)
<O Fire Eye

Flare-On 4: Challenge 5 Solution - pewpewboat.exe
Challenge Author: Tyler Dean (@spresec)

Background

Most malware reverse engineers are pretty comfortable with Windows executables. We don’t see
Linux binaries too often. However, occasionally we get the opportunity to analyze Linux ELF binaries,
and we need to be able to adapt to these different executable formats. The pewpewboat.exe challenge
was meant to provide people who aren’t overly familiar with Linux binaries, exposure in the form of a
silly game. For those of you who CTF all the time, this one was likely a breeze. The challenge has many
ways to solve. The hardest way was to reverse engineer the entire binary to understand the algorithms
used to decrypt each map. If you went this route, nice work! Alright, let’s talk about solving this
challenge.

Playing the game

Opening pewpewboat.exe in any PE viewer quickly shows us this is not a valid Win32 binary unlike what
the file extension suggests. When running strings on this binary and by retrieving the libmagic result,
we quickly identify this is actually a 64-bit ELF binary. Knowing this, we start up a 64-bit Linux VM and
run pewpewboat.exe.

When run, a loading message is displayed “Loading first pew pew map...” and a grid is drawn to the
terminal, a few messages are printed, and a prompt appears to be requesting user input, as seen in
Figure 1.

123456738

T oOomMmmonNw>
I_

Rank: Seaman Recruit

CiraCun lnr 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCun rAam 1

:
<OFireEye FLARE

Welcome to pewpewboat! We just loaded a pew pew map, start shootin'!

Enter a coordinate:

Figure 1: Game view after loading

It looks like this is some sort of game. Let’s try a “coordinate” to see what happens. When trying the
coordinate “A1”, the following message is displayed: “You missed :(”. We try additional coordinates,
continuing all the values in the A row with all misses. Trying the B row, the coordinate B4 reports a new
message. This time it says “Nice shot! Hit!”. Continuing down the grid, we eventually are presented
with a message that we “sunk all the ships”. The game board looks like Figure 2 at this point.

12345678

O O
|| _[X]X]X]X]|
[I O
I I
|| _[X]X]X]X]|
[I O
1 I O
(O I

IO mMmmoNw>
|_

Rank: Seaman Recruit

Nice shot! Hit!
You sunk all the ships!!

Figure 2: First pew pew map complete

Next, we are presented with a new prompt that shows “NotMd5Hash("<random letters>") >”. After
entering an incorrect value, the prompt appears again, this time with new random letters. Without an
obvious way to bypass this, let’s jump into a disassembler and see what’s going on.

Immediately, we see stack strings in the ma in function shown in Figure 3.

mov [rbp+var_30], 4Ch
mov [rbp+var_2F], 6Fh
mov [rbp+var_2E], 61h
mov [rbp+var_2D], 64h
mov [rbp+var_2C], 69h
mov [rbp+var_2B], 6Eh
mov [rbp+var_2A], 67h
mov [rbp+var_29], 26h

mov [rbp+var_28], 66h

CiraCun lnr 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCun rAam 2

:
<OFireEye FLARE

mov [rbp+var_27], 69h
mov [rbp+var_26], 72h
mov [rbp+var_25], 73h

Figure 3: Identifying stack strings

The stack string explains the lack of printable strings shown in any strings tool output. There are likely
several other stack strings throughout the binary. | like to use IDA Pro for my disassembler and
(shameless plug coming) the FLARE team released an IDA Pro plugin® to find and add comments for
found stack strings. For more info on what stack strings are, see the corresponding blog post®. The
output of the StackStrings plugin prints strings and virtual addresses to IDA Pro’s console window.
One of these stack strings is “NotMdSHash("%s") >” located at virtual address x403551. Navigating
directly to this function, we see calls to fgets, sprintf, memcmp, a non-library function, as well as other
functions, but the mentioned functions are the most interesting. The non-library function at virtual
address 0x402FA5 appears to be the MD5 hash algorithm. But our clue was “NotMdSHash”. Briefly
looking through the constant values in the MD5 hash function, it doesn’t appear as though anything
has been modified. A memcmp is called after a loop with a call to sprintf using the format string “%e2x".
The trick to this may be tough to spot at first glance, but should become obvious when looking at each
instruction shown in Figure 4.

loc_4036DF:
mov eax, [rbp+idx]
cdge
movzx eax, [rbp+rax+md5_result]
movzx eax, al

not eax

movzx edx, al

lea rax, [rbp+sprintf_result]
mov esi, offset a@2x

mov rdi, rax

mov eax, ©

call _sprintf

Figure 4: Understand the NotMd5Hash function

| labeled a few of the stack variables in the assembly listing. The stack variable labeled “idx” is just our
index that is incremented after each iteration through this loop. The instruction “movzx eax,
[rbp+rax+md5_result]” retrieves the next value from a byte array that holds the MD5 output value
labeled as sprintf_result. A few instructions below is a bitwise not performed against one of the
bytes from the MD5 output. The result is the input into the sprintf call. The “NotMd5Hash” is actually a
clue and is quite literally the bitwise NOT of each output byte from the MD5 hashing algorithm.

! https://github.com/fireeye/flare-ida
2 https://www.fireeye.com/blog/threat-research/2014/08/flare-ida-pro-script-series-automatic-recovery-of-constructed-
strings-in-malware.html

CiraCun lnr 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCun rAam 2

:
<OFireEye FLARE

But that’s just one way to bypass this “captcha”. Above we figured out what was actually going on, but
we didn’t need to. Instead, we could have modified the instruction immediately following the call to
memcmp from a jz to jnz or jmp or changed the zero flag using a debugger to bypass this check.

Now that we know how to get past the “captcha”, let’s continue with the game play. After completing
the “captcha”, a new “Rank” is displayed along with a new message. We continue the same strategy as
before by entering coordinates. However, the game abruptly ends with the message “out of ammo!!”.
Well shucks, there was no indication of an ammo count!

There are a few ways to proceed. We can start the game, take VM snapshots at the beginning of each
board and try all coordinates and continually revert until we finish each board. Or, we can write a
solver that brute-forces the result. There are certainly other solutions. These solutions are left as an
exercise to the reader if interested. Instead, let’s dive into the nuts and bolts of this game and see
what’s going on.

Let’s start by looking at the main function. Immediately, we see a call to srand being seeded with the
current time followed by the string “Loading first pew pew map...” being built on the stack. After the
printf call, we see a loop. The for loop counter variable (var_50) is initialized at 0 and runs until the
result is above 99 (ex63). Let’s hope there aren’t 100 pew pew maps to solve!

Inside the loop, @x240 bytes are copied from a global byte array. The byte array looks encrypted or
encoded in some way. The 0x240 byte buffer is then passed to the function at sub_4e304F. This function
retrieves each byte from the byte buffer and generates a random value (the random number generator
is implemented in sub_403034) based on a seed and XORs these two values together. The seed for this
random number generator is the third argument to this XOR function. Looking back, we notice the
initial seed is generated in function sub_403C85. The next seed is retrieved from some structure offset
0x10 (0x403ECS6).

The function sub_403C05 is where the game play is implemented. This function loops and calls up to
four functions each loop. The first function is pretty straight forward, it is responsible for clearing the
console. The second function is responsible for drawing the game board. The third function writes the
rank the the screen and handles status messages. The fourth function prompts the user for a
coordinate. The fgets in this function accepts up to 17 characters. This seems a bit strange as a
coordinate is only two characters. This is actual a subtle hint for later. Another interesting function
called in this function is sub_403411, but we’ll get to that later as well.

CiraCun lnr 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCun rAam A

:
<OFireEye FLARE

After a bit of reverse engineering, we begin to better understand the structure seen throughout the
game play functions. By gaining context clues in these functions, we piece together the following
structure definition shown in Figure 5.

struct game_state {
uint64_t board_bitmask;
uint64 _t shot_bitmask;
uint64_t seed;
int ammo_count;
unsigned char shot_data[2];
char ranking[ex20];
char message[0x202];

};

Figure 5: Game state structure definition

We skipped quite a bit there to show the game state structure, but it’ll make it easier to understand as
we dive into the rest of the game implementation.

Let’s go back to the third function call (sub_4038D6) and begin to apply this structure definition. The
stack string “Rank: %s” is created and structure offset Ox1E (ranking) is printed to the terminal. The
number of bits from the shot_bitmask are counted and compared to the value at offset ox18
(ammo_count). If the current shot count is greater than the amount of ammo, the “out of ammo!
message is printed to the terminal.

”
!

If the shot count is less than the ammo count, the shot_bitmask is compared to the previous shot
bitmask and the function sub_4030AF is called. This function updates the seed using the following
formula shown in Figure 6.

gs->seed += (gs->shot_data[1]*1427) + (gs->shot data[0]*7681) + (gs->shot_data[@] * gs-
>shot_data[1l]) + 5281;

Figure 6: Seed update formula

A small anti-cheat mechanism is identified in this function. The seed is also modified if the total shot
count is above the ammo count, which should never happen in normal game play. This would result in
an incorrect seed to decrypt the next board.

To summarize what we know, the player enters a coordinate. The coordinates are stored as a bitmask
where one bit represents a coordinate on the board. If the bit is set, a “ship” is located at that
coordinate. One byte represents a row. There are a total of eight rows, requiring 8 bytes to represent
the full board. Coordinates entered by a player where the bit is set, results in the game board seed

CiraCun lnr 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCun rAam [

:
<OFireEye FLARE

being updated using the formula shown above. After all ships are sunk, this seed value is used to seed
a random number generator which decrypts the next board.

To solve this challenge, let’s write a script. First, we need to extract the global encoded bytes to
decrypt the maps. Figure 7 shows a quick way to extract these bytes from the Python prompt in IDA
Pro:

Python>map_data = GetManyBytes(Ox6050EQ, ©x240*99)
Python>open('C:\\users\\user\\desktop\\map_data.bin', 'wb').write(map_data)

Figure 7: Extracting the encoded map bytes from IDA Pro

Now that we have the encrypted map bytes in a file, we begin to write a script to decrypt each game
play board. | like to use Python to write quick scripts, so I’'m going to show a few scripts written in
Python to solve this challenge. However, before we start writing the script, we first need to identify the
first seed. Previously, we identified that the first seed is output from sub_403c85. Using the GDB
debugger, we set a breakpoint at ex4e3E54 and read the value of the register rax to identify the first
seed. Figure 8 shows my GDB session.

tyler@ubuntu:~/flareon4$ gdb ./pewpewboat.exe

Reading symbols from ./pewpewboat.exe...(no debugging symbols found)...done.
(gdb) break *@x403E54

Breakpoint 1 at ©x403e54

(gdb) run

Starting program: /home/tyler/flareond/pewpewboat.exe

Loading first pew pew map...

Breakpoint 1, 0x0000000000403e54 in ?? ()
(gdb) info registers rax
rax ox3blee5f6b3d99ff7 4260095145281167351

Figure 8: Using GDB to retrieve the initial seed

Now that we have the first seed, we start to implement what we already know into the Python script.
The script shown in Figure 9 decodes the first map and parses the map data structure.

import sys
import struct

def decode_map(data, seed):
result = ""

CiraCun lnr 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCun rAam [~

)
<® FireEye FLARE

for ¢ in data:
seed = 1103515245 * seed + 12345
result += chr(ord(c) ~ (seed & Oxff))
return result

initial_seed = Ox3B1EES5F6B3D99FF7
data = open(sys.argv[1l], "rb").read(0x240)

data = decode_map(data, initial seed)

board_bitmask = struct.unpack_from('<Q', data, 9)[0]
shot_bitmask = struct.unpack from('<Q', data, 8)[0]
initial_seed = struct.unpack_from('<Q', data, 0x10)[0]
ammo_count = struct.unpack_from('<I', data, 0x18)[0]
shot_data = data[@x1C:0x1C+2]

ranking = data[@x1E:0x1E+0x20].split('\0')[0]

message = data[Ox3E:0x3E+0x202].split('\0')[Q]

print "board_bitmask:", hex(board bitmask)
print "initial seed:", hex(initial seed)
print "ammo_count:", ammo_count

print "ranking:", ranking

print "message:", message

Figure 9: Script to decode the first pew pew map

When run, we get the following output shown in Figure 10.

>python decode_pewpewmaps.py map_data.bin

board_bitmask: ©0x8087808087800L

initial_seed: @xef6e3dba59cfcf4fL

ammo_count: 32

ranking: Seaman Recruit

message: Welcome to pewpewboat! We just loaded a pew pew map, start shootin'!

Figure 10: Decoded results

That looks about right. The next step is to use the board_bitmask value to print the board with the
“ships” to the terminal and generate the next seed using the board_bitmask. A full script is shown in
Figure 11.

import sys
import struct

def update_seed(x, y, seed):
return seed + ((y*1427) + (x*7681) + (x * y + 5281)) & oxffffffffffffffff

def print _map(board_bitmask, seed):

CiraCun lnr 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCun rAam 7

)
<® FireEye FLARE

for x in range(8):
for y in range(8):
current_coord = 1 << (x * 8 + vy)
if current_coord & board_bitmask:

print 'X',

seed = update_seed((x + 0x41), (y + 0x31), seed)
else:

print '.',

print
return seed

def decode_map(data, seed):
result = ""
for ¢ in data:
seed = (1103515245 * seed + 12345) & Oxffffffffffffffff
result += chr(ord(c) ~ (seed & Oxff))
return result

seed = Ox3B1lEE5F6B3D99FF7
f = open(sys.argv[1l], "rb")
i=o20

while f.tell() < ©x240%*99:
print the current map that we're on
print "Map", i
decode the next map data (0x240 bytes)
data = decode _map(f.read(0x240), seed)

parse the map data

board_bitmask = struct.unpack_from('<Q', data, 9)[9]
shot_bitmask = struct.unpack_from('<Q', data, 8)[9]
seed = struct.unpack_from('<Q', data, 0x10)[9]
ammo_count = struct.unpack_from('<I', data, 0x18)[0]
shot_data = data[@x1C:0x1C+2]

ranking = data[Ox1E:0x1E+0x20].split('\0')[0]
message = data[Ox3E:0x3E+0x202].split('\0"')[0]

print the pew pew boat locations
seed = print_map(board_bitmask, seed)

print the ranking and message
print "ranking:", ranking

print "message:", message

print

if the seed is 'allsunk!', the game exits, see VA:0x403AA2
if seed == int('allsunk!'[::-1].encode('hex"'), 16):

CiraCun lnr 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCun rAam

:
<OFireEye FLARE

break

i+=1

Figure 11: Full script to decode pew pew maps

Looking at the output from this script, we see some Simpson’s quotes, some bad jokes, and a final clue.
The final clue uses the string ‘PEW’ instead of spaces, after replacing, we get: “Aye! You found some
letters did ya? To find what you're looking for, you'll want to re-order them: 9, 1,2, 7,3,5,6,5,8, 0, 2,
3,5,6,1,4. Next you let 13 ROT in the sea! THE FINAL SECRET CAN BE FOUND WITH ONLY THE UPPER
CASE.”

The “ships” on each map appear to be a letter. The letters, in order, are: FHGUZREJVO. The clue tells us
to reorder these letters based on the index. Map 9 is the letter ‘0’, so that goes first. After re-ordering
the letters, we get OHGIJURERVFGUREHZ. The next part of the clue is a hint to ROT-13 these characters
becoming BUTWHEREISTHERUM. Well that isn’t the flag, but there are other hints in the code within the
binary. Remember the fgets call from the function that retrieves the coordinates? It accepts more
than just two letters from the coordinate. In fact, we skipped over a function in our initial analysis
sub_403411. This function copies the input and computes the MD5 result lots of times and uses the
result as an AES key to decrypt this challenge’s final flag as shown in Figure 12.

$./pewpewboat.exe
Loading first pew pew map...

12345678

I mmonNw>
|_

Rank: Seaman Recruit
Welcome to pewpewboat! We just loaded a pew pew map, start shootin'!

Enter a coordinate: BUTWHEREISTHERUM
very nicely done! here have this key: yOu__sUnK_mY__P3Wp3w_be4t@flare-on.com

Figure 12: Final flag

CiraCun lnr 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCun rAam a

