)
<O Fire Eye

Challenge #4 Solution

By James T. Bennett

Challenge #4 is a 32-bit PE file. At first glance, and even after some deeper analysis, it appears to be
some version of Windows’ Notepad application. IDA Pro can even properly apply Microsoft’s PDB for
notepad. exe from Microsoft’s symbol server. However, looking at the code at the entry point quickly
reveals that this binary has been modified. The presence of stack strings, calls to a function that locates
loaded modules in the process via the process environment block (PEB), and import name hashes are
good indicators that we are dealing with code foreign to notepad. exe. Another strong indicator of
modification of the PE is that the entry point specified in its headers is pointing to somewhere in the
.rsrc section! Normally, a PE’s entry point will point to somewhere within the .text section where
the binary’s code is stored. At the end of the entry point’s function, we see a push/ret instruction
sequence which is a technique used to change the thread’s instruction pointer to a new location. The
ret instruction pops the address off of the top of the stack and jumps to it. The address pushed onto
the stack is at offset 0x739D from the base address of notepad. exe. This address points to the start
of a function that contains calls to initterm, getmainargs, and GetStartupInfo, indicating that
it is likely the CRT initialization function that would have originally been called after the PE is loaded.
Putting together what we know so far, running notepad. exe will likely execute some foreign payload
and then execute the original Notepad application’s code. Running the executable confirms the theory.

Dealing with stack strings is annoying, and thankfully the latest version of FLOSS is able to locate and
decode these for us in this challenge. This makes our analysis go much smoother. After dynamically
loading its needed libraries and resolving its imports, the payload searches for 32-bit PE files in a
directory named %USERPROFILE%\flareon2016challenge. Itappends itself to each PE and
modifies its headers, changing the last section’s size and permissions, the size of the image, the entry
point, and the checksum of the PE as shown in Figure 1.

CivaCiin ln~ 1AAN MACAvth Dhud Rilnitaer FAA QEN2E | 11 ANQ 291 £2NN | 11 077 CIDCEVE /247 2202\ | infAMECivaCun rame | unanss CivaCuna ~cama 1

:
<OFireEye FLARE

+IMAGE SECTION HEADER.

ol B o I o

SizeOfRawDatal
VirtualSize], eax

This confirms we are dealing with an appending virus, also known as a PE infector. Shortly before the

infAMECiraCun rAarm | wnanar CiraCun ~rAam

CiraCun ln~r 1AAN MaCarvihu Rhud Milnitae AN QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ |

:
<OFireEye FLARE

infection code at 9x101500B, it checks for the value @x8675309 at offset 0x1C in the PE and does not
infect it if found. When infecting, it adds this value to that offset of the PE. This is known as an
“infection marker” so the virus does not attempt to infect the same PE twice.

So we know that this challenge is a virus, but where is the key? Before the infection check is
performed, the function at ©x10146C0 is called for each PE that is found. This function first compares
the compile timestamp value of the PE that is currently executing against a hard-coded value, then
compares the compile timestamp value of the discovered PE against another hard-coded value. This
comparison is repeated for several pairs of timestamp values until both are matched, or all pairs are
tried. We can see from Figure 2 that the first timestamp value that is compared is identical to the
second timestamp value that is compared in the previous pair.

When a successful match is found the second timestamp value is converted to a string and printed in a
message box, and the function at ©x10145B0 is called where eight bytes from offset @x0C in the PE is
appended to a file named key.bin. The final timestamp value comparison is only performed on the
running executable. If it matches, 32 bytes are read from the key.bin file and are XORed against a 32

CiraCun lnr 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCun rAam 2

:
<OFireEye FLARE

byte string of unprintable characters stored in a local variable. The resulting string is printed in a
message box. This is likely our flag, but how do we get the correct contents into the key.bin file?
Putting together what we know so far, it appears that a specific set of PE executables must be infected
and executed in a specific order. This will put the proper contents into the key . bin file, which will
then be decoded and printed on screen for us. Four binaries, eight bytes each, gives us a 32-byte key.
The problem is: where are we going to find the files we need to infect? There is no directory named
%USERPROFILE%\flareon20l1l6challenge on any version of Windows by default. However,
flareon2016challenge is a good hint for what we are looking for. If we translate the PE
timestamps that are being compared against, most of them fall within the timeframe leading up to last
year’s FLARE On challenge, further supporting the notion that we want to download the challenge
binaries. Placing 2016’s FLARE On challenge binaries in the
%USERPROFILE%\flareon20l6challenge directory, and running our notepad.exe confirms our
theory as we can see our first message box pop up (Figure 3)!

B x

2016/09/08 18:49:06 UTC

QK

Now, it is just a matter of using our favorite PE file viewer to find the next executable we need to run. |
used PEView because it translates our timestamps for us. Finally, the order of execution is
challengel.exe, DudeLocker.exe, khaki.exe, and unknown. Running the binaries in this order
gives us our victory message box containing our key as shown in Figure 4!

. {

bl457_frOom_th3_p457@flare-on.com

QK

The key is bl457_from_th3_p457@flare-on.com.

PE infectors have been around for a very long time, although they are not as common as they used to
be. They are the cause of many headaches for both their victims and the defenders who have to deal

CiraCun lnr 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCun rAam A

:
<OFireEye FLARE

with them. A major point of confusion for them from a defender’s perspective is the fact that a PE
infector can infect other malware. Now you have malware samples that exhibit the behavior of two
different malware families and communicate with multiple, unrelated Command and Control (C2)
servers. This confuses C2 blacklist feeds, automated malware analysis systems, anti-malware products,
and the defenders who use such services and products. Experiencing such confusion several times in
my career was the inspiration for this challenge.

CiraCun ln~r 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDECVE (247 2202\ | infA@ECiraCuna rAarm | anan

a1 CiraCun rAm [

