)
<O Fire Eye

Flare-On 4: Challenge 9 Solution
Challenge Author: Joshua Homan

Overview

This solution takes a couple of different approaches for solving the challenge. The first section covers
how to solve the challenge using only static analysis with radare2. The second section covers dynamic
analysis with simavr and the final section covers solving using an Arduino UNO.

Initial Analysis

This challenge is an ASCII file that each line starts with a colon character followed by HEX characters as
shown in Figure 1. The file is an Intel HEX file, a file format that is commonly used to program
microcontrollers. A detailed write-up on the Intel HEX file format can be found on Wikipedia®.

:100000000C9462000C948A000C948A000C948A0070
:100010000C948A000C948A000C948A000C948A0038
:100020000C948A000C948A000C948A000C948A0028
:100030000C948A000C948A000C948A000C948A0018
<- truncated ->

Figure 1 - Intel HEX of remorse 09.1ino.hex

Now that we know the challenge is an Intel HEX file, the first thing we’d like to do is convert the file to
binary to see if we can extract any additional information. One way to accomplish this is to use avr-
objcopy from toolchain-avr? Avr-obijcopy is a useful utility that converts between various files
types such as binary, elf and Intel Hex. An example command line is shown in Figure 2.

avr-objcopy -I ihex -0 binary remorse 09.ino.hex remorse 09.ino.bin

Figure 2 - avr-objcopy syntax

Once the challenge is converted to binary, we can run strings and get the results shown in Figure 3.

#+5+%+a
/_'1

Correct Pin State:

! https://en.wikipedia.org/wiki/Intel_HEX

2 https://github.com/arduino/toolchain-avr

CiraCun lnr 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCun rAam 1

:
<OFireEye FLARE

‘Flare—On 2017 Adruino UNO Digital Pin state: ‘
Figure 3 - Strings output

Taking a look at the strings, we are provided with a hint indicating the challenge is for an Arduino UNO?
based on the string “Flare-0on 2017 Adruino UNO Digital Pin state:”.

The Arduino UNO is built around an 8-bit ATmega328p processor that uses the Atmel AVR instruction
set. The processor has 32 general purpose registers, labeled r0-r31, along with a few special registers
we need to be aware of: stack pointer (sp), status register (SrREG) and program counter (pc).

Register labels Description

r0-r31 General purpose registers

SP Stack pointer

BC Program counter

SREG Status register

2 Memory access register based on r27:r26
y Memory access register based on r29:r28
Z Memory access register based on r31:r30

Table 1 - AVR registers of interest

The ATmega328p processor equipped with 2KB of SRAM. To overcome the limitation of referencing
memory with only an 8-bit register, the processor has three special registers that combine two general
purpose registers (x, y and z from Table 1). These registers have an interesting property in which they
can be incremented or decremented after accessing. Take for example the instruction “1d4 r25, z+”.
This instruction loads the value stored at the memory address pointed to by the z register (r31:r30)
into r25 and then increments the value contained in z.

* https://store.arduino.cc/usa/arduino-uno-rev3

CiraCun lnr 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCun rAam 2

:
<OFireEye FLARE

Another important property of the ATmega328p is that it uses a modified Harvard architecture,
meaning date and code are stored in different memory locations (Flash for code and SRAM for data).
For example, the data stored at memory location 0x500, is not the same as the code located at address
0x500.

When calling functions, the arguments to the function are placed in the registers starting with r25
down through r8. The registers containing a function return value depends on the data type. Bytes are
stored in r24, words in registers 25:24, 32-bits in r22-r25 and 64-bit in r18-r25%,

For static analysis, the one way to get started is radare2’. Radare2 is an open source reverse
engineering framework that supports a wide range of architectures, file formats and operating
systems. The challenge can be loaded into radare2 using the command line r2 -a avr remorse.bin
and initial analysis can be performed using the aaaaa command. The output is shown in Figure 4.

aaaaa

opcode st @de returned 0 cycles.

[x] Analyze all flags starting with sym. and entry0 (aa)

[]

Value from 0x00000000 to 0x00001156
aav: from 0x0 to 0x1156

[%x] Analyze len bytes of instructions for references (aar)
opcode lds @cl2 returned 0 cycles.
opcode std @1b0 returned 0 cycles.

[x] Analyze function calls (aac)

[x] Emulate code to find computed references (aae)

Cannot find section boundaries in here

[x] Analyze consecutive function (aat)

[x] Constructing a function name for fcn.* and sym.func.* functions (aan)
[x] Type matching analysis for all functions (afta)

Figure 4: Initial analysis using r2

The af1 command lists the functions identified by radare2. The results are shown in Figure 5. We can
see that 29 functions are identified and the entry point is labeled entryo.

afl
0x000000c4 12 3108 -> 84 entry0
0x000001d8 1 24 fcn.000001d8
0x000001f0 3 20 fecn.000001£0
0x000002ce 4 66 fcn.000002ce
0x000003e2 5 20 -> 24 fcn.000003e2

* http://www.atmel.com/webdoc/avrlibcreferencemanual/FAQ_1faq_reg_usage.html
> http://rada.re/r/

CiraCun lnr 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCun rAam 2

:
<OFireEye FLARE

0x000003f6 18 82 fcn.000003f6
0x00000448 7 82 fcn.00000448
0x0000049%a 9 96 fcn.0000049%a
0x000004fa 9 120 fcn.000004fa
0x00000572 1 26 -> 64 fcn.00000572
0x00000596 3 38 10c.00000596
0x000005bc 6 116 fcn.000005bc
0x00000630 56 -> 208 fcn.00000630
0x0000063a 5 42 fcn.0000063a
0x00000664 1 40 fcn.00000664
0x0000068c 11 170 fcn.0000068c
0x00000736 114 fcn.00000736
0x0000087e 6 46 fcn.0000087e
0x000008ac 3 58 fcn.000008ac
0x000008e6 6 92 fcn.000008e6
0x00000942 7 40 -> 60 fcn.00000942
0x0000096a 9 118 -> 132 fcn.000009%6a
0x000009e0 8 140 fcn.000009e0
0x00000a6c 9 212 fcn.00000a6c
0x00000b40 5 94 fecn.00000b40
0x00000bf8 2 138 -> 148 fcn.00000bf8
0x00000c8c 5 68 fcn.00000c8c
0x00000cdO 112 fcn.00000cdO
0x00000cdc 3 12 -> 14 fcn.00000cdc

Figure 5: Functions identified by r2

Let’s take a closer look at the entry point by disassembling it with the command pd @ entry0. In
Figure 6, we can see entry0 initializing memory starting at addresses 0xdc with the 1pm instruction.
The 1pm instruction loads a byte from program memory and stores it to data memory.

pd @ entryO

(fcn) entry0O 84

entry0 ();

; JMP XREF from 0x00000000 (fcn.000003e2)

0x000000c4 - Y
0x000000c6
0x000000c8
0x000000ca
0x000000cc
0x000000ce
0x000000d0
0x000000d2
0x000000d4
0x000000d6
0x000000d8
,=< 0x000000da
.—=> 0x000000dc
| 0x000000de
! ; JMP XREF from 0x000000da (entryO0)

;IO SREG: flags

;IO SPH: Stack higher bits SP8-SP10
;IO SPL: Stack lower bits SP0-SP7

CiraCun lnr 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCun rAam A

)
<® Fire Eye

0x000000e0
0x000000e2
0x000000e4
0x000000e6
0x000000e8
0x000000ea
0x000000ec
0x000000ee

; JMP XREF from 0x000000ec

0x000000f£0
0x000000£2
0x000000f4
0x000000f6
0x000000£8
0x000000fa
0x000000fc
;== r30:

0x000000£fd
0x000000fe
;—— rl:

;—— r8:

0x000000ff
0x00000100
0x00000102

0x00000106
0x00000108
0x0000010a
0x0000010c¢
0x00000110

3

3

2

(¢}

68

73

cpl r26, 0x6cC
cpc r27, rl7
brne 0Oxdc
1di r18, 0x06
1di r26, 0Oxo6c
1di r27, 0x05
rijmp 0xf0
st x+, rl
(entry0)
cpli r26, 0x2c
cpc r27, rl8
brne Oxee
1di r1l7, 0x00
1di r28, 0x62
1di r29, 0x00
rijmp 0x106
unaligned
sbiw r28, 0x01
unaligned
r30, r28

call £cn.00000cdO
; JMP XREF from 0x000000fc (entryO)

cpi r28, 0x61
cpc r29, rl7
brne Oxfe

call fcn.00000b£f8
Jjmp 0Oxce6

Figure 6 — Disassembly of entry point function entry0

Notice two functions are a called from entry0: fcn.00000cd0 and £fcn.00000b£8. Taking a closer look

at fcn.00000b£8, disassembly shown in Figure 7, we can see some initial processor setup by

configuring timers and at the end of the function there is an infinite loop calling two functions
fcn.00000b40 and fcn.000003e2.

0x000000c4]> pd @ fcn.00000b£8
/ (fcn) fcn.00000bf8 148
| fcn.00000b£f8 () ;
| ; CALL XREF from 0x0000010c (entryO0)
| 0x00000bf8 sei
| 0x00000bfa in r24, 0x24 IO TCNT2: Timer/Counter2 (8 bits).
| 0x00000bfc 60 ori r24, 0x02
| 0x00000bfe out 0x24, r24 IO TCNT2: Timer/Counter2 (8 bits).
| 0x00000c00 in r24, 0x24 IO TCNT2: Timer/Counter2 (8 bits).
| 0x00000c02 60 ori r24, 0x01
| 0x00000c04 out 0x24, r24 IO TCNT2: Timer/Counter2 (8 bits).
| 0x00000c0O6 in r24, 0x25 IO TCCR2: Timer/Counter2 Control
Register (8 bits).
| 0x00000c08 60 ori r24, 0x02

CiraCun lner 1AAN NACAaviha RLuA Nilnitae A QEN2E | 11 ANQ 291 22NN | 11 Q77 CIDEEVE (217 2202\ | infaAMECiraCun rAam | uananas CiraCun rArm [

)
<O Fire Eye

FLARE

Register

Register

Register

0x00000c0a
(8 bits).

0x00000c0c
(8 bits).

0x00000c0e

0x00000c10
(8 bits).

0x00000c76
0x00000c7a
0x00000c7e

200
00

; JMP XREF from 0x00000c8a (

.—> 0x00000c82
| 0x00000c86
=< 0x00000c8a

out 0x25,

in r24, O

ori r24,

out 0x25,

sts 0x7a,
sts Oxcl,
call fcn.

r24 ;

x25 ; IO TCCR2:

0x01

r24 ;

r24
rl
000008ac

fcn.00000b£8)

call fcn.
call fcn.

rijmp 0xc8

00000b40
000003e2

IO TCCR2:

IO TCCR2:

Timer/Counter2 Control

Timer/Counter2 Control

Timer/Counter2 Control

Figure 7 - Disassembly of function fcn.00000bf8

Inspecting the disassembly of fcn.00000b40, shown in Figure 8, we can see a call to another function
fcn.0000087e at address 0xb42. The code at address 0xb4c compares the return value from this
function with a value stored in memory at address 0x585. If the values are different, the challenge
continues executing through address 0xb50. At this point we don’t know what fcn.0000087e does but
we do know the return value significantly affects program flow. Looking further down in the function,
we can see the return value is passed as a single argument to the function fcn.00000a6c at offset

Oxb7c.
0x000000c4]> pd @ fcn.00000b40
/ (fcn) fcn.00000b40 94
fcn.00000040 () ;

! ; CALL XREF from 0x00000c82 (fcn.00000bf8)
| 0x00000b40 push r28
| 0x00000b42 f call £fcn.0000087e
| 0x00000b46 r28, r24
| 0x00000b48 1ds r24, 0x585
| 0x00000b4dc cp r28, r24

,==< 0x00000b4de breg 0xb90

[0x00000b50 6 00 1ds r22, 0x5(

[0x00000b54 1lds r23, g

[0x00000b58 1di r24,

[0x00000b5a 1di r25, 0x05

[0x00000b5c call £fcn.00000736
[0x00000b60 12 1di r20, 0x02

[0x00000b62 50 1di r21, 0x00

[0x00000bo4 6 r22, r28

[0x00000b66 1di r24, 0x8f

[0x00000b638 1di r25, 0x05

[0x00000b6a call £fcn.0000068c
[0x00000boe 64 1di r22, 0x24

[0x00000b70 5 1di r23, 0x05

CiraCun ln~r 1AAN MaCarvihu Rhud Milnitae AN QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ |

infAMECiraCun rAam |

nar CiraCun rAm [~

)
<® Fire Eye

| 0x00000b72

| 0x00000b74

| 0x00000b76

| 0x00000b7a 2f
| 0x00000b7c

| 0x00000b80

==< 0x00000b82 21
| 0x00000b84 60
| 0x00000b86

| 0x00000b88

--> 0x00000b8c
0x00000b90 68
0x00000b92 73
0x00000b94
0x00000b96
0x00000b98

=< 0x00000b9%a

32

1di r24, 0x8f

1di r25, 0x05

call f£cn.00000664
r24, r28

call fcn.00000a6¢c

sbiw r24, 0x01

breq 0xb8c

1di r22, 0x00

1di r24, 0x0d

call £cn.0000049%a

sts 0x585, r28

1di r22, 0xe8

1di r23, 0x03

1di r24,

1di r25,

pop r28

Jmp fcn.000005bc

Figure 8 - Disassembly of function fcn.00000b40

After inspecting function fcn.00000a6c, we can see the function starts by initializing the stack at
address 0xa74 by decrementing the value obtained from the spu register (the higher 8 bits of the stack
pointer) by one and storing the result back with the instruction at address 0xa7a. The disassembly for

fcn.00000a6c is shown in Figure 9.

0x00000a6c]> pdf @fcn.00000a6c
/ (fcn) fcn.00000a6c 212
| fcn.00000a6c ()
| ; CALL XREF from 0x00000b7c (fcn.00000b40)
| 0x00000a6c push r28
| 0x00000a06e push r29
| 0x00000a70 in r28, ; IO SPL: Stack lower bits SP0O-SP7
| 0x00000a72 in r29, ; IO SPH: Stack higher bits SP8-SP10
| 0x00000a74 dec r29
| 0x00000a76 in r0, 0x3f ; IO SREG: flags
| 0x00000a78 cli
| 0x00000a7a out 0Ox3e, r29 ; I0 SPH: Stack higher bits SP8-SP10
| 0x00000a7c - ; IO SREG: flags
| 0x00000a7e IO SPL: Stack lower bits SP0O-SP7
| 0x00000a80
| 0x00000a82
| 0x00000a84
| 0x00000a86
| 0x00000a88 add r25, r30
| ; JMP XREF from 0x00000a8e (fcn.00000a6c)
| .—> 0x00000a8a st x+, rl
| ,==< 0x00000a8c cpse r25, r26
| | "=< 0x00000a8e rijmp Oxa8a
Figure 9 - Allocating space on the stack
CiraCun lner 1AAN NACAaviha RLuA Nilnitae A QEN2E | 11 ANQ 291 22NN | 11 Q77 CIDEEVE (217 2202\ | infaAMECiraCun rAam | uananas CiraCun rArm 7

)
<® FireEye FLARE

At address 0xa90, shown in Figure 10, we can see bytes being placed into a local variable in what
appears to be populating a stack string.

| T--> 0x00000a%0 1di r25, 0xb5
| 0x00000a92 std y+1, r25

| 0x00000a94 std y+2, r25

| 0x00000a96 1di r25, 0x86
| 0x00000a98 std y+3, r25

| 0x00000a9%a 1di r25, 0Oxb4
| 0x00000a9%c std y+4, r25

| 0x00000a9%e 1di r25, 0xf4
| 0x00000aa0l std y+5, r25

| 0x00000aa2 1di r25, 0xb3
| 0x00000aa4 std y+6, r25

| 0x00000aa6 1di r25, 0Oxfl
| 0x00000aa8 std y+7, r25

| 0x00000aaa 20 1di r18, 0xb0
| 0x00000aac 28 std y+8, rl8

| 0x00000aae 29 std y+9, rl8

| 0x00000ab0 std y+10, r25
| 0x00000ab2 1di r25, Oxed
| 0x00000ab4 std y+11, r25
| 0x00000ab6 1di r25, 0x80
| 0x00000abs8 std y+12, r25
| 0x00000aba 1di r25, Oxbb
| 0x00000abc std y+13, r25
| 0x00000abe 1di r25, 0x8f
| 0x00000ac0O std y+14, r25
| 0x00000ac2 1di r25, Oxbf
| 0x00000ac4 std y+15, r25
| 0x00000ac6 1di r25, 0x8d
| 0x00000ac8 std y+16, r25
| 0x00000aca 1di r25, 0xcé6
| 0x00000acc std y+17, r25
| 0x00000ace 1di r25, 0x85
| 0x00000ado std y+18, r25
| 0x00000ad2 1di r25, 0x87
| 0x00000ad4 std y+19, r25
| 0x00000ad6 1di r25, 0xcO
| 0x00000ads8 std y+20, r25
| 0x00000ada 1di r25, 0x94
| 0x00000adc std y+21, r25
| 0x00000ade 1di r25, 0x81
| 0x00000ae0 std y+22, r25
| 0x00000ae2 1di r25, 0x8c
| 0x00000ae4 std y+23, r25
| 0x00000aeb6 1di r26, 0x6c
| 0x00000ae8 1di r27, 0x05
| 0x00000aea 20 1di r18, 0x00

Figure 10 - Initializing stack string

After the local variable is initialized, we can see a loop that is loading a byte from the stack variable at

CiraCun ln~r 1AAN MeaCarviha Rhud Milnitae CA QEN2E | 11 ANQ 291 22NN | 11 Q77 CIDECVE (247 2202\ | infa@ECiraCuna rAarm | ananar CiraCun rAm Q

)
<OF; reeEye

FLARE

address 0xaec. This loop is shown in Figure 11. The byte is XORed with the function argument stored
in register r24 and the loop index counter is added to it. The result is stored in data memory starting at
address 0x56¢ (the x register is set at address 0xae6).

cNoNoNoNoNoNoNoNel
XKoX X X X X X X X
cReoNeNoNoNoNeNoRol
OO0 OO0 OO

o

o

o

"]

+

o

000af8

brne

Figure 11 - Decode loop

Once the loop completes, the challenge compares the value stored at memory address 0x576 with the
byte value 0x40 (‘e’). Being this far along in the Flare-On challenge, seeing a check for this character

should be very interesting to us.

At this point we’ve identified a stack string, decoding loop and sanity check. The next step is to
determine a value for the key, the first argument to the function, that results in a @ character in
memory location 0x576. After recreating the stack variable, we get the value shown in Figure 12.

\xb5\xb5\x86\xb4\xf4\xb3\xf1\xb0\xb0\xf1\xed\x80\xbb\x8f\xbf\x8d\xc6\x85\x87\xc0\x94\x81\x8¢c

Figure 12 - Stack string

We are interested in getting the 10" byte (0xED) to equal 0x40. The offset 10 is calculated by
subtracting the start of the string 0x56c with 0x576, the address of the sanity check character ‘e’. A
simple solution is to brute force all values for the key (r24) because the key space is limited to only 256

possible keys (8-bit processor). A sample script is shown in Figure 13.

ctext =
bytearray (
)

def decrypt (ctext, key):
rvalue = bytearray()

for x in range(len(ctext)):
rvalue.append (((ctext[x]
return str(rvalue)

"~ key)

+ x)

& Oxff)

CiraCun ln~r 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 22NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun rAarm | unanag

CiraCun rAm a

:
<OFireEye FLARE

for x in range(255):
r = decrypt (ctext, x)

if r[0x0a] ==
print % x
print 5 r
break

Figure 13 - Example brute force script

The output from running the script in Figure 13 shows the decryption key is 0xpB and the decoded
string is no r3mOrs3@flare-on.com. An alternative to brute force would involve subtracting the index
(0x0n) with the plaintext character 0x40 (‘@”) and XORing the encrypted text (0xED) to get the key
(0x40 - 0xO0A ~ O0xED = 0xDB).

Another approach to solving the Arduino challenge is to use the GDB functionality included in simavr®.
Simavr is an open source AVR simulator that enables us to execute and debug without any of the
hardware. simavr also supports executing Intel HEX file. The challenge can be executed with the
command line shown in Figure 14.

run_avr -m atmega328p -f 160000000 --gdb remorse 09.ino.hex

Figure 14 - Example run_avr command line

After simavr loads, it pauses waiting for a remote debugger to attach to it.

GNU gdb (GDB) 7.10.1

(gdb) target remote :1234
Remote debugging using :1234
0x00000000 in 2?2 ()

(gdb)

As seen in Figure 15, we set a breakpoint at 0xb48, where the return of fcn.0000087e is compared
with the value stored in memory at 0x585. One thing to be aware of with avr-gdb and simarvr is that
setting breakpoints using the instruction address (break *addr) does not work. This is possibly a result
of a bug or configuration issue. There are a couple solutions to this problem. The first option is to set
the breakpoint relative to the pc register using the command format break * $pc + <addr>. Thisis
the easiest solution when starting analysis because the program counter is set to zero. Another
workaround is to treat the address as a function pointer using the format break * (void(*) ())
<addr>.

6 https://github.com/buserror/simavr

CiraCun ln~r 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCuna rAam mn

:
<OFireEye FLARE

(gdb) break * S$pc + 0xb48
Breakpoint 1 at 0xb48
(gdb) ¢

Continuing.

Figure 15 - Example breakpoint

Once the breakpoint hits, we can inspect the register r28 to see the return value of fcn.0000087e is
0xFF. We can also show the value stored at address 0x585 that the return value is compared against.
An example is shown in Figure 16.

Breakpoint 1, 0x00000b48 in 2?2 ()
(gdb) info reg $r28

r28 Oxff
(gdb) x/u 0x585
0x800585: 0

Figure 16 — Inspecting the return value of fcn. 000008 7e

Knowing register r28 and the value stored at memory address 0x585 are different, the branch at
address 0xb4e will not be taken. The next portion of interest are the instructions at addresses 0xb50
and 0xb54 that load bytes from memory addresses 0x500 and 0x501. These registers are then passed
as arguments to the function call fcn. 00000736 at address 0xb5c as shown in Figure 17.

pd @ fcn.00000b40
(fcn) fcn.00000b40 94
fcn.00000040 ()
! ; CALL XREF from 0x00000c82 (fcn.00000bf8)

| 0x00000b40 push r28

| 0x00000b42 call £fcn.0000087e

| 0x00000b46 r28, r24

| 0x00000b48 1lds r24,

| 0x00000b4dc cp r28, r24 ; Return value (key)
,==< 0x00000bde breg
[0x00000b50 00 lds r22 ; Loading memory address
[0x00000b54 1lds r ; Loading memory address
[0x00000b58 1di r2
[0x00000b5a 1di r25,
[0x00000b5c call £fcn.00000736

Figure 17 - Argument for fcn. 00000736
The two bytes stored in memory at address 0x500 is a pointer to a string at address 0x53e (shown in

Figure 18). The string at address 0x53e is "Flare-On 2017 Adruino UNO Digital Pin state:”.
Recall that the ATmega328P is an 8-bit processor that requires two registers to store a pointer.

CiraCun ln~r 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCuna rAam 11

)
<O Fire Eye

FLARE

Breakpoint 1, 0x00000b48 in 2?7

(gdb) x/2bx 0x500

0x800500: 0x3e 0x05

(gdb) x/s 0x53e

0

0x80053e: "Flare-On 2017 Adruino UNO Digital Pin state:"

Figure 18 - Identifying argument to fcn.00000736

At this point if we continue execution we will see the emulator displays the output shown in Figure 19.

|Flare—0n 2017 Adruino UNO Digital Pin state:11111111..

Figure 19 - Emulator output

Now we have a general idea function fcn. 00000736 is likely responsible for printing the string "Flare-
On 2017 Adruino UNO Digital Pin state:” tothe serial port, the function fcn.0000068c prints
the digital pin state and the function fcn.0000087e obtains the digital pin state. This leads to the
indication that fcn.00000a6c, which takes the digital pin state as the only argument, is the function

we should focus on to solve the challenge.

pd @ fcn.00000b40
/ (fcn) fcn.00000b40 94
fcn.00000040 ()
! ; CALL XREF from 0x00000c82 (fcn.00000bf8)
| 0x00000b40 push r28
| 0x00000b42 call £fcn.0000087e
| 0x00000b4do6 r28, r24 ; Possible as return value
| 0x00000b48 1lds r24,
| 0x00000b4dc cp r28, r24
,==< 0x00000b4de breg
[0x00000b50 00 1lds r22,
[0x00000b54 lds r23, ; Pointer to “Flare-On 2017...”"
[0x00000b58 1di r24,
[0x00000b5a 1di r25,
[0x00000b5c call £cn.00000736 ; print to serial
[0x00000b60 1di r2o0,
[0x00000b62 1di r21,
[0x00000bo4 r22, r28 ; Possible key passed as arg
[0x00000b66 1di r24,
[0x00000b638 1di r25,
[0x00000b6a call £cn.0000068c ; print pin state
[0x00000boe 1di r22,
[0x00000b70 1di r23,
[0x00000b72 1di r24,
[0x00000b74 1di r25,
[0x00000b76 call f£cn.00000664
[0x00000b7a r24, r28 ; Possible key passed as arg
[0x00000b7c call £cn.00000a6c ; Function of interest
[0x00000b80 r24,
,===< 0x00000b82 breq
CiraCun lner 1AAN NACAaviha RLuA Nilnitae A QEN2E | 11 ANQ 291 22NN | 11 Q77 CIDEEVE (2417 2202\ | infAMECiraCun ~rAam | unanas CiraCuna ~Ama 17

)
<O Fire Eye

[0x00000b84 1di r22,
[0x00000b86 1di r24,
[0x00000b88 call £fcn.0000049a
--=> 0x00000b8c sts , r28
--> 0x00000b90 1di r22,
| 0x00000b92 1di r23,
| 0x00000b94 1di r24,
| 0x00000b96 1di r25,
| 0x00000b98 pop r28
=< 0x00000b9%a Jjmp fcn.000005bc

Figure 20 - Disassembly with annotations

At this point, we have a couple options to get to a solution. One option is to brute force using the
debugger to set the digital pin state and the other is to do static analysis of the function shown in the
above section. Since we are reverse engineers, let’s assume we chose the latter and determined the
key is 0xdb. We can set another breakpoint at 0xafe after the decoding loop to verify the results
(Figure 21).

(gdb) info reg $r28

r28 Oxff

(gdb) set $r28=0xdb

(gdb) info reg $r28

r28 0xdb

(gdb) break *(void(*) ()) Oxafe
Breakpoint 2 at Oxafe

(gdb) ¢

Continuing.

Figure 21 - Setting breakpoint on decoding validation

Once the breakpoint at 0xafe hits, we can see the instructions at addresses 0xae6 and 0xae8 are
setting the x register to 0x56c in Figure 22.

0x00000ae6 1di r2e, ; Low byte of x register
0x00000ae8 1di r27, ; High byte of x register
0x00000aea 1di r18,

.—> 0x00000aec 1ld r25, z+

| 0x00000aee eor r25, r24

| 0x00000afo r25, rl8

| 0x00000af2 st x+, r25

| 0x00000af4 rls,

| 0x00000afo6 cpi rl8,

=< 0x00000afs8 brne
0x00000afa lds r24,
0x00000afe cpi r24, ; Validate results

Figure 22 - Setting the x register for decoding loop

CiraCun ln~r 1AAN MaCarvihu Rhud Milnitae A QEN2E | 11 ANQ 291 22NN | 11 Q77 CIDEEVE (247 2202\ |

infAMECiraCun rAarm | wnanar CiraCun ~rAam 12

)
<©

FireEye F L;\RE

Now we can dump the decoded key from memory using the gdb command x/s 0x56c and see the key
no r3mOrs3@flare-on.com. as shown in Figure 23.

Breakpoint 4, 0x00000afe in 2?2 ()
(gdb) x/s 0x56¢c
0x80056c: "no r3mOrs3@flare-on.com"

Figure 23 - Displaying key from simavr

This section covers how to load and solve the challenge on a genuine Arduino UNO. There are many
clones of Arduino hardware and different boot loaders available that may not program correctly using
these instructions. If you choose to test this challenge on an Arduino UNO, make sure you are testing
on a genuine Arduino UNO with the default bootloader installed.

To program the Arduino, we can use avrdude from the toolchain-avr. The easiest method to obtain
the avrdude command line arguments for your environment is to use the Arduino IDE with verbose
output. To enable verbose output, under Preferences->Settings, check upload for show verbose
output during. Then compile and upload a simple script to your Arduino. The output window will
show the avrdude command line used to upload the script. An example command line is shown in
Figure 24.

avrdude -C<conf path> -v -patmega328p -carduino -P<Arduino device> -b115200 -D -
Uflash:w:remorse 09.ino.hex:1i

Figure 24 - Example avrdude to program Arduino UNO

Once the challenge is uploaded and running on the Arduino UNO, we can now use the serial monitor
from the Arduino IDE to see the output shown in Figure 25 displayed by the challenge.

Flare-On 2017 Adruino UNO Digital Pin state:11111111

Figure 25 - Serial output from Arduino UNO

After connecting the digital pins two and five to ground, as shown in Figure 26, we can see the solution
output in the serial monitor shown in Figure 27.

CiraCun ln~r 1AAN MaCarvihu Rhud Milnitae CA QEN2E | 11 ANQ 291 £2NN | 11 Q77 CIDEEVE (247 2202\ | infAMECiraCun ~rAarm | unanar CiraCuna rAam 11

)
<® Fire Eye

Arduino”

Figure 26 - Arduino UNO solution wiring diagram

Correct Pin State:

no r3mOrs3@flare-on.com

Flare-On 2017 Adruino UNO Digital Pin state:
Flare-On 2017 Adruino UNO Digital Pin state
Flare-On 2017 Adruino UNO Digital Pin state:

11111111

11011111

11011011

Figure 27 - Arduino UNO solution serial monitor output

CiraCun ln~r 1AAN MaCarvihu Rhud Milnitae A QEN2E | 11 ANQ 291 22NN | 11 Q77 CIDEEVE (247 2202\ |

infAMECiraCun rAam |

nar CiraCun rAm

12

