)
<® Fire Eye

Flare-On 4: Challenge 6 Solution — payload.dll

Challenge Author: Jon Erickson (@2130706433)

In this challenge, users were given a 64bit Windows DLL. The point of this challenge was to illustrate a
trick which has been seen used in the wild, which I’'m going call dynamic export table modification
(DETM). This challenge is simple and attempts to focus only on the relevant code which implements
DETM without having to deal with other anti-analysis and anti-debug related code.

Analysis

We can start this challenge by performing simple static analysis by running strings, we only get a small
number of relevant unique strings as shown in Figure 1.

Error

Insert clever error message here!

Usage

rundl132 payload.dll, EntryPoint EntryPoint
payload.dll

EntryPoint

Figure 1 - Strings

All the other strings found are compiler/ linker generated. The strings reveal a hint that the DLL should
be executed using the rundlI32 built-in windows executable. The command illustrates that you should
use the export name EntryPoint and provide an argument string ‘EntryPoint’.

Before running, we can examine the exports from within IDA Pro. Figure 2 shows the exports table
which agrees with our basic static analysis that the EntryPoint function exists.

CiraCun lnr 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCun rAam 1

)
<® Fire Eye

FLARE

Q IDA - C:\Users\jon\Documents\Projects\FlareON-2017\payload\x64\Release\payload.dll — O X
File Edit Jump Search View Debugger Options Windows Help

AE ey B 6 3 o A@ odiphEr <~ #F X P D DN debugger - %l -

(A — (0] =
Librarv function Data Ml Reaular function Unexplored Bl Instruction External svmbol

A Functions window 8 & x [EIDA View-A [@ Hex View-1 £ [Structures £ EEnums £ & Imports [& Exports @

Function name Al Name Address Ordinal

| sub_180005A50 £3 EntryPoint 0000000180005C00 1

£ | EntryPoint (2] DIIEntryPoint 0000000180006200 [main entry]

£ |sub_180005C40

£ |sub_180005D30

| sub_180005E40

£ | sub_180005E70

f | sub_180005E90

f | sub_180005EB4

f | sub_180005F04

1 |sub_180006030 Vv

< >

Line 39 of 354

4 Graph overview o8& x

Line 1 of 2

= Output window o 8 x
The initial autoanalysis has been finished. 0
Python l

AU: idle Down Disk: 133GB

Figure 2 - Export Table

Examining the EntryPoint export function as shown in Figure 3, reveals simple code to invoke the
MessageBoxA function. The function is called with the usage message that we observed during our

basic static analysis step. Weird!

CiraCun ln~r 1AAN MaCarvihu Rhud Milnitae AN QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ |

infAMECiraCun rAam |

nar CiraCun rAm 2

:
<OFireEye FLARE

public EntryPoint
EntryPoint proc near

arg_#= qword ptr 8

arg_8= qword ptr 18h
arg_18= quword ptr 18h
arg_18= dword ptr 28h

mouv [Fsp+arg_18], rod

mov [vsp+arg_18], r8

mov [rsp+arg_8], rdx

mov [rsp+arg_A], rcx

sub rsp, 28h

E{ily rod, rod ; uType
lea r8, allsage ; "Usage™
lea rdx, aRundl132Payloa ; "rundll32 payload.dll, EntryPoint EntryP™...
Xor PCX, PCX 3 hind
call cs:MessageBoxA

mov eax, 1

add rsp, 28h

retn

EntryPoint endp

Figure 3 - EntryPoint Export

At this point we have covered the basic static analysis step. Let’s try to follow the hint provided and
run this sample dynamically. Running the sample with the provided hint reveals an error message that
the entry point ‘EntryPoint’ is missing as shown in Figure 4. How is this possible? If this name exists
within the sample’s export table, why do we get a Missing entry?

CiraCun lnr 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCun rAam 2

:
<OFireEye FLARE

RunDLL X

1 Error in payload.dll
@& Missing entry: EntryPoint

Figure 4 - Missing Entry Error

Some users at this point try to execute the exported function by ordinal number (Figure 5).

rundll132 payload.dll #1

Figure 5 - Running sample by ordinal

Trying this experiment reveals a different message as shown in Figure 6. This is a message box which
contains a string which was found during our static analysis step. This means that the export ordinal #1
does exist, but the export name ‘EntryPoint’ does not.

Error X

Insert clever error message here!

Figure 6 - Clever error message

Before we look at the function that references the string ‘Insert clever error message here!” in IDA Pro

CiraCun lnr 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCun rAam A

:
<OFireEye FLARE

lets first try to figure out why we cannot call the exported function ‘EntryPoint’.

Since we were given a hint that the payload should be loaded with rundll32, we can examine how
rundll32 works. According to Microsoft', rundll32 performs the following steps:
1. It parses the command line.

2. It loads the specified DLL via LoadLibrary().
3. It obtains the address of the <entrypoint> function via GetProcAddress().
4. It calls the <entrypoint> function, passing the command line tail which is the <optional arguments>.

5. When the <entrypoint> function returns, Rundll.exe unloads the DLL and exits.

Based on this information we can guess that step 3 is unable to obtain the address of the ‘EntryPoint’
function from payload.dll. The GetProcAddress function works by walking the export table of the target
DLL to find the corresponding entry in its export table. Let’s perform this action manually using the
debugger. While the MessageBox error message is still displayed showing the message “Missing Entry”,
we can attach to the rundll32.exe process with WinDBG.

After we attach to process we can view the loaded modules using the ‘lm’ command as shown in
Figure 7.

0:000> 1m

start end module name
00007££7°32d50000 00007££7°32d67000 rundl132 (deferred)
00007£££°d2700000 00007fff d28aal00 uiautomationcore (deferred)

00007£££ d28b0000 00007£££ d2948000 tiptst (deferred)
00007£££ e1770000 O0007f£ff e1al5000 iertutil (deferred)
00007££f£f e6970000 O00007££f£f e69d5000 OLEACC (deferred)
00007££f£f £04a0000 00007fff £04b£f000 payload C (export symbols)
00007£££ £0550000 O00007£££ £0576000 dwmapi (deferred)

Figure 7 - Viewing loaded modules

We can see that payload.dll is loaded at the base address 00007fff f04a0000. First, we find the address
of the IMAGE_NT_HEADER structure by looking at the e_Ifanew field of the IMAGE_DOS_HEADER as
shown in Figure 8.

0:000> dt 00007£ff £04a0000 nt! IMAGE DOS HEADER e lfanew

! https://support.microsoft.com/en-us/help/164787/info-windows-rundll-and-rundll32-interface

CiraCun lnr 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCun rAam [

:
<OFireEye FLARE

ntdll! _IMAGE_DOS_HEADER
+0x03c e lfanew : 0n272

Figure 8 - Viewing e_Ifanew field

We can now view the export data directory by using the ‘dt’ command shown in Figure 9. This
command uses the base address of payload.dll along with the e_Ifanew field to calculate the correct
location to the start of the IMAGE_NT_HEADERS.

0:000> dt 00007£f££f £04a0000+0n272 nt! IMAGE NT HEADERS64 -alé6
OptionalHeader.DataDirectory.
ntdll! IMAGE NT HEADERSG64
+0x018 OptionalHeader
+0x070 DataDirectory

[00]
+0x000 VirtualAddress : 0x4000
+0x004 Size : 0x200

Figure 9 - Viewing Export Data Directory

The virtual address 0x4000 as displayed in Figure 9 is relative to the base address of payload.dll. This is
the location in memory where the export directory exists. We can view this memory location using the
‘db” command as shown in Figure 10.

Without fully parsing the data we can see some interesting strings, including a DLL name which was not
visible during our basic static analysis phase.

db 00007f£f£f £f04a0000+0x4000

00007f£f £04a4000 00 00 00 00 18 33 22 11-00 00 00 00 32 40 00 00 3" 2@..
00007f£f £f04a4010 01 00 00 00 01 00 00 00-01 00 0O 00 28 40 00 00vuon... (@..
00007f££°£04a4020 2c 40 00 00 30 40 00 00-50 5a 00 00 3d 40 00 00 ,@..0Q..PZ..=Q@..
00007f£f £04a4030 00 00 68 65 72 65 73 79-2e 64 6¢c 6¢ 00 62 61 73 ..heresy.dll.bas
00007f£f £f04a4040 6f 70 68 69 6c 65 73 6¢c-61 70 73 73 63 72 61 70 ophileslapsscrap
00007f££f £f04a4050 70 69 6e 67 00 00 00 00-00 00 00 00 00 00 00 00 ping............

Figure 10 - Memory for export directory

Since the export table does not match what is shown statically we can assume at this point the DETM
has occurred. If we assume that the long string shown in the hex dump in Figure 10 is an exported
function name, we can try to run rundll32 again with this potential export name as shown in Figure 11.

rundl132 payload.dll, basophileslapsscrapping

Figure 11 - Running sample with new export name

CiraCun lnr 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCun rAam [~

:
<OFireEye FLARE

We again receive the message “Insert clever error message here!”. This is the same message we
received when attempting to use ordinal #1. This means the export name we provided does exist, and
its code was properly executed, at least enough to give us a non-standard error message.

Going back to the export table which is located at RVA 0x4000 from Figure 10. We can use the
IMAGE_EXPORT_DIRECTORY struct shown in Figure 12 as provided by Microsoft to interpret the data.

typedef struct IMAGE EXPORT DIRECTORY {

DWORD Characteristics;

DWORD TimeDateStamp;

WORD MajorVersion;

WORD MinorVersion;

DWORD Name;

DWORD Base;

DWORD NumberOfFunctions;

DWORD NumberOfNames;

DWORD AddressOfFunctions; // RVA from base of image

DWORD AddressOfNames; // RVA from base of image

DWORD AddressOfNameOrdinals; // RVA from base of image
} IMAGE EXPORT DIRECTORY, *PIMAGE EXPORT DIRECTORY;

Figure 12 - IMAGE_EXPORT_DIRECTORY Structure

By mapping the data to the struct, as shown in Figure 13, we get the following fields and values:

Characteristics: 0x0

TimeDateStamp: 0x11223318

MajorVersion: 0x0

MinorVersion: 0x0

Name: 0x4032 (RVA) => “heresy.dll”

Base: 0x1

NumberOfFunctions: 0Ox1

NumberOfNames: 0x1

AddressOfFunctions: 0x4028 (RVA) => 0x5a50 (RVA)
AddressOfNames: 0x402c (RVA) => 0x403d (RVA) =>
“basophileslapsscraping”
AdderessOfNameOrdinals: 0x4030 (RVA) => 0xO0

Figure 13 - Parsed Export Directory

From reviewing this output we can see that the DLL name is “heresy.dll”, it includes one exported
function with the name “basophileslapsscraping”, and the RVA of the exported function is 0x5a50. By

CiraCun lnr 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCun rAam 7

:
<OFireEye FLARE

adding the image base address 0x180000000 with the RVA 0x5150 we end up with the address of the
exported function as 0x180005a50. Quickly looking in IDA Pro we can also see that this export
references the strings “Insert clever error message here!”. To determine why this message is presented
we follow the logic of this function.

Knowing that the function “basophileslapsscraping” is the export name and using the hint that we
should be executing this sample with rundll32. We again use Microsoft’s documentation to find the
proper interface for exported functions as shown in Figure 14.

void CALLBACK EntryPoint (HWND hwnd, HINSTANCE hinst, LPSTR
lpszCmdLine, int nCmdShow) ;

Figure 14 - Rundll32 Export Function Declaration

With this function signature, we now know that the function 0x180005a50 has 4 arguments, so we can
update the function in IDA with this information.

If we look at the ‘jnz” instruction at address 0x180005B1F in IDA we can see that it is based on an
inlined strcmp. The comparison is between the IpszCmdLine argument and a currently unknown local
variable. The logic for the where the local variable came from is not immediately clear.

.text:0000000180005AF5 mov rax, [rsp+188h+tvar 148]
.text:0000000180005AFA mov rcx, [rspt+l188h+lpszCmdLine]

Figure 15 - Pointers for string comparison

If we use a debugger we can quickly figure out what both var_148 and IpszCmdLine point to. While in a
debugger, we can see that rax points to “basophileslapsscraping” (export name) and rcx points to an
empty string. This is because we did not provide any arguments while running the rundll32 command.
If we again remember the hint given, we should execute the rundll32 command using both an export
name and the same export name as the argument as shown in Figure 16.

After running:

rundl132 payload.dll basophileslapsscrapping basophileslapsscrapping

Figure 16 - Running sample with export name as an argument

We get a new message shown in Figure 17 which is part of the key.

CiraCun lnr 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCun rAam Q

:
<OFireEye FLARE

key part X

key[24] = OxEf;

Figure 17 - Key Part

Now that we have a piece of the key we can re-visit the export function 0x180005a50 to understand
how it works. The first thing it does is call the function 0x180004760. This function is responsible for
returning a value stored at location 0x18001AB78 plus 0x88. The value at 0x18001AB78 is initially
undefined. Its value is set in the function at address 0x1800046B0.

Looking at the function 0x1800046B0 in IDA we can see that it takes one argument, dereferences the
value at offset Ox3c and checks for the magic value ‘PE’. If the magic value is found the value at the
address is saved. We can rename the function 0x1800046B0 get_image_nt_header, and we can
rename the address Ox18001AB78 to image_nt_header.

With this knowledge, we can now rename the function at address 0x0x180004760 to
get_export_table_directory. This is because the export data directory is at offset 112 (0x88) from the
beginning of the image_nt_header. The export function 0x180005a50 uses this export table directory
and adds it to a value at address 0x18001AB70, which is initially undefined.

The function 0x180004670 is responsible for setting the value 0x18001AB70. This function takes one
argument which is a pointer and dereferences the first word and compares the result to the magic
value ‘MZ’. We can rename the function 0x180004670 to get_dos_header. Additionally, the address
0x18001AB70 can be renamed to dos_header.

The export function 0x180005a50 uses the export table directory and gets both the AddressOfNames
and TimeDateStamp fields. The low byte of the TimeDateStamp is saved off in a local variable, and the
name is compared with the argument as discussed above.

Assuming the export name and argument strings are equal, the function uses the VirtualProtect API to
change the memory permissions on an area of memory. This area is defined from a table of functions

CiraCun lnr 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCun rAam a

:
<OFireEye FLARE

pointers where it is indexed based on the lower byte of the timestamp.

After the memory permissions have been changed, two functions are called which are responsible for
decrypting one of functions. The decryption is performed in two steps and uses standard RC4. After the
code is decrypted it invokes a function.

Now that we have a good idea of how the export function 0x180005a50 works, one path people may
try is to change the index (low byte of TimeDateStamp) to decrypt an alternative key part function. This
unfortunately does not work.

One thing that we noticed during our analysis of the exported function was the reference to both the
saved image_nt_header and dos_header pointers. How were these values populated? There was no
code within DLLMain which sets these values.

Looking at code which references both get_dos_header, and get_image_nt_header, we get the
function 0x180005D30 which was called from 0x180004400. IDA has only one reference to this
function which is a data reference as shown in Figure 18.

.rdata:0000000180010258 00 44 00 80 01 00 00 0O dg
offset sub 180004400

Figure 18 - Data Reference

It is not clear how it is possible for this function to be called. We can solve this mystery by again using a
debugger. If we set a break point at the beginning of the function 0x180004400 and perform a
backtrace using the ‘kv’ command as shown in Figure 19.

0:000> kv

Child-SP RetAddr : Args to Child

Call Site
00 000000ea eb67cfl3e8 00007£f£fd 13c£7967 : 00000000 00000000 000000ea " eb67cf784
00000000°00000004 00000000°00000019 : payload+0x4400
01 000000ea’e67cf3£f0 00007ffd 13cf5fbf : 00000000 00000000 000000ea e67cf784
00000000°00000000 00000000°00000001 : payload!EntryPoint+0x1d67

Figure 19 - Backtrace

We can see that the function was called from payload!EntryPoint+0x1d67. If we examine this location
in IDA we can see that it is part of the _initterm function.

The _initerm function is responsible for initializing C++ objects and takes two pointers as arguments.
The function continues through a list of function pointers from the first argument until it reaches the

CiraCun ln~r 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCuna rAam mn

:
<OFireEye FLARE

second and executes all the pointers in between. If we mark both the start and end pointers we can
see that the function of interest lies in-between.

.rdata:0000000180010250 00 00 00 00 OO0 00 00 0O START dg 0
; DATA XREF: dllmain crt process attach (HINSTANCE * const,void *
const)+AFt0

.rdata:0000000180010258 00 44 00 80 01 00 00 00 dg
offset sub 180004400
.rdata:0000000180010260 00 00 00 00 00 00 00 00 END dg 0

; DATA XREF: dllmain crt process attach (HINSTANCE * const,void *
const)+A810

The function 0x180005D30 performs the following tasks.

e Firstit finds the both the dos_header and image_nt_headers.

e Second, it changes the memory permission of the first page of memory of the image base
address.

e Third, the function calls the get_export_data_directory function saves the value to a local
variable.

The function then calls the function 0x180004710. This function gets the current system time, adds the
year and month components together, and returns the results modulo 26. The function 0x180004710
can be renamed to get_date_mod_26.

Fourth, is a function call to 0x180005C40 which takes the date mod 26 as an argument. This code seeds
a random generator using the date mod 26 argument. The function 0x180005C40 then uses the rand
function to generate data to XOR against a buffer. The buffer is at address [0x180001000 + (0x200 *
date)]. Meaning that the data is decrypts is dependent on the date which has been passed in.

We can re-name the function 0x180005C40 as decrypt_data_based_on_date.
Fifth, the function 0x180005D30 continues by using the value of [0x180001000 + (0x200 * date)] to
overwrite the RVA field in the export data directory. Since this function is using mod 26, it means that

there will be 26 possible export data directories. We have already encounter one based on today’s
date.

CiraCun ln~r 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCuna rAam 11

:
<OFireEye FLARE

We now know what we need to do to recover the key. The export tables are based on the date. We
can keep incrementing the date month, recover the name of the exported function name, and then run
rundll32 with the correct exported function name and argument. This can be a bit of a slow tedious
process.

An easier solution would be to patch the binary and shown in Figure 20 and Figure 21 to bypass the
requirement that the exported function name and rundll32 command line argument have to be the
same equal.

.text:0000000180005B1F OF 85 AC 00 00 00 inz
loc_180005BD1

Figure 20 - strcmp result before patch

Becomes:

.text:0000000180005B1F 90 90 90 90 90 90

Figure 21 - strcmp after patch

With the patch in place we can now run the patched payload as shown in Figure 22:

rundl1132 payload.dll, #1 "Hello World"

Figure 22 - Running Patched payload.dll

Running the patched payload results in a MessageBox giving us a key part. We can write a simple script
to change the system date and invoke rundll32 in a loop 26 times. We can examine all of the
MessageBox outputs shown in Figure 23 to recover the key.

key[0] = 0x77;
key[1] = 0x75;
key[2] = 0x75;
key[3] = 0x75;
key[4] = 0x74;
key[5] = 0x2d;
key[6] = 0x65;
key[7] = 0x78;
key[8] = 0x70;

CiraCun ln~r 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCuna rAam 19

)
<OF; reeEye

key[9] = 0x30;
key[10] = 0x72;
key[1ll] = 0x74;
key[1l2] = 0x73;
key[13] = 0x40;
key[1l4d] = 0x66;
key[15] = 0Ox6c;
key[l6] = 0x61;
key[1l7] = 0x72;
key[18] = 0x65;
key[19] = 0x2d;
key[20] = 0x6f;
key[21] = Ox6e;
key[22] = 0x2e;
key[23] = 0x63;
key[24] = 0x6f;
key[25] = 0x6d;
Key: wuuut-expOrts@flare-on.com

Figure 23 - Key Parts and Key

CiraCun ln~r 1AAN MaCarvihu Rhud Milnitae AN QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDECVE (247 2202\ | infamECi

raCun ram | anana

CiraCun rAm

12

