is $105,600.9
While this number increases for larger teams and
varies based on geographic location and cost of
living, we use this number in our calculations. When
performing the calculations for your own purposes,
use a typical salary appropriate for the technical
staff in your organization.

Benefits Multiplier
Employee benefits such as insurance, vacation, and
retirement cost money beyond base salary. While
we have seen benefits multipliers range from 30% to
110% of salary costs (resulting in a benefits multipli-
er of 1.3 to 2.1), we use a conservative 1.5 multiplier
for our calculations.

Percentage of Time Spent on
Unnecessary Rework
For our purposes, we reference the reported
percentage of time spent on unnecessary rework, on
average, reported by 2016 State of DevOps survey
respondents. This number represents the amount of
time spent on non-value-added work – labor hours
that are essentially wasted through inefficiencies.

Calculating Return Using Value and Cost

Technical
Staff Size

Cost of
Unnecessary

Rework
Avoided
per Year

X X XAverage
Salary

Benefits
Multiplier

Percentage of
Time Spent on
Unnecessary

Rework

=

11

Copyright © DORA, March 2017 Forecasting The Value of DevOps Transformations

see this pattern quite often: The journey from Low
to High Performer involves the hard work necessary
to catch up on the tech debt accumulated in the past
and get to a point where you are catching defects
early and often. Note that Medium Performers are
still deploying more frequently and pushing code
through the pipeline faster, and are doing it more
reliably than Low Performers.

For Low IT Performers, the amount of
unnecessary rework reported by the industry

is 27%. Subtracting the 20% goal, gives us 7% to use
in our calculations. In all of these estimates of
unnecessary rework, Low Performers are most likely
to have immature and unreliable measurement
practices, and therefore have less visibility into how
much time they are spending on unnecessary
rework. Therefore, we suggest this estimate may be
low because Low Performers just don’t realize how
much time they are wasting. Based on the reported
number, Low Performers spend more time on
unnecessary rework than High Performers but less
than Medium Performers. We believe this is because
Low Performers are overwhelmed with the total
amount of work at hand, or they may not care to
keep up with the unplanned, reactionary work and
may disregard it in favor of shipping new code at
any cost. This is often the case when the business
prioritizes new features and functions in order to
gain a strategic position in the market, but this
strategy is not sustainable. In fact, we see in our data
that Low Performers spend approximately 40% of
their time on new work— that’s more time spent on
new work than Medium Performers. While doing
new work and delivering new features is good,
ignoring defects and unnecessary rework is a losing
strategy in the long run— technical debt adds up,
increasing the costs of maintaining existing systems
and reducing the rate at which new functionality can
be delivered.f

Of course, not all unnecessary rework can be
eliminated but teams should set goals to continu-
ously improve on unnecessary rework. We suggest a
goal of 20%, based on two sources. First, research
reports that between 19% and 40% of code is
reworked prior to final release10. Second, our own
research in the 2016 State of DevOps Report finds
that High Performers report 21% unnecessary
rework. Therefore, 20% unnecessary rework
appears to be a goal in line with the best perfor-
mance studied.

For High IT Performers, the amount of
unnecessary rework reported is 21%.

Because we believe that even High Performers have
improvements to make in their work and should be
continuously striving for progress, we use the 1%
difference between reported rework and goal in our
calculations. However, teams working on more static
projects, such as mature project maintenance, may
set more aggressive goals for unnecessary rework.
While there is always some unplanned work to be
done, catching errors early and having fast feedback
loops helps to minimize this for High Performers.
The best news here? By catching errors early, this
group is also able to spend the most time on new
work compared to all groups, reporting approxi-
mately 50% of their time spent on new work, such as
design, new features, and new patch deployments.

For Medium IT Performers, the amount of
unplanned rework reported by the industry is

32%. Subtracting the 20% goal gives us 12% for our
calculations. Medium Performers may not have the
level of automated tests and other mechanisms in
place to catch many defects as early as the High
Performers, so they spend more time on unneces-
sary rework. Medium Performers report spending
the least amount of time on new work (approxi-
mately 35%), likely because they are doing the hard
work of cleaning up their technical debt. In fact, we

Calculating Return Using Value and Cost

f This post by Greger Wikstrand outlines how technical debt adds up over time and decreases throughput.
 http://www.gregerwikstrand.com/technical-debt-reduction/

The 2016 State of DevOps Report found:

12

Copyright © DORA, March 2017 Forecasting The Value of DevOps Transformations

Calculating Return Using Value and Cost

High IT Performers spend 50% less time on unnecessary rework than
Medium and Low Performers.

High IT Performers spend 66% more time on new work than their
lower-performing peers.

Low IT Performers were inferior in three of the four measures at
statistically significant levels. They deployed code the least often and
took the longest to release. They report the longest MTTR on average,
but report a change fail rate lower than Medium Performers.

Using the formula and inputs given above provides the following estimates for cost of unnecessary rework per year:

13

Copyright © DORA, March 2017 Forecasting The Value of DevOps Transformations

Calculating Return Using Value and Cost

LARGE ORGANIZATION
that relies on in-house software
(8,500 technical staff)

8,500 staff x
$105,000 salary x
1.5 benefits x
1% rework
= $13.4M

8,500 staff x
$105,000 salary x
1.5 benefits x
12% rework
= $160.7M

8,500 staff x
$105,000 salary x
1.5 benefits x
7% rework
= $93.7M

High IT
Performer

Medium IT
Performer

Low IT
Performer

MEDIUM TO LARGE
TECHNICAL ORGANIZATION
(2,000 technical staff)

2,000 staff x
$105,000 salary x
1.5 benefits x
1% rework
= $3.2M

2,000 staff x
$105,000 salary x
1.5 benefits x
12% rework
= $37.8M

2,000 staff x
$105,000 salary x
1.5 benefits x
7% rework
= $22.1M

Yearly Returns Possible from Cost of Unnecessary Rework AvoidedTABLE 2

SMALL TO MEDIUM BUSINESSES
AND NON-TECHNICAL ENTERPRISES
(250 technical staff)

250 staff x
$105,000 salary x
1.5 benefits x
1% rework
= $393.8K

250 staff x
$105,000 salary x
1.5 benefits x
12% rework
= $4.7M

250 staff x
$105,000 salary x
1.5 benefits x
7% rework
= $2.8M

Technical
Staff Size

Average
Salary

Benefits
Multiplier

Percentage of
Time Spent on
Unnecessary

Rework

Cost of
Unnecessary

Rework Avoided
per Year

=X X X

 Leverage time recovered from
 reducing inefficiencies, and turn
that into value by using it to generate revenue
through new features for your customers.

14

Copyright © DORA, March 2017 Forecasting The Value of DevOps Transformations

While the Low Performers see lower yearly costs of
unnecessary rework, this likely comes at a cost of
letting technical debt accumulate. If true, this
strategy will create problems in the future. In
addition, Medium and Low Performers have greater
unpredictability in their software development and
delivery environments when compared to High
Performers, which creates uncertainty. Managing
this uncertainty translates into far greater overhead
and unnecessary rework downstream that they are
unable to foresee.

Undergoing a technical transformation with an eye
toward continuous improvement in terms of build-
ing quality into the product results in a reduction of
unnecessary rework and its associated costs. This is
a waste-reduction strategy, and a key goal of the
technical practices of continuous delivery. Note that
these costs, if avoided, represent significant returns
to the business. A reduction in these costs will be
categorized as returns in our calculations shown in
Table 2. Organizations may choose to realize these
costs through headcount reduction, however
adopting this strategy will have negative implications
for morale and the gains cannot be utilized to create
value; indeed, often the best people to make contri-
butions and innovations to your product and
technical environment are those who are already
experts in it.

Similar business value calculations can be done for
other improvement initiatives, such as automation,
by using the percentage of time recovered through
automation efforts across several initiatives, such as
testing, infrastructure, workflow, and compliance.
We don’t include these calculations in our analysis
because there are not yet good estimates of the
savings and value available through automation
improvement initiatives, but you should consider
including these in your own calculations.

Calculating Return Using Value and Cost

Potential Value Added from
Reinvestment in New Features

While more difficult to forecast, lost revenue is just
as important to consider when calculating savings
and efficiency returns from technology investments,
if not more so. These lost opportunity costs, if
avoided, have the potential to continue adding value
to your product and your portfolio year over year
and catapult you over your competitors. The best
organizations understand this, and include the value
of technology transformation in their ROI calcula-
tions. However, since this concept is tricky to
estimate and communicate, we have provided a
framework to help you quantify it here. We use the
ongoing value realized from delivering features to
customers as our proxy. By delivering customer
value, we hope to create the conditions to generate
revenue or create our desired business value.

While delivering new features to customers brings
revenue, not all features are winners: Only about
one-third of well-designed, well-researched features
in mature products deliver top-line value to organi-
zations. The statistics are considerably worse for
new products and business models11. Therefore, we
see high performing companies such as Amazon
leverage their ability to deploy frequently to run
experiments in production. They do this so they can
avoid building and maintaining features that don’t
deliver value. For our calculations, we base the
revenue potential of new features on the current
revenue of the business. This revenue potential
represents potential return to the business from
embarking on a technology transformation.

KEY IDEA

g Additional time may be recovered from the elimination of other types of non-value-add time, such as coordination time, transaction time, and
 queueing time. We do not include these categories because industry benchmarks were not available. Activities such as Value Stream Mapping can
 help teams identify and eliminate these inefficiencies.

Time Recovered and Reinvested
in New Features
This is captured as the percentage of time recovered
from reduction in unnecessary rework and reinvest-
ed in new features.g Frequency of experiments
(below) assumes that all of a team’s time is spent
working on and delivering new features. While that
may be possible for a new dedicated team, this
analysis will focus on the gains possible through a
technology transformation initiative and therefore
only the portion of time that is recovered through
improvement. This is an estimate, and each team’s
results may vary depending on their organizational
and technical maturity.

We use the same methodology as above to estimate
the amount of time that can be recovered by
improving inefficiencies and use our stated goal of
20% rework.

These particular gains in value are only possible
when the efficiencies realized from reduction in

unnecessary rework are reinvested in the business.
That is, by allowing your technology professionals to
take their newly discovered free time and use it for
work that is devoted to features that have the
potential to create revenue for the business. If, for
example, this recovered time is spent on work such
as documenting processes or automating tests, the
organization still benefits from the additional labor
hours recovered (accounted for above), but it does
not have the potential to realize revenue.

For this number, we also refer to the 2016 State of
DevOps industry benchmark data.

 High Performers are able to reduce un-
 necessary rework, and therefore redirect
 their efforts to value-add work, by 1%.
 (Reporting 21% originally, this group can
 realize a 1% increase in value-add work by
 redirecting technical staff’s efforts to value
 add work by hitting the suggested goal of
 20% of time spent on unnecessary rework.)

We calculate Potential Value Added from Reinvestment using the following equation:

[WHERE]

Revenue Generating Features equals

=

Idea
Impact

X
Time Recovered
and Reinvested
in New Features

Potential
Revenue from
Reinvestment

Revenue
Generating

Features

X X XX
Frequency of

Experiments per
Line of Business)))))(((((Lines of

Business in the
Organization

Idea
Success

Rate

Product
Business

Size

15

Copyright © DORA, March 2017 Forecasting The Value of DevOps Transformations

Calculating Return Using Value and Cost

16

Copyright © DORA, March 2017 Forecasting The Value of DevOps Transformations

 Medium Performers are able to redirect
 their efforts to value-add work by 12%. (This
 group reported 32% of their time spent on
 unnecessary rework; aiming for a goal of
 20%, the difference is 12% of technical
 staff’s time that can now be spent on
 value-add work.)

 Low Performers are able to redirect
 their efforts to value-add work by 7%.
 (This group reported 27% of their time
 spent on unnecessary rework; by reducing
 their unnecessary rework to 20%, they
 recover 7% of their time for value-add
 activities.)

Frequency of Experiments
The ability of an organization to test out features on
customers through A/B tests or through other kinds
of user research, both quantitative and qualitative, is
a huge benefit to organizations seeking an objective
test. However, this feedback from customers is
much harder for software products if the team
cannot deploy code regularly. That is, deployment
frequency creates a constraint to their ability to
experiment and test features with customers.
Conservatively, we suggest an experiment frequency
of one experiment per week per line of business,
because this is the locus of experiments in organiza-
tions for this calculation. We refer to the 2016 State
of DevOps industry benchmark data to verify if it is
possible for each group:

 High Performers are able to deploy code on
 demand, or multiple deploys per day.
 Therefore, an experiment frequency of twice
 per day (or 730 times per year) is achievable.
 This is the number we use for our calculation.

 Medium Performers deploy between once
 per week and once per month. For this
 group, we use the high end of these two
 durations for experiments, or once every
 month, for our calculation.

Calculating Return Using Value and Cost

 Low Performers deploy between once per
 month and once every six months. For this
 group, we use the high end of these two
 durations for experiments, or once every six
 months, for our calculation.

Lines of Business in the Organization
Organizations create and deploy software in strate-
gic business units, or lines of business. Every line of
business has a core software product or service that
allows it to serve its customers. This core software
product or service is the locus of experimentation in
organizations. Large technology organizations have
more products (which support lines of business),
and therefore can run more experiments. There is a
high amount of variability in how many lines of
business each organization has, depending on
industry and company structure. While you should
insert your own numbers, for illustrative purposes,
we use the following numbers for different-sized
organizations:

 For large organizations whose primary
 business relies on software largely created
 in-house (e.g., financial services) with an
 estimated 8,500 technical employees, we
 assume 20 lines of business.

 For medium to large technical
 organizations with an estimated 2,000
 technical employees, we assume 8 lines of
 business.

 For small to medium businesses and
 non-technical enterprises, with an
 estimated 250 technical employees, we
 assume 1 line of business.

17

Copyright © DORA, March 2017 Forecasting The Value of DevOps Transformations

Idea Success Rate
While the time spent on innovation and value-added
work is generally a win to organizations, and definitely
time better spent than unnecessary rework, not every
piece of work will generate revenue. Numerous
experiments have shown that only one-third of well-
designed features improve key metrics,12 so we use
this in our calculations. Note that this metric applies
to products with a strong, existing user base—for
new products, the odds of building something that
delivers value to the business may be considerably
lower. Because this estimate may be optimistic for
your context, use rates that accurately represent
your environment.

Idea Impact
Each idea or feature has the potential to contribute
to our bottom line. For our calculations, we assume
that each successful idea or feature contributes an
average of 1% to revenueh based on conversations
with industry experts working on established web
software properties that are undergoing incremen-
tal feature improvements and not significant chang-
es. You will want to base your idea conversion on
rates seen in your own products.

Product Portfolio Business Size
For many organizations, the revenue potential of
new features is a function of the current revenue of
the current product or business. We perform these
calculations for a product portfolio with $100M in
revenue.

Calculating Return Using Value and Cost

h In reality, this will be a distribution of percentages, where some ideas contribute 0.01% to revenue, while other ideas contribute 200% to revenue.
 For our calculations, we use 1% as an average contribution to revenue across all ideas.

While difficult to forecast,
lost revenue is important to

consider when calculating savings
and efficiency returns from

technology investments.

Based on the formula and inputs above, we summarize the potential value added to the business by recovering
time lost in unnecessary rework and reinvesting it in value-add activities (see Table 3). This can also be thought
of as value lost from the business by not improving work processes and reinvesting in new features each year,
as the best and most innovative companies do.

18

Copyright © DORA, March 2017 Forecasting The Value of DevOps Transformations

Calculating Return Using Value and Cost

LARGE ORGANIZATION
that relies on in-house software
(8,500 technical staff)

1% time recovered x
730 experiments/year x
20 lines of business x
1/3 success rate x
1% idea impact x
$100M product business
= $48.7M return

12% time recovered x
12 experiments/year x
20 lines of business x
1/3 success rate x
1% idea impact x
$100M product business
= $9.6M return

7% time recovered x
2 experiments/year x
20 lines of business x
1/3 success rate x
1% idea impact x
$100M product business
= $933K return

High IT
Performer

$100M Product Portfolio
Business Size

Medium IT
Performer

Low IT
Performer

Potential Value Added from Reinvestment in New Features iTABLE 3

i These numbers may seem high for organizations not used to estimating returns based on value. We urge readers to consider current revenues
 and extrapolate potential returns from this; the results may surprise you.
j Bessemer Venture Partners’ 2016 study shows this type of growth is possible: higher revenue multiples are achieved in cloud companies with
 faster revenue growth, an indication of high IT performance. http://www.slideshare.net/ByronDeeter/bessemers-10-laws-of-cloud-computing

MEDIUM TO LARGE
TECHNICAL ORGANIZATION
(2,000 technical staff)

1% time recovered x
730 experiments/year x
8 lines of business x
1/3 success rate x
1% idea impact x
$100M product business
= $19.5M return

12% time recovered x
12 experiments/year x
8 lines of business x
1/3 success rate x
1% idea impact x
$100M product business
= $3.8M return

7% time recovered x
2 experiments/year x
8 lines of business x
1/3 success rate x
1% idea impact x
$100M product business
= $373K return

SMALL TO MEDIUM BUSINESSES
AND NON-TECHNICAL ENTERPRISES
(250 technical staff)

1% time recovered x
730 experiments/year x
1 line of business x
1/3 success rate x
1% idea impact x
$100M product business
= $2.4M return

12% time recovered x
12 experiments/year x
1 line of business
1/3 success rate x
1% idea impact x
$100M product business
= $480K return

7% time recovered x
2 experiments/year x
1 line of business
1/3 success rate x
1% idea impact x
$100M product business
= $47K return

Potential
Revenue from
Reinvestment

=
Time Recovered
and Reinvested
in New Features

Revenue
Generating

Features
X

Idea
ImpactX X

Frequency of
Experiments per
Line of Business)))(((X))(X(Lines of

Business in the
Organization

Idea
Success

Rate

Product
Business

Size

19

Copyright © DORA, March 2017 Forecasting The Value of DevOps Transformations

Calculating Return Using Value and Cost

Cost Savings Calculations

Savings calculations start with cost savings from
time and effort avoided. From a business stand-
point, any costs that are planned or usual expenses
that are then avoided represent returns to the
organization. That is, even though it is not new
money coming into the business, it is categorized as
such. We will highlight this throughout the report.

 Find a way to estimate outage costs,
 because when these are avoided,
they can represent savings to a business. This
section provides an example.

Cost of Downtime per Year

Application and infrastructure downtime carries
significant costs, with a recent report by Steven Elliot
and the IDC team suggesting yearly downtime costs
can range from $1.25 to $2.5 billion dollars for a
Fortune 1000 firm13. Downtime costs are highly
variable depending on the nature of the business,
with high-volume financial transaction businesses
seeing much higher costs of downtime than a small
brick and mortar business that simply maintains a
web presence to notify customers of its operating
hours. In addition, the ability to recover from an
outage depends on the architecture. While we
provide these calculations as an example, we
strongly suggest that you calculate these costs with
your own composite costs and IT architecture in
mind.

Downtime numbers highlight the importance of a
team’s ability to restore service quickly and (as much
as possible), avoid failure in the first place by
designing resilient systems. An elimination or
reduction in downtime costs represents returns to
the business. This section identifies the amount of
downtime that High, Medium, and Low IT Perform-
ers may be able to avoid each year.

Any costs that are planned
or expenses that are then
avoided represent returns
to an organization.

KEY IDEA

and easy to identify which addition caused an outage
if there is one. We can also continue to strengthen
and support the underlying infrastructure as we go,
seeing how the small additions affect the tower.
Infrequent releases are like adding a giant ball of
hundreds of Jenga pieces, glued together, on top of
your Jenga tower. That tower is much more likely to
topple from that single large addition, and now you
must figure out which piece or pieces in that ball of
Jenga additions caused the outage.

Change Fail Rate
Every change introduced into production has a
chance of causing a failure, incident, or service
degradation. These interruptions in service must be
addressed by the team, and have the potential to
lead to larger outages. We refer to the 2016 State of
DevOps industry benchmarks for these statistics, but
suggest you use your own if they are available:

 High Performers report 0% to 15%
 of changes result in a degraded
 service or require remediation.
 For our calculation we will use the
 average of these two numbers: 7.5%.

 Medium Performers report 31% to
 45% of changes result in a degraded
 service or require remediation.
 For our calculation we will use the
 average of these two numbers: 38%.

Deployment Frequency
The frequency with which a team deploys will affect
how often it has a chance to introduce changes that
can cause an incident. However, remember that less
frequent deployments result in releasing much larger,
more complex bundles of code into your production
environment, making integration and support of that
new code challenging and identification of any failures
increasingly difficult.

We refer to our 2016 State of DevOps industry
benchmarks for these statistics:

 High Performers are able to deploy on
 demand or multiple deploys per day. For
 this calculation, we will code this as 2
 deploys per day, or 730 deploys per year.
 While two deploys per day may seem high,
 Etsy reports 80+ deploys per day and Netflix
 and Amazon deploy thousands of times per
 day, making our estimate quite conservative.

 Medium Performers deploy between once
 per week and once per month. For this
 calculation we use the average of these two,
 or 32 deploys per year.

 Low Performers deploy between once per
 month and once every six months. For this
 calculation we again used the average of the
 two, or 7 deploys per year.

Imagine your code base and infrastructure as a Jenga
tower. Frequent releases are like adding a single
Jenga piece onto the tower. It is manageable to support

To calculate Cost of Downtime per Year, we use the following equation:

20

Copyright © DORA, March 2017 Forecasting The Value of DevOps Transformations

Calculating Return Using Value and Cost

X X
Change

Fail Rate
Percentage

Cost of
Downtime
per Year

Mean Time
To Restore

(MTTR)

Deployment
Frequency X Outage

Cost=

21

Copyright © DORA, March 2017 Forecasting The Value of DevOps Transformations

 Low Performers report 16% to- 30% of
 changes result in a degraded service or
 require remediationk. For our calculation we
 will use the average of these two numbers:
 23%.

Mean Time to Restore (MTTR)
We work with complex systems, and some failure
and downtime is inevitable. The key is the ability to
restore systems quickly. We again refer to the 2016
State of DevOps industry benchmarks for these
statistics:

 High Performers report being able to
 restore service in less than one hour when
 an outage occurs. Because high performers
 are so sensitive to outages and prioritize
 system uptime, we will use the midpoint of
 this range for our calculation: .5 hours.

 Medium Performers report being able to
 restore service in less than one day when an
 outage occurs. For our calculation we will
 use a point in the range reported: 4 hoursl.

 Low Performers report being able to restore
 service in less than one day when an outage
 occursm. For our calculation we will be
 conservative and use the upper end of the
 range: 1 day.

Calculating Return Using Value and Cost

Outage Cost
Outages are costly to organizations. However, the
cost of outages is highly variable and depends, in
particular, on the “blast radius” of the outage (has it
taken out your entire infrastructure or just a single
non-mission-critical application?) and the level of
service degradation (is the whole system unavail-
able, or are we seeing a long tail in response times
for certain kinds of requests?). You will need to
gather your own data in order to refine these
calculations.

At a low level of precision, a recent report from
Stephen Elliot and the IDC team put the average
hourly cost of an infrastructure failure at $100K, and
the average hourly cost of a critical application
failure between $500K and $1M14. Because DevOps
is involved in developing and delivering core applica-
tion functionality, we will use the numbers supplied
for critical application failures. We will also remain
conservative and use $500K in our estimates. It
should be noted, however, that some businesses,
such as retailers and financial institutions, report
outage costs of millions of dollars per minute, so
these costs should not be overlooked. We suggest
you use your own average per-hour outage costs if
they are available.

k Why are Low Performers reporting less change failures than Medium Performers? It could be that they are choosing to remediate less service
 incidents, allowing more work to pile up later. This is similar to the behavior we are seeing related to unnecessary work.
l We use four hours because Medium Performers were statistically faster than Low Performers on average, and because four hours follows a
 logarithmic curve often seen in performance improvement.
m We note that the Low Performers have a significantly lower average MTTR than the Medium performers. However, for the purposes of these
 calculations, we use the median MTTR, which was the same as the Medium Performers.

Using the formula and the numbers identified above, we calculate the cost of downtime per year to be:

22

Copyright © DORA, March 2017 Forecasting The Value of DevOps Transformations

Calculating Return Using Value and Cost

32 deploys per year x
38% change fail rate x
4 hours MTTR x
$500,000/hr outage cost

= $24.3M Downtime
Cost per Year

 = $760K Downtime
Cost per Deployment

730 deploys per year x
7.5% change fail rate x
½ hour MTTR x
$500,000/hr outage cost

= $13.7M Downtime
Cost per Year

 = $18.75K Downtime
Cost per Deployment

7 deploys per year x
23% change fail rate x
24 hours MTTR8 x
$500,000/hr outage cost

= $19.7M Downtime
Cost per Year

 = $2.8M Downtime
Cost per Deployment

High IT
Performer

Medium IT
Performer

Low IT
Performer

Returns Possible from Cost of Downtime AvoidedTABLE 4

According to our model, High Performers have
somewhat lower total downtime costs than Low
Performers, but much lower per-deployment costs.
In reality, these numbers should be lower, since
High Performers will typically architect systems so
that outages will be localized rather than systemic,
and will result in service degradations rather than
completely taking systems down. These important
architectural characteristics substantially reduce the
business impacts—and costs—of downtime. The
solution to decreasing downtime costs is not to
decrease deployment frequency but to decrease

change failure rates, reduce MTTR, build resiliency
into the system, and contain failures so that the
system gracefully degrades rather than leading to
cascading, global outages. The hidden costs of not
deploying frequently include the lack of feedback
from customers, a factor that gives the best compa-
nies the edge as they experiment, adjust, and
continue to win in the market. Note that all down-
time costs saved represent a return to the business;
we categorize them as such in our calculations
moving forward.

=
Cost of

Downtime
per Year

X X X
Change

Fail Rate
Percentage

Mean Time
To Restore

(MTTR)
Deployment
Frequency

Outage
Cost

Copyright © DORA, March 2017 Forecasting The Value of DevOps Transformations

Potential Return of Large Product Business ($100M)TABLE 5

23Calculating Return Using Value and Cost

Adding it All Together

Now that we have identified the primary cost and
value components of technology transformation and

improvement work, we will combine them to find
the potential returns of a technology transformation
such as DevOps. Keep in mind that all costs saved
represent a return to the business.

LARGE ORGANIZATION
that relies on in-house software
(8,500 engineers)

High IT
Performer

$100M Product Portfolio
Business Size

Medium IT
Performer

Low IT
Performer

MEDIUM TO LARGE
TECHNICAL ORGANIZATION
(2,000 engineers)

SMALL TO MEDIUM BUSINESSES
AND NON-TECHNICAL ENTERPRISES
(250 engineers)

$160.7M value of rework
recovered +
$9.6M value lost from
new features +
$24.3M cost of downtime
= $194.6M return

$93.7M value of rework
recovered +
$933K value lost from
new features +
$19.7M cost of downtime
= $114.4M return

$3.2M cost of rework +
$19.5M value lost from
new features +
$13.7M cost of downtime
= $36.3M return

$37.8M cost of rework +
$3.8M value lost from
new features +
$24.3M cost of downtime
= $66M return

$22.1M cost of rework +
$373K value lost from
new features +
$19.7M cost of downtime
= $42.2M return

$393.8K value of rework
recovered +
$2.43M value lost from
new features +
$13.7M cost of downtime
= $16.5M return

$4.7M value of rework
recovered +
$480K value lost from
new features +
$24.3M cost of downtime
= $29.5M return

$2.8M value of rework
recovered +
$46.7K value lost from
new features +
$19.7M cost of downtime
= $22.5M return

$13.4M value of rework
recovered +
$48.7M value lost from
new features +
$13.7M cost of downtime
= $75.7M return

Value Lost
from New
Features

Value of
Rework

Recovered

Cost of
Downtime

Potential
Return

=+ +

Copyright © DORA, March 2017 Forecasting The Value of DevOps Transformations

24Calculating Return Using Value and Cost

The yearly returns are much larger than most
people estimate, illustrating that investments in
technology—if done with true transformation and
continuous improvement in mind—can deliver
worthwhile results.

Now consider the additional gains available that we
haven’t included in the above calculations. One
example is the value organizations could realize by
reinvesting resources elsewhere: for example, taking
the time saved by reducing unnecessary rework and
reinvesting that time to new projects, creating value
for the company. In this example, the calculations
could be imagined as a straight investment, almost
like “free work” or additional headcount. Alternative-
ly, they could be analyzed as a capital investment,
using the excess resources as an input in traditional
reinvestment calculations, evaluated by hurdle rate

and internal rate of return. In our discussions with
forward-thinking companies, they do this exercise
routinely, planning to leverage their gains in efficien-
cy to realize innovation and value. While we won’t
include these calculations in this exercise, we
encourage you to consider them in your own thinking.

Finally, the benefits to employees and organizational
culture should not be ignored. Consider the morale
improvement of teams spending less time in rework
and more time in value-added development. Studies
have shown that engaged, happy employees
contribute to IT and organizational performance15
and correlates to company growth16. Furthermore,
it helps teams attract and retain additional good
talent, creating a virtuous cycle.

Engaged, happy employees
contribute to IT and organizational

performance and correlates
to company growth.

n This calculation uses a higher salary number than that used earlier because hiring and retention is a challenge for organizations, and finding
 senior SREs and DevOps engineers will likely require paying a premium.
o This number may seem disproportionately high, but it is likely much higher; technology transformations rely heavily on labor. Research from the
 2000s suggests the cost of labor is 2x the cost of technology17. In a more recent example, Forrester’s Cloud App Migration Cost Model
 also finds that labor costs far exceed service and infrastructure costs18.

Patterson: Patterson, D. (2002, Nov 3-8, 2002). A Simple Way to Estimate the Cost of Downtime. Paper presented at the Large Installation System
Administrator's Conference (LISA '02), Philadelphia, PA.

Forrester: https://www.forrester.com/report/Brief+The+Cost+Of+Migrating+An+Enterprise+Application+To+A+Public+Cloud+Platform/-/E-RES132801

Consulting: assessment and
roadmap development for
technology transformation
initiative

Cloud subscription services

Automation software

SREs and DevOps engineers
to augment team
(5 x $180,000 x
1.5 benefits multipliern)

Training and DevOps/Kanban/
agile coaching for teams

Dedicated time and resources
of existing workforce
(equivalent to 18 FTE x
$105,000 x 1.5 benefits
multiplier)

ITEM SPEND AMOUNT

25

Copyright © DORA, March 2017 Forecasting The Value of DevOps Transformations

Demonstrating Return on Investment

Armed with a monetary representation for the return
of your technology transformation, you are almost
ready to demonstrate your return on investment.
You also need to calculate the cost of investment in
this transformation. While this white paper will not
go into the details of these costs, remember to
include the costs of:

 Technology, including acquisition,
 licensing, etc.

 Training, including the costs of productivity
 lost while your technical staff is in training
 (include the benefits multiplier)

 Downtime while new technology and
 processes are learned (including the cost
 of salary and benefits)

 Consulting services

 Other related expenses, such as
 refactoring or re-architecting

Sample Calculation
Using an investment value of $5.6M (which is inclu-
sive of all acquisition, training, and personnel costs)
for a large technical organization’s technology
transformation with a product line valued at $100M,
we will demonstrate two methods: payback period
and return on investment.

An example $5.6M investment breakdown
could look like:

(Large technical organization with $100M product business)

$65,000

$1,350,000

$200,000

$2,835,000o

$1,000,000

$200,000

RETURN $75.7M, Rounded

p Payback period ignores the time value of money and reinvestment and is often done “on the back of a napkin.” It is generally done with cash based
 calculations but can also be used with all investment and returns for estimation purposes, as we show here.

26

Copyright © DORA, March 2017 Forecasting The Value of DevOps Transformations

Payback Period

One of the simplest methods of talking about return
on investment is payback period. Simply put, this
method asks how long an investment takes to pay
itself back in terms of profit or savings. In terms of
our calculations, how long it takes our investment to
cover the returnsp. The output of the equation is in

The payback period is .074 years, or about 27 days,
meaning this investment will “pay itself back” very
quickly. In this calculation, faster is better. Payback
period is considered useful from a risk analysis
perspective because it reveals how long the investment
will pose a risk to the firm. It is particularly relevant
in industries such as technology where investments

can become obsolete quickly. The benefit of this
analysis is that it is easily understood and communi-
cated. The reader should note that this method for
calculating payback period assumes that cash flows
are equal; if they are accelerated or uneven, your
calculations should take that into account.

years. Given the example above, we are considering
an investment that will cost $5.6M and will generate
$75.7M per year in returns. If we assume equal cash
flow each year, we calculate the payback period by
dividing the investment by the returns:

Demonstrating Return on Investment

=
Returns

Investment

$75,741,666.67

$5,600,000Payback
Period

.074
Years= =

q ROI is another estimation method that ignores time value of money.

27

Copyright © DORA, March 2017 Forecasting The Value of DevOps Transformations

Profitability

Return on investment calculates the profitability of a
project and reports the return as a percentage of the
investmentq. The output of the equation is a ratio.
This ratio is meaningful to investors and people in
business who compare it to other investments.

The ROI for this investment is 12.525. You may be
asking: Is this a good ROI? That depends on what an
organization considers “good” and what it is compar-
ing it to. However, we can say that the organization
made ~$12.53 for every dollar it invested in its
technology transformation initiative. You can also
think of an ROI ratio in comparison to other invest-
ment assets: What kind of returns are available from
investments outside the firm, such as stocks and

bonds? While investments in a diversified stock
portfolio are less risky, investments in your own
company that have a large ROI can be a good way to
increase your opportunity for returns. That is, if you
can achieve similar returns from investing in your
own technology transformation (or even better
returns, which is likely in the example above), and
those internal investments will also help you win in
the market, why wouldn’t you choose that strategy?

Given the example above, we are considering an in-
vestment that will cost $5.6M and will generate $75.7M
per year in returns (rounded). To calculate the return
on investment, we subtract the investment from the
return and divide that number from the investment:

Demonstrating Return on Investment

=
Investment

Return - Investment

$5,600,000

$75,741,666.67 - $5,600,000
ROI =

28

Copyright © DORA, March 2017 Forecasting The Value of DevOps Transformations

Technology Transformation Pays Off

As we’ve demonstrated, undertaking a technology
transformation initiative can produce sizeable returns
for any organization. Of course, when undertaking
any cost-estimation exercise, there are risks that
costs may be over- or under-estimated, as well as
risks that returns may not be realized in the expect-
ed timeframe or that market conditions may shift,
leading to changes in customer preferences or
interest rates. That said, cost and value estimations
are still worthwhile, providing team members and
leadership a basis for decision making. For each type
of IT performer, there are lessons to be learned.

The data suggests that Medium Performers have the
most to gain by continuing to burn down technical
debt and optimize for speed and value over cost. We
urge Medium Performers to continue this work and
not reach a point where, after a time of doing hard
work, they think they are not making progress and
shift back to their old ways, settling for short-term
improvements and building up technical debt again.
Medium Performers must continue making progress
toward operational efficiency, implementing smart
technical practices of continuous delivery such as
continuous integration, automated tests, and
version control to achieve sustained high perfor-
mance in both throughput and stability.

Low Performers face a paradox. On the one hand,
they lag well behind competitors, often due to
complex legacy systems and conservative cultures.
However, in these organizations there is typically
plenty of low-hanging fruit, provided the political will
exists to seize it. As with all initiatives, it’s essential to
set measurable business goals for your initiatives
and work with stakeholders throughout the organi-
zation to experiment with bold ideas to achieve
results. Start with teams that have the capacity and
desire for change and have support at the senior
leadership level, and look for quick wins that will
deliver measurable results in weeks, not months,
even if the impact is limited.

For any team starting a technology transformation,
remember that many improvement initiatives follow
a “J-curve,” so be prepared for early disappointments.
The J-curve is the performance hit teams often
experience when a new member joins a team or
when new processes are put in place and there’s an
initial negative impact on performance before things
get better. As Julia Wester notes, the size of the
change often affects the depth of the negative
impact19. A technology transformation initiative is a
big change, so don’t give up if (realistically, when)
there is an initial hit to performance or productivity.
This pattern is seen in our data, with the path taken
from low performance to high performance taking a
dip through higher rates of unnecessary rework as
teams tackle their technical debt. When teams stick
with it, they are rewarded with superior software
development and delivery capabilities, and the
lowest rates of unnecessary rework, on par with
those reported in other studies.

High Performers are doing well, but still have room
for improvement in many areas. In fact, the 2016
State of DevOps Report shows that High Performers
continue to improve their technical, managerial, and
cultural practices, as well as their IT performance
year over year. Indeed, this is the hallmark of High
Performers, and it pays off for their organizations in
terms of market share, productivity, and profitabili-
ty. In order to stay competitive, High Performers
must continuously push themselves to improve, or
they will be overtaken by their competitors—and the
data shows it can happen in just a year’s time.

Conclusion

For more information on what steps you
can take and what technical practices you
should implement to truly improve your IT
and organizational performance, visit our
website at www.devops-research.com

Dr. Nicole Forsgren is an IT
impacts expert best known for
her work with tech professionals
and as the lead investigator on
the largest DevOps studies to
date. She is a consultant, expert,
and researcher in knowledge
management, IT adoption and
impacts, and DevOps. Nicole is
the CEO and Chief Scientist at
DORA. In a previous life, she was
a professor, sysadmin, and
hardware performance analyst.
She has been awarded public
and private research grants
(funders include NASA and the
NSF), and her work has been
featured in various media outlets
and several peer-reviewed
journals and conferences. She
holds a PhD in Management
Information Systems and a
Masters in Accounting.

29

Copyright © DORA, March 2017 Forecasting The Value of DevOps Transformations

Authors

Jez Humble is co-author of The
DevOps Handbook, Lean Enterprise,
and the Jolt Award winning
Continuous Delivery. He has spent
his career tinkering with code,
infrastructure, and product dev-
elopment in companies of varying
sizes across three continents,
most recently working for the US
Federal Government at 18F. He is
currently researching how to
build high-performing teams at
DevOps Research and Assess-
ment LLC and teaching at UC
Berkeley.

Gene Kim is a multi-award
winning CTO, researcher, and
author. He has been studying
high-performing technology
organizations since 1999. He is
the founder of Tripwire and
served as CTO for thirteen years.
He has co-authored four books
including The Phoenix Project: A
Novel About IT, DevOps, and
Helping Your Business Win (2013),
The DevOps Handbook (2016),
and The Visible Ops Handbook
(2004).

30

Copyright © DORA, March 2017 Forecasting The Value of DevOps Transformations

About DORA

DevOps Research and Assessment (DORA), founded
by Dr. Nicole Forsgren, Jez Humble, and Gene Kim,
conducts research into understanding high perfor-
mance in the context of software development and
the factors that predict it. DORA’s research over the
last four years and over 23,000 data points serves as
the basis for a set of evidence-based tools for eval-
uating and benchmarking technology organizations.

Are you evaluating your own technology transforma-
tion? We offer assessments directly to organizations.
Request a demo at sales@devops-research.com

Are you a consultancy? We offer a turnkey assess-
ment, backed by trusted names in DevOps. To learn
more about a co-branded scorecard and partnership
opportunities, email sales@devops-research.com

Learn more at www.devops-research.com

31

Copyright © DORA, March 2017 Forecasting The Value of DevOps Transformations

Acknowledgments & References

The authors also thank reviewers for their thoughtful
reading and insights, which made this manuscript
much stronger: Katharine Wright Adame, Michael
Blaha, Jeff Gallimore, Sam Guckenheimer, Courtney
Kissler, Scott Prugh, Walker Royce, Mark Schwartz,
and Nate Shimek.

1 Kim, G. (n.d.). The Amazing DevOps Transformation of The HP LaserJet Firmware Team (Gary Gruver).
 Retrieved from http://itrevolution.com/the-amazing-devops-transformation-of-the-hp-laserjet-firmware-team-gary-gruver/
2 Puppet, Inc., & DevOps Research and Assessment, LLC. (n.d.). 2016 State of DevOps Report (Rep.)
3 Puppet, Inc., & DevOps Research and Assessment, LLC. (n.d.). 2016 State of DevOps Report (Rep.)
4 DevOps Enterprise Summit 2014. (2014, October 29). DOES14 – Courtney Kissler – Nordstrom – Transforming to a Culture of
 Continuous Improvement. Retrieved from https://www.youtube.com/watch?v=0ZAcsrZBSlo
5 Earnshaw, A. (2013, July 18). DevOps Solves Business Problems: Gene Kim’s Top Aha Moments.
 Retrieved from https://puppet.com/blog/devops-solves-business-problems-gene-kim%E2%80%99s-top-aha-moments
6 Divine, C. (2011, April 20). Leadership in an Agile Age: An Interview With Scott Cook.
 Retrieved from https://web.archive.org/web/20160205050418/http://network.intuit.com/2011/04/20/leadership-in-the-agile-age/
7 Chron 200 / Interview with CEO of the Year Charles Schwab. (2007, April 9).
 Retrieved from http://www.sfgate.com/business/article/Chron-200-Inter-

view-with-CEO-of-the-Year-2603664.phphttp://dspace.mit.edu/bitstream/handle/1721.1/83541/REP_0101_Ippo.pdf?sequence=1
8 Ippolito, B., & Murman, E. (2001, December). Improving the Software Upgrade Value Stream.
 In 43rd AIAA Aerospace Sciences Meeting and Exhibit (p. 1252).
9 Harpaz, D. (2015, April 23). DevOps Salary Survey 2015: Facts About DevOps Careers and Salaries.
 Retrieved from https://www.incapsula.com/blog/devops-salary-survey.html
10 Morozoff, E. (2009, September 4). Using a Line of Code Metric to Understand Software Rework.
 Retrieved from http://ieeexplore.ieee.org/document/5232799/
11 Kohavi, R., Crook, T., Longbotham, R., Frasca, B., Henne, R., Ferres, J., Melamed, T. (2009). Online Experimentation at Microsoft.
 Retrieved from http://ai.stanford.edu/~ronnyk/ExPThinkWeek2009Public.pdf
12 Kohavi, R., Crook, T., Longbotham, R., Frasca, B., Henne, R., Ferres, J., Melamed, T. (2009). Online Experimentation at Microsoft.
 Retrieved from http://ai.stanford.edu/~ronnyk/ExPThinkWeek2009Public.pdf
13 Elliot, S. (2014). DevOps and the Cost of Downtime: Fortune 1000 Best Practice Metrics Quantified.
 Retrieved from http://info.appdynamics.com/DC-Report-DevOps-and-the-Cost-of-Downtime.html
14 Shimel, A. (2015, February 11). The real cost of downtime. Retrieved from http://devops.com/2015/02/11/real-cost-downtime/.
15 Puppet, Inc., & DevOps Research and Assessment, LLC. (n.d.). 2016 State of DevOps Report (Rep.)
16 Reichheld, F. F. (2003, December). The One Number You Need to Grow.
 Retrieved from https://hbr.org/2003/12/the-one-number-you-need-to-grow
17 Patterson, D. (2002, Nov 3-8, 2002). A Simple Way to Estimate the Cost of Downtime. Paper presented at
 the Large Installation System Administrator's Conference (LISA '02), Philadelphia, PA
18 Rymer, J. R., Bartoletti, D, Martorelli, B, Mines, C, Tajima, C. (2016, March 9). Brief: The Cost Of Migrating An Enterprise
 Application To A Public Cloud Platform. Retrieved from https://www.forrester.com/report/Brief The Cost Of Migrating An

Enterprise Application To A Public Cloud Platform/-/E-RES132801
19 Wester, J. (2016, February 6). Why improvement initiatives fail.
 Retrieved from http://www.everydaykanban.com/2013/02/26/why-improvement-initiatives-fail/

The authors thank Puppet, Inc. for its collaborative
support on the 2016 State of DevOps Report, which
inspired this paper and provided many industry
benchmarks for the analysis. We would like to thank
Alanna Brown in particular for her thoughtful
guidance and insights throughout the process.

White Paper layout and design by Bullseye Creative, Seattle • BullseyeCreative.net

