)
@ FireEye

Flare-On 4: Challenge 7 Solution — zsud.exe

Challenge Author: Michael Bailey (@mykill)

DOS 6.22 with Windows 3.11 (Networking Edition!) would have been a lonely island of sol.exe if my
friend Stonekeep hadn’t plugged in the cat4, popped open Terminal, dialed the University of
Wisconsin-Milwaukee VAX server, and connected me via telnet to the MUD .
zsud. exe is a salute to Zolstead’s ZMUD and Tenchi’s . Writing this walkthrough, | discovered
that Animud made an impression on me about the importance of proper ASCII art (see Figure 1).

Original DikuMUD by Hans Staerfeldt, Katja Nyboe,

Tom Madsen, Michael Seifert, and Sebastian Hammer
Based on MERC 2.1 code by Hatchet, Furey, and Kahn
ROM 2.4 copyright (c) 1993-1996 Russ Taylor

Animud Muyo, 1997-Now George Frick [tenchi@animud.net]

FLARE SUD v24 - Escape Room =B
ATDT 14141111111......... o
jgsdos.flare-on.com 5000

Connected to jgsdos.flare-on.com 5000

_ Wmmmm/
a#mmmmmB/ BmmBmmBmé6a 3BmmBmmBm
mmm J##Mmmmmmmé mmm -4mm[3mm[
Bmm JW#mmP 4mmmmL mmBaaaa#mm' 3Bmé6aaaa,
mmm JWmmmP 4mmmBL Bmm! 4X##" 3mmP????
I EEEEE] JwWmmm? 4mmmBL mmm L, 3BmLaasaa M
mmm#H#ZH#Z Wmmmmaaaaaa, JmBmm6. mmB "#Bm/ 3mmm#UZ#Z
mmmmm#Z#Z#! “mmmBm,
. JmmmpP*
_jmmpP*

You are in the vestibule. Try looking around.

hat is your name?

Figure 1: Left: depiction of Animud login screen from mudstats.com; Right: zsud.exe starting screen

Summary

zsud. exe is a native x86 Windows GUI application that loads the .NET Common Runtime Language
(CLR) to invoke a method in a Microsoft.NET assembly. The original name of this program is
clrhost.exe and it was renamed to zsud. exe after compilation. The program uses Microsoft
Detours to hook 24 file I/O-related Windows APIs within its own process, in order to virtualize accesses
to the bogus filename that it provides to the ICLRRuntimeHost: :ExecuteInDefaultAppDomain

CiraCun lnr 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCun rAam 1

)
<O FireEye FLARE

method. The assembly is referenced as M: \whiskey tango_flareon.dll but its original name was
flareon.dll. The flareon. four type within flareon.dl1 implements a static public method
named Smth. The Smth method decodes a long Base64 string and decrypts its contents using the AES-
256 algorithm with the insecure Electronic Code Book (ECB) cipher mode and the key sooooo0_
sorry_zis_is not_ze_ flag. It then uses System.Management.Automation.PowerShell to
invoke the plaintext result as a PowerShell script. The script launches a WinForms-based GUI for a text-
based game. The native binary also hooks msvcrt!srand and msvcrt!rand which the PowerShell-
based game calls through a dynamically constructed assembly. When the player picks up an in-game
“key” object, the game calls msvcrt!srand providing the seed value 42, which enables the corrupted
random number generator. Subsequent calls to msvcrt ! rand from the script produce a
predetermined sequence of numbers corresponding to the directions in which the player must walk to
decrypt the description of the key. Once the key is decrypted, the player must present it to Kevin
Mandia in his office and don the FireEye helmet in-game object, after which Kevin Mandia will use a
textual representation of the MD5 hash of the key’s description to decrypt the final flag. Figure 2
shows the composition of zsud. exe.

Native x86 Windows GUI application
Thread 2: Httpapi-based decryption server, port 9999
Thread 1: Hooked CLR host

.NET assembly using System.Management.Automation

PowerShell gooey center

- Display WinForms-based game

- Call hooked msvert!srand/rand

- HTTP decryption requests to port 9999

Figure 2: Composition of zsud.exe

The technique of hooking file I/O APIs to virtualize file accesses and spoof the presence of a file on disk
was emulated from the sample 37486-the-shocking-truth-about-election-rigging-in-
america.rtf.1lnk (f713d5df826c6051e65¥995e57d6817d) documented by Volexity', which
FLARE analyzed in support of FireEye threat intelligence research. The first tactic for solving zsud. exe

! https://www.volexity.com/blog/2016/11/09/powerduke-post-election-spear-phishing-campaigns-targeting-think-tanks-
and-ngos/

CiraCun lnr 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCun rAam 2

:
<OFireEye FLARE

is to play the game to learn the objectives of the challenge.

Playing Along

Windows Explorer displays zsud . exe with a shield, and running it precipitates a UAC consent dialog if
UAC is so-configured. zsud . exe presents the Ul on the right-hand side of Figure 1. Typing help yields
the output in Listing 1.

Game commands:
h[elp] - See this help
g[uit] - Exit the game

Area commands:

1[ook] [object] - Look at the room (or at an optional object)
n[orth] - Move north

s[outh] - Move south

e[ast] - Move east

w[est] - Move west

u[p] - Move up

d[own] - Move down

Personal commands:

say <someone> <words...> - Say <words...> to <someone>
wear <inventory-item> - Put <inventory-item> on

remove <thing> - Take <thing> off

Inventory commands:
inv[entory] - Check your inventory

get <object> [location] - Get object [from within optional location])

drop <object> - Put object down
Listing 1: ZSUD help

Exploration reveals 13 rooms connected as shown in the map in Figure 3.

CiraCun ln~r 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDECVE (247 2202\ | infA@ECiraCuna rAarm | anan

a1 CiraCun rAm 2

:
<OFireEye FLARE

Kevin Mandia’s
office
| |
[| | f
Northwest hall IT access Conference
- || rooms
L —
Lunch room Cubicles CUt_"C!e_maze
o (infinite)
| | T T
- = || |
Southwest hall RANDISN Southeast hall e
| Lobby | | |
| | | T
Vestibule Women's room
| |
Outside
(infinite)

Figure 3: Map of rooms in zsud. exe

Going outside or entering the cubicle maze requires the player to restart the game because every exit
from these two rooms leads back to the same room, infinitely. The most interesting room is Kevin
Mandia’s office because Kevin Mandia is a pretty big deal, and although he is a very busy non-player
character, he can hold a brief conversation with the player.

A close reading of the help output and a meticulous examination of items in the lobby reveal a key
stored in the desk drawer (alternately, this can be discovered during static analysis). Picking up the key
and looking at it exposes its description, which is the word You followed by a long, incomplete string of
Base64 text as shown in Listing 2.

> get key drawer
You get a key.

> look key

CiraCun lnr 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCun rAam A

:
<OFireEye FLARE

You

BANKbEPxukZfP2EikF8jNO4iqGIYORjM3p++Rci2RiUFVSORbjWYzbbI3BSerzwGc9EZkKTvv1l
JbHOD61dmehDxyJGa60UIXsKQwrobU3WsyNkNsVd/XtN9/6kesgmswA5Hvroc2NGYa91gCVvla
Yg4UBR1yigMCKj598yfTMc1l/koEDpZUh19Dy4ZhxUUFHbiYRXFAR1IYNSiqJAEYNBOr93nsAQPN
0gNrqg230Yd3RPp4THd8G6VkIUX1tRgXv7px2CWdOHUuxKBVq6EduMFSKpnNB7jAKojNf1oGECr
tR5pHdG1LhtTtH61FE7IVTEKOHD+TMO1VUhOBpa37WhIAKEwWpuyp5+Tspyh@GidHtYcNWfzLNB
Xymmrhzvta2nJ+FtI6KWXgAAMIdUCY6YrGbWFoR2ChpeWlZLf7cQ1Awh27y6h0V19R6IK0OpQzC

OQLNjUp1m4SO1twRUOpHEBYCeoYXbyR13kk92uXoBsBXwxdo9QoLBOAdImKNNI5VBTO3a+3S3k
u3YLwXR29GI1sCfdkVKralld/Xal//e+BqqlxMEucIdnNSwr4hlOtdpLrPyfnCVkBcadlRC6hG
1tbptCknTCUNiXCCOEINKWSVi3v5VrXkPGAvw/iRu7F2BimC+o3tIdWPpxkcfks6zVQSiFIjVz
rt28+QUb28+YRaCkPhfZALYKQLU3DR5YIw64sL40tykTI68evyRF /Fnp4VTNIWQHXPI+Y6yCHZ
nrb8NdIRDPfm1wx0QJbdeaEZSa3AgqI2whOpPBnf69vVAGAqjxyrI1LPLOhzd7cBfqnohjyDy/
t78TZ0hOhX++W6zkM1OEZ6I2CHX0p3vzgl/9iQigPWAglmdgiAhKbDFSM7kGPF5Reyphx27uzx
HAL1P7LrX1vF709v4vcCrHE7dIpuisSWhsx3rtIsBA15mdMAbuj1ErOpWLMbXCYFhpSj6GLOHO
U/PqeDoktZs9BLS+V11PcxaVVwHBGFCimMe61mSFDOhhYIXgTXbwKDVIS. . .

Listing 2: The key's initial description

The Base64 text is incomplete, and its content is encrypted, so decoding it doesn’t produce
encouraging results. Moving west while holding the key results in the strange message The key
emanates some warmth, whereas initially moving east causes the game to emit a Hmm. When the
correct move is taken, the description of the key changes slightly, revealing an additional word, as
shown in Listing 3.

You can

J+AEfTwXwcrEpMO1i1MEId5mQSVgzmnFbmaj1CZwKRWejVQSorplyWzR+kjdXCgXumPZBphh. . .

Listing 3: The key’s description after moving in the correct direction (truncated for brevity)

By restarting the game after any wrong turn, it is possible to follow this breadcrumb trail to make the
correct sequence of moves and induce the game to decrypt the key’s description one word at a time.
After successfully following the entire breadcrumb trail, the player winds up in the infinite cubicle
maze, and the key’s description reads as shown in Listing 4.

You can start to make out some words but you need to follow the

ZipRg2+UxcDPJ8TiemKk7Z9bUOfPf7V00alFAepISztHQNEpU4kza+IMPAh84P1NXwYEQ1IOD1
krwNXbGXcx/Q==

Listing 4: The key's description after following all breadcrumbs

In the cubicle maze, the player can move in any direction ad infinitum, and moving in the correct

CiraCun lnr 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCun rAam [

:
<OFireEye FLARE

direction does not change the key’s description. One could use a VM with snapshots to brute force the
correct moves, but there is no indication of how many iterations of this tedious process may be
necessary or whether this strategy will even successfully decrypt the last part of the key. Static analysis
is the next step.

Basic Static Analysis

Listing 5 shows the most interesting strings from zsud. exe.

IThis program cannot be run in DOS mode. IThis program cannot be run in DOS mode.
wininet.dll v4.0.30319
InternetOpenA flareon.dll
Mozilla/5.0 (iPhone; CPU iPhone 0S 8 0... four
POST flareon
https://www.windowsupdate.com/upd Decrypt2
M:\whiskey tango_flareon.dll Smth
file:///M:/whiskey tango_flareon.dll cipherText
bitsigd.dll System.Runtime.CompilerServices
InitializeEx CompilationRelaxationsAttribute
<html><head><title>FAIL WHALE!</title>... RuntimeCompatibilityAttribute
System.Security.Cryptography
W W W RijndaelManaged
W W W W ICryptoTransform
. W CreateDecryptor
e \ \.--] System.Management.Automation

/ RETD B PowerShell

| _ / FromBase64String

\'-._, N AddScript

R A G System.Collections.ObjectModel
VVVVVVVVVVVVVVVVVVVVV PSObject
</pre></body></html> Invoke
msi.dll System.Collections.Generic
MsiDatabaseOpenViewA S000000_sorry zis_is not_ze_ flag
http://127.0.0.1:9999/some/thing.asp
M:\clrhost.pdb

Listing 5: Selected strings from zsud. exe

Examination of strings in zsud. exe yields the following preliminary conclusions:

e The program may communicate over HTTP to one or all of the following URLs:
o https://www.windowsupdate.com/upd
o http://127.0.0.1:9999/some/thing.asp

e The program may create or use code from the following DLLs:

CiraCun lnr 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCun rAam [~

:
<OFireEye FLARE

o wininet.dll (InternetOpenA)

o M:\whiskey tango_flareon.dll
o bitsigd.dll (InitializeEx)

o msi.dll (MsiDatabaseOpenViewA)

e The PDB string M: \clrhost. pdb suggests that the program’s original filename may have been
clrhost.exe, which could mean that this program hosts the Microsoft.NET Common
Language Runtime (CLR).

e Some strings associated with PE headers appear twice, suggesting there may be an embedded
executable or DLL.

e The program may reference Microsoft.NET classes and methods associated with encryption and
invocation of PowerShell scripts.

e The program may reference the following DLLs: wininet.dll, bitsigd.dll, msi.dll,

zsud.exe is a 376.5 KB PE32 file with a resource directory and a debug directory. The resource
directory contains a manifest requiring administrative access. The debug directory indicates CodeView
symbol information and Microsoft’s dumpbin.exe utility confirms that M: \clrhost. pdb found in
the binary is indeed its PDB path, reinforcing the theory that this application may host the CLR.

Advanced Static Analysis

Descending into any of the user-defined functions in WinMain reveals an obfuscation wherein function
bodies are hidden by copious nested jumps. Listing 6 shows an example.

sub_4036A0 proc near
jmp sub_403630
sub_4036A0 endp

Listing 6: jmp instructions all the way down

It is trivial to defeat this obfuscation manually by selecting the target of the first jmp instruction and
holding the Enter key until IDA depicts a function that is visually different from the above. The
bookmark feature in IDA Pro (A1t+M to create, Ctrl+M to recall) can be used to reduce the number of
times this must be done. Alternately, it is possible to bind an IDAPython script to a hotkey, such as the
script in Listing 7. This results in a simpler IDA navigation history that is more easily traversed. Going
forward, the nested functions will be disregarded in favor of discussing the functions they are hiding.

def follow longcall(va = None):

if va is None:
va = here()

CiraCun lnr 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCun rAam 7

:
<OFireEye FLARE

while GetMnem(va) == 'jmp':

va = GetOperandValue (va, O0)

Jump (va)
Listing 7: IDAPython defeat for nested function obfuscation

The nested function obfuscation appears to have the side-effect of inducing IDA Pro to assign incorrect
names to selected functions. Listing 8 shows an example of a function that calls GetProcAddress, which
IDA Pro has erroneously named __beep_#0.

__beep_0 proc near

hModule= dword ptr 4
lpProcName= dword ptr 8

push [esp+1pProcName] ; lpProcName
push [esp+4+hModule] ; hModule
call ds:GetProcAddress

retn

__beep_0 endp
Listing 8: Mislabeled function

The first function call in WinMain ultimately calls CreateThread which causes the function at
0x408420 to execute. This thread procedure dynamically resolves functions via the function at
0x4081A0 and then calls those functions before exiting. The functions it resolves are deobfuscated
with the ASCII string decoder at 0x4061D0, which has the signature shown in Listing 9.

int usercall decodel@<eax>(struct stl *out, PUCHAR obfuscated, DWORD key@<edi>);
Listing 9: ASCII string decoder signature for 0x4061d0

The string values can be obtained by either static or dynamic analysis. Listing 10 shows the relevant
IDAPython string decoder.

def decodeA (va, k):
retval = "'
i=0
while True:

obfuchar = Byte(va + 1)
c = O0xff & (obfuchar » k)

k = Oxffffffff & ((k << 8) + (k >> 24))
i+=1

CiraCun lnr 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCun rAam Q

)
<O Fire Eye

if not c:
break
retval +=

return retval
Listing 10: ASClI string decoder IDAPython equivalent

String decoding shows that the program resolves seven (7) functions from httpapi.dll:

e HttpInitialize

e HttpCreateHttpHandle

e HttpAddurl

e HttpRemoveUrl

e HttpTerminate

e HttpReceiveHttpRequest
e HttpSendHttpResponse

It then adds the URL http://127.0.0.1:9999/some/thing.asp seen in the strings, and

implements an HTTP server based on sample code available at MSDN®.

The next user function in WinMain contains references to strings that will be overwritten with values
needed to load the CLR via the deprecated function CorBindToRuntimeEx and then invoke the
ExecuteInDefaultAppDomain method of the returned ICLRRuntimeHost object. This confirms
the suspicion of CLR hosting aroused by the PDB string. The signature for ICLRRuntimeHost: :
ExecuteInDefaultAppDomain?® and the values of the decoded strings indicate that zsud . exe

makes the function call in Listing 11.

clr->ExecuteInDefaultAppDomain (
L"M:\whiskey tango flareon.dll",
L"flareon.four",
L"Smth",
LongBase64StringhWide,
&Ret

)5

Listing 11: ICLRRuntimeHost::ExecutelnDefaultAppDomain call made by zsud.exe

> HTTP Server Sample Application, https://msdn.microsoft.com/en-us/library/windows/desktop/aa364640.aspx
3 ICLRRuntimeHost::ExecutelnDefaultAppDomain Method, https://docs.microsoft.com/en-us/dotnet/framework/

unmanaged-api/hosting/iclrruntimehost-executeindefaultappdomain-method

CiraCun lnr 1AAN MaCarvihu Rhud RMilnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infA@ECiraCun rAam | unana

1 CiraCun rAm a

:
<OFireEye FLARE

Since the path M:\whiskey tango_flareon.dll does not exist, it is worth verifying that no
substitution is made prior to the call. The WinDbg output in Listing 12 confirms this.

0:000> u 1

clrhost+0x265d:

00ed265d ff512c call dword ptr [ecx+2Ch]
0:000> du poi(esp+4)

002decd8 "M:\whiskey tango flareon.dll™

0:000> du poi(esp+8)

00761c28 "flareon.four"

0:000> du poi(esp+0xc)

00761c60 "Smth"
Listing 12: WinDbg exploration before ExecutelnDefaultAppDomain call

Almost immediately prior to this is an obfuscated call to 0x406530 which creates numerous handles
associated with the running program, copies the .NET assembly in the embedded PE-COFF DLL located
at address 0x458AB0 into two file mappings, and repeatedly calls 0x4298C0 supplying pairs of pointers.

Deeper within the function at 0x0x4298C0 are many VirtualProtect calls; references to opcodes
0x90, 0xe9, and Oxcc; and references to the DWORD value 0x52727464 which, when rendered as
ASCII, equals 'Rrtd". Searching the Internet for VirtualProtect Rrtd yields many hits for
detours. cpp, from which it is evident that this value is referred to as the DETOURS_REGION_
SIGNATURE as part of the Microsoft Detours function hooking library. Listing shows the locations of
two references to DETOURS_REGION_SIGNATURE within zsud. exe.

0042917B mov dword ptr [edx], 'Rrtd' ; DETOURS_REGION_ SIGNATURE

00429639 cmp dword ptr [eax], 'Rrtd' ; DETOURS REGION SIGNATURE

Listing 13: Detours region signature referenced at 0x42917B (comments added)

The first argument in each call to this latter routine is consistently a pointer to a Windows API function
that was initialized before WinMain was called. Table 1 lists the referenced Windows API functions.

UnmapViewOfFile GetFileSizeEx GetFileAttributesA
CloseHandle ReadFile GetFileAttributesW
GetFileInformationByHandle | ReadFileEx GetFileAttributesExA
FreeLibrary ReadFileScatter GetFileAttributesExW
OpenFile CreateFileA LoadLibraryA
MapViewOfFile CreateFilelW LoadLibraryW

CiraCun ln~r 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCuna rAam mn

:
<OFireEye FLARE

MapViewOfFileEx CreateFileMappingA LoadLibraryExA

GetFileSize CreateFileMappingW LoadLibraryExW
Table 1: Hooked file 1/0 functions

The second argument to each call is a hook routine, such as the one shown in Listing 13.

CiraCun ln~r 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCuna rAam 11

:
<OFireEye FLARE

HANDLE stdcall sub 406910 (
LPCSTR lpStringl,
DWORD dwDesiredAccess,
DWORD dwShareMode,
LPSECURITY ATTRIBUTES lpSecurityAttributes,
DWORD dwCreationDisposition,
DWORD dwFlagsAndAttributes,
HANDLE hTemplateFile

HANDLE result; // eax(@3

if (lpStringl && CompareStringA (
LOCALE INVARIANT,
1lu,
lpStringl,
-1,
"M:\\whiskey tango flareon.dll",
-1) == CSTR_EQUAL)
result = (HANDLE)hFile myself; // Handle to s
else
result = CreateFileA 0 (
lpStringl,
dwDesiredAccess,
dwShareMode,
lpSecurityAttributes,
dwCreationDisposition,
dwFlagsAndAttributes,
hTemplateFile) ;
return result;

Listing 13: CreateFileA hook

Based on this, it is evident that zsud . exe is hooking file I/O functions, checking for the bogus filename
in several of the hooks, and inducing the CLR to believe that the bogus file exists on disk even though it
does not. This is the same technique as was used by APT29 in the sample referenced above
(f713d5df826c6051e65F995e57d6817d) to load a stripped-down version of PSPunch® and add a
PowerShell command capability to the SPIKERUSH (aka PowerDuke) implant.

The functions msvcrt!srand and msvcrt!rand are also hooked, and their roles become clear after
reviewing the game functionality in more detail.

As for the .NET assembly, it can either be found by auditing the output of the . imgscan WinDbg
command and using the .writemem command to dump it from memory, or by identifying the PE file
embedded within zsud . exe and executing the IDAPython one-liner in Listing 14.

4 https://github.com/vysec/PSPunch

CiraCun ln~r 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCuna rAam 19

:
<OFireEye FLARE

\ open('embedded pe.bin', 'wb').write(GetManyBytes(©x458AB0, ©x1200))
Listing 14: Dumping the embedded .NET assembly

.NET Assembly Static Analysis

The DLL has a version resource indicating its original name is flareon.d1l. Using the dnSpy5 NET
decompiler, it is possible to locate and directly examine the Smth method of the flareon. four type
within flareon.dl1. Listing 15 displays dnSpy’s decompilation.

/ Token: : 0x00002164 File Offset: 0x00000364
ublic static int Smth(string arg)

~ g \‘:‘

using (PowerShell powerShell = PowerShell.Create())
{

try

{

byte[] cipherText = Convert.FromBase64String(arg);
string text = four.Decrypt2 (cipherText,
"soooooo sorry zis is not ze flag");

O W o Jo Ul WP

powerShell.AddScript (text);
Collection<PSObject> collection = powerShell.Invoke();
foreach (PSObject current in collection)
{
Console.WriteLine (current);
}
}
catch (Exception var 5 70)
{
Console.Writeline ("Exception received");
}
}
return 0;

Listing 15: Method Smth of type flareon.four

Full inspection of flareon.dl1 reveals that it simply Base64 decodes, AES-256 decrypts, and
executes the encrypted PowerShell code that was passed to it in its first argument.

.NET Assembly Advanced Dynamic Analysis

There are two ways to access the decrypted PowerShell script. One is to identify the algorithms as we
have above and decrypt it using the utility of our choice. The other is to let the challenge binary

> https://github.com/0xd4d/dnSpy

CiraCun ln~r 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCuna rAam 12

:
<OFireEye FLARE

decrypt the PowerShell script text for us and dump it from memory. The latter route is preferable
because it can be applied to other problems in .NET malware that cannot be solved any other way.

The tool of choice here is the WinDbg sos extension for .NET, but this is challenging to use with
zsud. exe because many of the modules we are concerned with are loaded in sequence and not all at
once. First, we must wait until the CLR is loaded to use the .1loadby command, or we will receive the
message Unable to find module 'clr'.The remedy to thisis shown in Listing 16.

0:000> sxe 1d clr

0:000> g

ModLoad: ©08d90000 ©942d000
C:\Windows\Microsoft.NET\Framework\v4.0.30319\clr.dll
0:000> .loadby sos clr

Listing 16: Awaiting clr.dll and loading sos (selected output omitted)

Second, we must wait until clrjit.d11 is also loaded, otherwise the ! bpmd command will only be
able to set pending breakpoints on the CLR functions we want, and pending breakpoints do not appear
to be effective in this scenario. Listing 17 shows the process of awaiting c1rjit.d11 before disabling
module load notifications altogether.

0:000> g

ModLoad: ©cc10000 0cc8dooo
C:\Windows\Microsoft.NET\Framework\v4.0.30319\clrjit.d11l
0:000> sxd 1d

Listing 17: Awaiting clrjit.dll before setting managed breakpoints (selected output omitted)

Third, until flareon.dl11l is loaded, the sos extension will still only be able to set pending
breakpoints on the methods of interest because System.Management.Automation.dll has yet to
be referenced and loaded by the flareon.dl1l assembly. Listing 18 demonstrates setting a managed
breakpoint on an arbitrary method within mscorlib_ni.d11 thatis used within flareon.d11 to be
sure the assembly has fully loaded including all references before setting the final breakpoint.

0:000> !bpmd mscorlib ni System.Text.Encoding.GetBytes
Setting breakpoint: bp 7AQE1B69 [System.Text.Encoding.GetBytes(Char*,
Int32, Byte*, Int32)]

0:000> g

Listing 18: Breaking on System.Text.Encoding.GetBytes to await availability of PowerShell (selected output omitted)

CiraCun ln~r 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCuna rAam 11

:
<OFireEye FLARE

Once the managed breakpoint is hit, we can add a breakpoint on the AddScript method of the
PowerShell object access the plaintext script parameter which is a System.String containing
the PowerShell code we want. Listing 19 shows how to set the right managed breakpoint for this.

Breakpoint 3 hit

mscorlib ni+@x313ala:

79a33ala 85f6 test esi,esi

0:000> !bpmd System.Management.Automation.dll
System.Management.Automation.PowerShell.AddScript

Setting breakpoint: bp 20F97E74
[System.Management.Automation.PowerShell.AddScript(System.String,
Boolean)]

Setting breakpoint: bp 20F97DE4
[System.Management.Automation.PowerShell.AddScript(System.String)]

0:000> g
Listing 19: Breaking on PowerShell. AddScript (selected output omitted)

At this point, it is possible to identify the desired managed object to dump. Listing 20 shows the output
of the I clrstack -acommand which includes both methods and their parameters, including the
script parameter at @xa@bf3d4.

CiraCun ln~r 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCuna rAam 12

:
<OFireEye FLARE

0:000> !clrstack -a

0S Thread Id: ©Ox4ec (0)

Child SpP IP Call Site

0018e730 20f97ded

System.Management.Automation.PowerShell.AddScript(System.String)
PARAMETERS:

this (<CLR reg>) = 0x0a081b50

script (<CLR reg>) = 0x0a0bf3d4
LOCALS:

<no data>

0x0018e734 = Ox00000000

0x0018e730 = Ox00000000

0018e760 0ddaeeb8 flareon.four.Smth(System.String)
PARAMETERS:
arg = <no data>
LOCALS:
0x0018e764 = Ox0a081b50

0018e8f0 08d92552 [GCFrame: 0018e8f0]

Listing 20: Observing parameters to the PowerShell. AddScript method (selected output omitted)

The !DumpObj sos command truncates the content of the managed System.String object at
16,384 characters, but the other information in the output of !DumpObj can be used to manually

obtain the result. Listing 21 shows the value of the m_stringlLength member and the offset of the

m_firstChar member.

CiraCun ln~r 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCuna rAam

1c

:
<OFireEye FLARE

0:000> !dumpobj ©x0albf3d4
Name: System.String
MethodTable: 79b23e18
EEClass: 79723810
Size: 83418(0x145da) bytes
File:
C:\Windows\Microsoft.Net\assembly\GAC 32\mscorlib\v4.0 4.0.0.0 ...
String:
#HH#HHHH A H R . .
Welcome to the 2017 FLARE-ON Challenge mega-script. Have fun!
B R R R R R
HiHHHH
Set-StrictMode -Version 2.0
$logo = @"
_a,
W#m,
Wmmmm/
BmmBmmBmm[Bmm a#mmmmmB/ BmmBmmBm6a 3BmmBmmBm
mmm [mmm JjH#H#EMmMmmmmme mmm -4dmm[3mm[
mBmLaaaa, Bmm JW#mMmMP 4mmmmL mmBaaaa#ftmm' 3Bmé6aaaa,
mmmpP ! 1"?" mmm JWmmmP ~ 4mmmBL Bmm ! AX##" 3mmP????"
Bmm[Bmmaaaaa jWmmm? AmmmBL mmm H#L, 3BmLaasaa
mmm [mmm##Z#Z _ jWmmmmaaaaaa, [mBmm6. mmB "#Bm/ 3mmm#UZ#Z
_WBmmmmm#Z#Z#! “mmmBm,
?? 12 2#mmmmi# | Pl
. JmmmP '
_jmmP'*
CIW?!
"
Fields:

MT Field Offset Type VT Attr Value Name
79b2560c 40000ab 4 System.Int32 1 instance 41702
m_stringLength
79b24810 40000ac 8 System.Char 1 instance 23
m_firstChar

CiraCun ln~r 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCuna rAam 17

:
<OFireEye FLARE

79b23e18 40000ad C System.String © shared static Empty
>> Domain:Value ©0962a6d0:NotInit <<

Listing 21: The length of the string and the offset of its first character (selected text omitted)

Listing 22 illustrates validating the beginning of the script text, calculating the number of bytes to
dump based on the Unicode string length, and writing the full PowerShell script to disk.

0:000> du Ox0akbf3d4+8 L10

0aobf3dc "Hi#HHHEHHH TS

0:000> ?0n41702 * 2

Evaluate expression: 83404 = 000145cc

0:000> .writemem decrypted powershell unicode.txt 0x0a0bf3d4+8 LOx145cc

Writing 145CC bytesS. . it ittt iiieeineeroeseonsesanananns
Listing 22: Validating and dumping the PowerShell script

The file requires conversion from Unicode before reading it with certain editors such as Vim.

PowerShell Static Analysis

The decrypted PowerShell script is 843 lines long and contains several points of interest. Selected code
is obfuscated using Daniel Bohannon’s Invoke-Obfucation® script. The bulk of the obfuscated script
code uses reflection techniques as documented by Matt Graeber’ to make msvcrt!srand and
msvcrt!rand available and to call them. When the user’s direction of movement maps to the
numeric value returned by msvcrt!rand (based on the $directions_enum dictionary), the script
calls the Invoke-XformKey function. This function uses Invoke-WebRequest to send the
cumulative list of directions moved and the current key description to the web server at port 9999.
Once the player moves in the correct sequence of directions, the key’s description will be fully
decrypted, which the script detects by looking for an @ symbol. The script then transports the player
back to the starting room of the map.

The Invoke-Say function decrypts the flag only if the player drops the key in Kevin Mandia’s office
and wears the FireEye helmet before speaking to Kevin Mandia. Invoke-Say computes the MD5 hash
of the key object’s description field and uses a text representation of that hash as an RC4 key, using a
minimized RC4 algorithm courtesy of harmjOy et al® to decrypt the flag.

Ironically, calling msvcrt!srand to seed the rand function with a fixed number does not produce a

e https://github.com/danielbohannon/Invoke-Obfuscation

’ https://blogs.technet.microsoft.com/heyscriptingguy/2013/06/27/use-powershell-to-interact-with-the-windows-api-part-
3/

® http://www.harmjOy.net/blog/powershell/powershell-rc4/

CiraCun ln~r 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCuna rAam 1Q

:
<OFireEye FLARE

consistent, deterministic sequence of pseudo-random numbers in any program that uses
uxtheme.dll, because uxtheme.dl1 calls msvcrt!rand at various times and alters the state of the
PRNG. This discovery compelled the challenge author to hook rand to return a predetermined
sequence when the caller of the rand function is not within the bounds of any particular DLL (i.e., is in
a region of memory containing instructions emitted by the Microsoft.NET JIT compiler). A side-effect of
this choice is that running the script within another PowerShell script host such as powershell.exe
or powershell_ise.exe will produce inconsistent results. In this way, the game script is bound to
the binary it came from, in a similar fashion to the malware that this challenge emulates, which hooks
certain Windows functions to provide a secret API for use by its payload.

Solution

There are a few ways to obtain the correct directions to walk. One is to map the integer sequence
referenced by the rand hook to the values found in the $directions_enum dictionary from the
PowerShell script. Listing 23 demonstrates this.

Python>', '.join(['nsewud'[Dword(@x459CB8+ 4*i)] for i in

range (Dword(0x459D8C))])

W, n, n, e, e S, S, S, h, €, w,b n, e, €, W, w, w, d, u, n, d, u, n, d, u,
n, s, u, n, &, u, n, s, e, w, d, u, n, s, e, w, s, e, w, s, e, W, s, e, Ww,
d, u, n

Listing 23: IDAPython one-liner for obtaining the directions from the binary

It is also possible to solve the binary without reversing the hooking. zsud. exe suffers from an
information disclosure vulnerability in which the game indicates when the user has gone in the correct
direction at a given part of the sequence, even if they have previously taken wrong turns. One solution
that abuses this is to move only in one direction, noting when the game displays the ...key emanates
some warmth message. Doing this for each direction, the player can superimpose the results to arrive
at the correct sequence of directions. The only difficulty here is recognizing when the sequence has
repeated.

Another solution is to iteratively solve the binary by brute force and user interface automation using
something like AutolT or WScript.Shell, although this does take some time due to the usual snags

associated with Ul automation.

After exiting the cubicle maze, the key’s decrypted description contains a message in hexadecimal as
shown in Listing 24.

CiraCun ln~r 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCuna rAam 10

:
<OFireEye FLARE

You can start to make out some words but you need to follow the

RIGHT_PATH!@66696e646b6576696e6d616€6469610d0a

Listing 24: After moving in the correct directions

Listing 25 shows the decoded message which tells the user what to do.

C:\Users\mykill>echo 66696e646b6576696e6d616e6469610d0a | xxd -r -p

findkevinmandia
Listing 25: Decoding the hex with xxd

The player must then proceed to Kevin Mandia’s office, drop the key, and wear the FireEye helmet
before speaking to Kevin Mandia. If the player has correctly decrypted the key, then Kevin Mandia
utters the hexadecimal value of the decrypted flag in response to any greeting. Listing 26 demonstrates
this exchange taking place.

CiraCun ln~r 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCuna rAam mn

:
<OFireEye FLARE

Kevin Mandia's Office
This room smells of rich mahogany and leather.

You see:
Kevin Mandia
Kevin Mandia's Desk
A football helmet
Exits: South

> get helmet
You get A football helmet.

> wear helmet
You put the helmet on your head. It looks objectively awesome.

> drop key
You drop a key

> say kevin hai

Kevin says, with a nod and a wink: '6D 75 64 64 31 6E 67 5F 62 79 5F 79 30
75 72 35 33 6C 70 68 40 66 6C 61 72 65 2D 6F 6E 2E 63 6F 6D'.

Bet you didn't know he could speak hexadecimal! :-)

Listing 26: Talking to Kevin Mandia to get the flag

The hexadecimal string uttered by Kevin Mandia decodes to the flag for this challenge binary, which is
muddlng_by_ yOur531ph@flare-on.com.

CiraCun ln~r 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCuna rAam 21

