

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

1

Flare-On 6: Challenge 12 – help.zip

Challenge Author: Ryan Warns (@NOPAndRoll)

In this challenge players were given a .zip file containing a memory dump, a packet capture, and
a ransom/help document. When creating this challenge, I wanted to present players with some
of the techniques and APIs I’ve seen during the past year of analyzing malware for FLARE.
During malware analysis it is common to have to analyze samples that have mechanical bugs
(e.g. using an API incorrectly), logical flaws (e.g. not functioning correctly sometimes), or both.
This challenge was a collection of user-mode and kernel-mode binaries and shellcode. Players
needed to analyze these binaries to understand how they communicated with each other to
solve the challenge.

INITIAL CRASH TRIAGE

The .txt file included with this challenge indicates that the crash dump, help.dmp, and
packet capture, help.pcapng are the result of a system which was infected by buggy malware
and eventually crashed. Skimming the PCAP we can see some nonstandard TCP communication
on ports 4444, 6666, 7777, and 8888 but there are no clues as to what the data streams over
these ports contain.

We can probably guess that the PCAP comes from a set of samples running when the crash
dump was created, but without any hint as to how to proceed we will start our analysis with the
crash dump.

Note that a significant part of this challenge involves analyzing and extracting data from the
crash dump. There are a multitude of tools that support memory dump analysis, including
volatility and foremost, but for this solution I’ll be using WinDbg to show how I would approach
a crash dump analysis scenario.

Our first step is to triage the crash. We can use !analyze -v to get a general summary of
what caused the crash. The output of this command is shown in Figure 1.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

2

kd> !analyze -v

* *
* Bugcheck Analysis *
* *

SYSTEM_THREAD_EXCEPTION_NOT_HANDLED (7e)
This is a very common bugcheck. Usually the exception address pinpoints
the driver/function that caused the problem. Always note this address
as well as the link date of the driver/image that contains this address.
Arguments:
Arg1: ffffffffc0000005, The exception code that was not handled
Arg2: fffffa8003f9c621, The address that the exception occurred at
Arg3: fffff88007c6b958, Exception Record Address
Arg4: fffff88007c6b1b0, Context Record Address

Figure 1: Initial crash triage

From there we can use the !process command and a stack trace to figure out more
information about where we were executing at the time of the crash (Figure 2).

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

3

kd> .cxr 0xfffff88007c6b1b0

rax=fffffa8003f9c610 rbx=fffffa80040c65c0 rcx=fffffa80036ab5c0

rdx=fffff880033c8138 rsi=fffffa80018cc090 rdi=0000000000000001

rip=fffffa8003f9c621 rsp=fffff88007c6bb98 rbp=0000000007c6bbb0

 r8=fffff80002c3f400 r9=0000000000000000 r10=0000000000000000

r11=fffff80002c3ae80 r12=fffffa80036ab5c0 r13=fffff880033bdcc0

r14=0000000000000000 r15=fffff80000b94080

iopl=0 nv up ei ng nz na po nc

cs=0010 ss=0018 ds=002b es=002b fs=0053 gs=002b

efl=00010286

fffffa80`03f9c621 64a10000000050648925 mov eax,dword ptr

fs:[2589645000000000h] fs:0053:25896450`00000000=????????

kd> k

 # Child-SP RetAddr Call Site

00 fffff880`07c6bb98 00000000`0001093a 0xfffffa80`03f9c621

01 fffff880`07c6bba0 00000000`00010ba8 0x1093a

02 fffff880`07c6bba8 ffffffff`ffffffff 0x10ba8

03 fffff880`07c6bbb0 00000000`00000080 0xffffffff`ffffffff

04 fffff880`07c6bbb8 fffff880`033bdce7 0x80

05 fffff880`07c6bbc0 00000000`00000000 man+0x1ce7

kd> !process -1 0

PROCESS fffffa80018cc090

 SessionId: none Cid: 0004 Peb: 00000000 ParentCid: 0000

 DirBase: 00187000 ObjectTable: fffff8a0000017f0 HandleCount: 657.

 Image: System

Figure 2: Context at time of system crash

Now we know that we’re currently executing what looks like garbage code in the System
process at the time of the crash. We also see a driver, man.sys, on the call stack. We can start
our analysis with this driver, but it’s generally good practice to see if you can extract any
additional information from the crash state before digging into the code that caused it. The call
stack looks corrupted, so let’s start by observing the code that caused the crash, the man.sys
return address, and the rest of the stack. The code that caused the crash shows us why the
stack is misaligned in Figure 3.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

4

kd> ub rip

fffffa80`03f9c60e cc int 3

fffffa80`03f9c60f cc int 3

fffffa80`03f9c610 8bff mov edi,edi

fffffa80`03f9c612 55 push rbp

fffffa80`03f9c613 8bec mov ebp,esp

fffffa80`03f9c615 6aff push 0FFFFFFFFFFFFFFFFh

fffffa80`03f9c617 68a80b0100 push 10BA8h

fffffa80`03f9c61c 683a090100 push 1093Ah

Figure 3: Code responsible for the crash

We should already be suspicious of this code since it shows an unusual mixture of 32-bit and
64-bit registers, but for now note the four push instructions in this snippet account for 32 bytes
on the stack. We can assume this function starts at fffffa80`03f9c610 based on the int 3
instructions. Now let’s look at the stack (Figure 4):

kd> dqs @rsp

fffff880`07c6bb98 00000000`0001093a

fffff880`07c6bba0 00000000`00010ba8

fffff880`07c6bba8 ffffffff`ffffffff

fffff880`07c6bbb0 00000000`00000080

fffff880`07c6bbb8 fffff880`033bdce7 man+0x1ce7

fffff880`07c6bbc0 00000000`00000000

fffff880`07c6bbc8 00000000`00000000

fffff880`07c6bbd0 00000000`00000000

fffff880`07c6bbd8 00000000`00000000

fffff880`07c6bbe0 fffffa80`03f9c610

fffff880`07c6bbe8 00000000`00000000

fffff880`07c6bbf0 00000000`00000000

fffff880`07c6bbf8 fffff800`02d5cb8a nt!PspSystemThreadStartup+0x5a

fffff880`07c6bc00 fffffa80`036ab5c0

fffff880`07c6bc08 00000000`00000000

fffff880`07c6bc10 00000000`00000000

Figure 4: Stack at the time of the crash

This stack confirms that man+0x1ce7 is the code that called our garbage code. We can also see
PspSystemThreadStartup on the stack, which is an internal function that is called as part of
PsCreateSystemThread1. It’s a reasonable guess that this function is the entry point for our

1 https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/wdm/nf-wdm-pscreatesystemthread

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

5

system thread (Figure 5), so let’s look at this function further.

kd> ub man+0x1ce7 L9

man+0x1cbf:

fffff880`033bdcbf cc int 3

fffff880`033bdcc0 48894c2408 mov qword ptr [rsp+8],rcx

fffff880`033bdcc5 4883ec38 sub rsp,38h

fffff880`033bdcc9 488b442440 mov rax,qword ptr [rsp+40h]

fffff880`033bdcce 488b4058 mov rax,qword ptr [rax+58h]

fffff880`033bdcd2 4889442420 mov qword ptr [rsp+20h],rax

fffff880`033bdcd7 488d155aa40000 lea rdx,[man+0xc138

(fffff880`033c8138)]

fffff880`033bdcde 488b4c2440 mov rcx,qword ptr [rsp+40h]

fffff880`033bdce3 ff542420 call qword ptr [rsp+20h]

Figure 5: System thread entry point

This is a small function whose only job is to call a function from a structure passed as a
parameter. Luckily for us this parameter is also saved on the stack. We can walk backwards
through our garbage function and our system thread entry point to find that the parameter is
stored at fffff880`07c6bc00 on the stack and contains fffffa80`036ab5c0. WinDbg
contains many commands to attempt to automatically identify and parse structures in memory
and it’s usually helpful to take a couple guesses in cases like this. As seen in Figure 6, we can use
the !object command in this case to figure out that the parameter is a DRIVER_OBJECT.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

6

kd> !object fffffa80`036ab5c0

Object: fffffa80036ab5c0 Type: (fffffa80018e78a0) Driver

 ObjectHeader: fffffa80036ab590 (new version)

 HandleCount: 1 PointerCount: 2

 Directory Object: fffff8a000075060 Name: FLARE_Loaded_1

kd> dt _DRIVER_OBJECT fffffa80`036ab5c0

hal!_DRIVER_OBJECT

 +0x000 Type : 0n4

 +0x002 Size : 0n336

 +0x008 DeviceObject : (null)

 +0x010 Flags : 2

 +0x018 DriverStart : 0xfffffa80`03f9c100 Void

 +0x020 DriverSize : 0xf00

 +0x028 DriverSection : 0xfffff8a0`031c8fc0 Void

 +0x030 DriverExtension : 0xfffffa80`036ab710 _DRIVER_EXTENSION

 +0x038 DriverName : _UNICODE_STRING "\D\FL_DL_1"

 +0x048 HardwareDatabase : (null)

 +0x050 FastIoDispatch : (null)

 +0x058 DriverInit : 0xfffffa80`03f9c610 long +fffffa8003f9c610

 +0x060 DriverStartIo : (null)

 +0x068 DriverUnload : (null)

 +0x070 MajorFunction : [28] 0xfffff800`02aa3b20 long

nt!IopInvalidDeviceRequest+0

Figure 6: Inspecting parameter object

The DRIVER_OBJECT structure contains the start address and size of the PE corresponding to
the driver, so we can dump this to disk with the .writemem command (Figure 7).

 kd> .writemem C:\Users\ryan.warns\FLARE_On_2019\crashDriver.sys
0xfffffa80`03f9c100 0xfffffa80`03f9c100+0xf00-1

Figure 7: Extracting problem driver

A quick glance at this driver confirms it is a 32-bit driver file, which explains the crash since
we’re running a 64-bit operating system.

We now know that man.sys is likely responsible for crashing the system because it attempted
to load and execute a 32-bit driver on a 64-bit system. At this point we could continue to poke
around the memory dump with various tools, but since we have some context regarding what

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

7

man.sys can do let’s start our analysis on that.

MAN.SYS ANALYSIS

The lm2 command in WinDbg will give us the memory region associated with man.sys.
However, as seen in Figure 8, after writing this file to disk we’ll quickly notice that the file’s PE
headers have been wiped.

kd> lm m man

Browse full module list

start end module name

fffff880`033bc000 fffff880`033cb000 man (deferred)

kd> .writemem C:\Users\ryan.warns\FLARE_On_2019\man_dumped fffff880`033bc000

fffff880`033cb000-1

Figure 8: Dumping man.sys

At this point we could begin our analysis by pretending this binary is a shellcode buffer, but it
usually helps to attempt to rebuild a PE header so we can rely on IDA and other analysis tools.
Rebuilding PE headers is a common problem when dumping binaries from memory. For a
completely wiped header, a straightforward approach is to take a full PE header from another
binary and fix up the offsets for each section to match what is in memory.

Loaded PEs generally have a section alignment which results in padding being added to the end
of the actual data. For the dumped memory associated with man.sys we can skim the data to
look for many consecutive NULL bytes to make a reasonable guess about where sections begin,
then look at the data in the section to guess about which section it is. For this challenge we only
need to identify the .text section properly, and then the rest of the sections can be treated as
data.

WinDbg can also help us guess the sections correctly. The DRIVER_OBJECT structure we saw
earlier also contains the entry point for the PE in the DriverInit member. If we can find the
DRIVER_OBJECT for man.sys, the entry point is likely in the .text section. We can use the
!object3 command to list all the DRIVER_OBJECTs on the system. From there we just need
to find a DRIVER_OBJECT that has an entry point (Figure 9) in the range for man.sys

2 https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/lm--list-loaded-modules-
3 https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/-object

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

8

kd> !object \Driver

Object: fffff8a000075060 Type: (fffffa8001846a30) Directory

 ObjectHeader: fffff8a000075030 (new version)

 HandleCount: 0 PointerCount: 109

 Directory Object: fffff8a000004720 Name: Driver

 Hash Address Type Name

 ---- ------- ---- ----

 00 fffffa80018841c0 Driver vdrvroot

 fffffa8001da93a0 Driver fvevol

 fffffa80024ce060 Driver in

<… snip …>

kd> dt _DRIVER_OBJECT fffffa80024ce060

nt!_DRIVER_OBJECT

 +0x000 Type : 0n4

 +0x002 Size : 0n336

 +0x008 DeviceObject : 0xfffffa80`04030060 _DEVICE_OBJECT

 +0x010 Flags : 0x12

 +0x018 DriverStart : 0xfffff880`033bc000 Void

 +0x020 DriverSize : 0xf000

 +0x028 DriverSection : 0xfffffa80`0428ff30 Void

 +0x030 DriverExtension : 0xfffffa80`024ce1b0 _DRIVER_EXTENSION

 +0x038 DriverName : _UNICODE_STRING "\Driver\in"

 +0x048 HardwareDatabase : 0xfffff800`02f8c550 _UNICODE_STRING

"\REGISTRY\MACHINE\HARDWARE\DESCRIPTION\SYSTEM"

 +0x050 FastIoDispatch : (null)

 +0x058 DriverInit : 0xfffff880`033c1110 long +0

 +0x060 DriverStartIo : (null)

 +0x068 DriverUnload : 0xfffff880`033bd220 void +0

 +0x070 MajorFunction : [28] 0xfffff880`033c10b0 long +0

Figure 9: Extracting the entry point for man.sys

This means the entry point for man.sys is at 0xfffff880`033c1110 and also helps us
identify where the .text section is. From here we can continue scanning for padding sections
and rebuilding our PE header to get something usable in IDA. Figure 10 shows the full correct
section, but anything reasonably close is good enough.

Note that for the rest of this analysis all addresses used will be relative to where man.sys is
loaded in the dump, fffff880`033bc000.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

9

Figure 10: Correct sections for man.sys

Most malware rootkits are software drivers, meaning they are not directly tied to or
responsible for communicating with a piece of hardware and instead process arbitrary requests
from user-mode callers. In user mode this communication is done via calls to
DeviceIoControl with a handle to our driver’s DEVICE_OBJECT. In the kernel, this API
results in the I/O Manager delivering an IRP_MJ_DEVICE_CONTROL request to our driver. A
summary of this communication is shown in Figure 11.

Figure 11: Communication with software drivers

The I/O Handler functions are present in the DRIVER_OBJECT: the MajorFunction member
of this structure is an array of function members that Microsoft exposes which map to standard
I/O functionality such as reading, writing, etc4. For this driver all of the routines are the same
function, fffff880`033c10b0. Tracing this function through a wrapper function we can find

4 https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-major-function-codes

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

10

the IRP_MJ_DEVICE_CONTROL handler at fffff880`033c0de0.

DeviceIoControl takes a command code as a parameter which is specific to the driver
being communicated with. man.sys’s IRP_MJ_DEVICE_CONTROL handler accepts the
following codes:

1. 0x237BE8
2. 0x23BEAC
3. 0x22AF2C
4. 0x22AF34
5. 0x2337BC
6. 0x22AF28
7. 0x2248D0
8. 0x22F378
9. 0x23EAF0

Note that the first four commands all call the same function with varying parameters, and if we
check the cross references to PsCreateSystemThread based on our initial analysis it is only
called once, in the function responsible for handling command 0x2337BC.

We already have a good idea that fffff880`033bddb0 is responsible for loading and
executing a payload in kernel mode. Most of the process for in-memory loading a driver process
is similar to public techniques for in-memory loading DLLs5. However, in attempting to identify
what each function in this routine is doing we’ll quickly notice string encrypting being used by
this driver.

The function at address fffff880`033bd190 is used to decrypt stack strings using RC4. Since
we don’t want to deal with decrypting each string individually it would be good to solve all
strings with a script or tool. Each string has a different key, and the way this function is
implemented in the binary means a scan with FLOSS6 won’t work. Instead, using flare-emu7 we
can write a simple script to decrypt each string based on the cross references to the RC4
function. A sample script is shown in Figure 12.

5 https://github.com/stephenfewer/ReflectiveDLLInjection
6 https://github.com/fireeye/flare-floss
7 https://github.com/fireeye/flare-emu

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

11

from __future__ import print_function

import idc

import idaapi

import idautils

import flare_emu

from arc4 import ARC4

def iterateCallback(eh, address, argv, userData):

 s = ARC4(eh.getEmuBytes(argv[0],

argv[1])).decrypt(eh.getEmuBytes(argv[2], argv[3]))

 print("%016X: %s" % (address, s))

 idc.set_cmt(address, s, 0)

if __name__ == '__main__':

 eh = flare_emu.EmuHelper()

 eh.iterate(idc.get_name_ea_simple("rc4"), iterateCallback)

Figure 12: flare-emu script to decrypt stack strings

With our decrypted strings annotated we can confirm that the function at
fffff880`033bddb0 contains code to load a driver: after the standard PE loading steps
(memory mapping, relocations, etc.), this function calls ObCreateObject and
ObInsertObject to create a DRIVER_OBJECT for the loaded payload.

With this function confirmed we can move on. The function at fffff880`033bec50 is called
for multiple commands and during DriverEntry so let’s look at that function next. A quick
side-by-side comparison with our driver loading function from earlier will make it apparent that
this is also loading PE files. For example, the function responsible for fixing relocations is
present in both functions. The calls to KeStackAttachProcess and
ZwAllocateVirtualMemory (hidden by string obfuscation) are a giveaway that this function
is loading and running code in user mode instead of kernel mode.

Finally, at the end of this function man.sys will either run function fffff880`033bffe0 or
build a structure and insert it into a list. We’ll analyze this function shortly, but for now we
know some of the structure that’s stored in the list at fffff880`033c8158 (Figure 13):

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

12

typedef struct _INJECTED_PAYLOADS

{

 ULONG numberFromParam; // comes from IOCTL param structure

 LIST_ENTRY link; // Flink and Blink

 KMUTEX payloadMutex;

 ULONG_PTR baseAddress; // base address of loaded code

 ULONG_PTR numberFromParam2; // comes from IOCTL param structure

 ULONG_PTR loadedDllSize; // Full size of loaded payload

 BOOLEAN param1; // Set on which IOCTL is called

 BOOLEAN param2; // Set on which IOCTL is called

 ULONG numberFromParam3; // comes from IOCTL param structure

 PEPROCESS process; // process that this payload is inject

into

} INJECTED_PAYLOADS, *PINJECTED_PAYLOADS;

Figure 13: User-mode payload structure (so far)

Note that the EPROCESS in this structure is derived from a call to
PsLookupProcessByProcessId based on a PID that is passed in as part of the IOCTL
parameter.

We can also use the !list command in WinDbg to see what data is in this list at the time of
the crash to attempt to deduce what some of these other fields are. A trimmed output from
this command is in Figure 14.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

13

kd> !list -x "dq /c1 $extret - $ptrsize" -a "LF" fffffa80`040a11e8

fffffa80`040a11e0 00000000`bebebebe

fffffa80`040a11e8 fffffa80`0339aa88

fffffa80`040a11f0 fffff880`033c8158

fffffa80`040a11f8 00000001`000e0002

fffffa80`040a1200 fffffa80`040a1200

fffffa80`040a1208 fffffa80`040a1200

fffffa80`040a1210 fffffa80`03653e58

fffffa80`040a1218 fffffa80`03653e58

fffffa80`040a1220 00000000`00000000

fffffa80`040a1228 005c0073`00770100

fffffa80`040a1230 00000000`02100000

fffffa80`040a1238 00000000`00001660

fffffa80`040a1240 00000000`00007000

fffffa80`040a1248 00000000`006f0100

fffffa80`040a1250 fffffa80`035fd060

<… snip …>

fffffa80`0426f290 00000000`defa8474

fffffa80`0426f298 fffff880`033c8158

fffffa80`0426f2a0 fffffa80`04161da8

fffffa80`0426f2a8 00000001`000e0102

fffffa80`0426f2b0 fffffa80`0426f2b0

fffffa80`0426f2b8 fffffa80`0426f2b0

fffffa80`0426f2c0 fffffa80`03653e58

fffffa80`0426f2c8 fffffa80`03653e58

fffffa80`0426f2d0 00000000`00000000

fffffa80`0426f2d8 00000000`00000100

fffffa80`0426f2e0 00000000`02930000

fffffa80`0426f2e8 00000000`00004090

fffffa80`0426f2f0 00000000`00009000

fffffa80`0426f2f8 00001a0a`00000000

fffffa80`0426f300 fffffa80`01d42060

Figure 14: Partial dump of the payload list from memory dump

From this we can already see a hint if we skimmed the PCAP from earlier – some of these
structures contain the port numbers seen in the PCAP at offset 0x68 (numberFromParam3
from before).

If the fifth parameter is FALSE the driver also performs RC4 encryption on the user-mode
payload after it is loaded. However, rather than using a hardcoded key the driver uses part of
the structure from Figure 13 as a key. Everything from baseAddress onward is used as the key
to encrypt the payload in memory. You can use the command in Figure 15 to list the RC4 key for
key for each payload.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

14

!list -x "db $extret - $ptrsize + 50h" -a "L2c" fffffa80`040a11e8

Figure 15: List RC4 keys for user-mode payloads

We can see that the fifth parameter is only TRUE in the call from DriverEntry, meaning that
when this driver starts one of the first things it does is inject some kind of payload.

The payload is stored at fffff880`033c3110 in the driver and is injected into PID 876 which
for this dump is the svchost.exe -k netsvcs process. We’ll analyze the user-mode
payloads in the next section but for now let’s finish up the driver analysis so we have all the
context we need.

IOCTLs 0x22F378 and 0x23EAF0 are similar conceptually: both deal with tasking one of the
user-mode payloads to do something. Let’s start with 0x22F378 which calls function
fffff880`033c0580. This function uses the string encoding we’ve seen several times before
to encode ZwFreeVirtualMemory, which already tells us that this function is likely interacting
with user-mode memory. The input to this function comes from the DeviceIoControl call in
user mode and has the structure shown in Figure 16.

typedef struct _TASK_USER_MODE

{

 ULONG moduleID;

 ULONG userModeCommandCode;

 PVOID bufferForUsermodePayload;

 ULONG userModeBufferSize;

} TASK_USER_MODE, *PTASK_USER_MODE;

Figure 16: Structure to task a user-mode payload

This function starts by calling fffff880`033bf960, which uses moduleID from the input
parameter to search the list described earlier to find the corresponding INJECTED_PAYLOADS
structure. From there the function at fffff880`033bffe0 is responsible for proxying the
input data into the correct target process and executing the payload for that
INJECTED_PAYLOADS structure. This consists of several steps:

1. Attach to the EPROCESS from the INJECTED_PAYLOADS structure
2. Call the function at fffff880`033bf310 to allocate user-mode memory
3. The function at fffff880`033bf510 will resolve NtCreateThreadEx and call it to

execute a user-mode thread
a. This function also decrypts the payload during executing, using the same RC4 key

described earlier
b. Inside of INJECTED_PAYLOADS, offset 0x58 is the offset in the user-mode

payload to execute
4. Copy return data from user-mode payload back to the IOCTL caller

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

15

For step 3, the driver allocates a shared structure to proxy input/output data to the user-mode
payload (Figure 17):

typedef struct _CMD_HEADER

{

 ULONG cmdCode; // comes from IOCTL 0x22F378 parameter

 PVOID inData; // comes from IOCTL 0x22F378 parameter

 ULONG inDataLen; // comes from IOCTL 0x22F378 parameter

 ULONG uSetByUM;

 BOOLEAN bSetByUM;

 PVOID outData;

 ULONG outDataLength;

} CMD_HEADER, *PCMD_HEADER;

Figure 17: Structure to communicate with user-mode payloads

The last four members of this structure are set by the user-mode payload. After the user-mode
payload executes the function at fffff880`033c0580 checks bSetByUM. If this member is
set to TRUE by the user-mode payload then the function at fffff880`033bf9e0 is called
before the output data is returned.

This function is structured similarly to the previous function: the module list is searched, input
data is copied to the proper process, and the function at fffff880`033bf510 is called to
execute a user-mode thread. The one difference is that instead of checking or the moduleID in
the INJECTED_PAYLOADS structure as before the param1 member is checked. For the module
list in the crash dump this corresponds to the payload at 0x02100000 inside of dwm.exe
(EPROCESS fffffa80`035fd060).

Let’s look at IOCTL 0x23EAF0 to wrap up our analysis of man.sys. This IOCTL handler is the
function at fffff880`033bfed0 and is again structured like the previous two functions we’ve
analyzed – the module list is searched, and a user-mode payload is executed. For this function
the list is searched twice: once for a comparison to the param2 member, and once per module
ID, before calling the function at fffff880`033bfd60 which has the same pattern of
allocating user-mode data and executing a thread. As seen in Figure 18, we now have a slightly
clearer idea of what the INJECTED_PAYLOADS structure should look like:

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

16

typedef struct _INJECTED_PAYLOADS

{

 ULONG moduleId;

 LIST_ENTRY link;

 KMUTEX payloadMutex;

 ULONG_PTR baseAddress; // base address of loaded code

 ULONG_PTR runOffset; // Offset in payload to execute

 ULONG_PTR loadedDllSize; // Full size of loaded payload

 BOOLEAN moduleFlag1; // Checked during IOCTL 0x23EAF0

 BOOLEAN moduleFlag2; // Checked after a payload returns

 ULONG possibleExfilPort; // comes from IOCTL param structure

 PEPROCESS injectedProcess;

} INJECTED_PAYLOADS, *PINJECTED_PAYLOADS;

Figure 18: Updated INJECTED_PAYLOADS structure

To understand how these flags fit together (and tie to our PCAP) we need to analyze the user-
mode payloads.

USER-MODE PAYLOADS

So far, we have a general idea that man.sys is responsible for loading, managing, and tasking
different user-mode payloads. Each payload has a corresponding INJECTED_PAYLOADS
structure which contains the process and address where it’s located, flags that dictate how to
call that payload, and potentially which port to use to exfiltrate any return data. A summary of
the payloads we’ve seen far is summarized in Figure 19.

Module ID Injected
Process

Run code
address

Exfil
port(?)

Flag 1 Flag 2 Notes

/

Functionality
0xDEDEDEDE netsvcs

svchost

0x2101660 Garbage? Yes No

0xBEBEBEBE dwm.exe 0xD72100 Garbage? No Yes

0xDEFA8474 procexp64.exe 0x2934090 6666 No No

0xBEDA4747 explorer.exe 0x2412Ab0 7777 No No

0xFABADADA explorer.exe 0x2403810 8888 No No

? netsvcs

svchost

 Garbage? No No Injected in

DriverEntry

Figure 19: Summary of loaded user-mode payloads

Starting with payloads we’ve already seen during analysis, let’s begin with the DLL that’s
injected during DriverEntry. This DLL is not encrypted and is stored in man.sys’ .data section so

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

17

we don’t need to hunt for it.

CONTROL DLL

Note that in memory the PE header is clobbered as we’ve seen a couple times already, but if we
write the DLL from the driver’s .data section and open it in IDA we can see that this PE only
contains one export and the only imports are standard C runtime functions. This is a pattern
that we’ll see with the rest of the user-mode payloads and for reasons that will soon become
clear we can effectively analyze these DLLs as shellcode without worrying about rebuilding the
PE header.

For this analysis I’ll reference the DLL embedded in the driver’s .data section (md5:
45a1bba04a93500c24010017d738e040) loaded at 0x180000000. The address that is
executed is offset 0x3F80 which is also the DLL’s only export.

This DLL listens on port 4444. We also see the same RC4 string encryption that we saw in
man.sys to encrypt WS2_32 API names. This DLL also has another pattern that we’ll see
throughout the user-mode payloads. The function at 0x18000424A has the prototype shown
in Figure 20.

ULONG_PTR resolveAndCallFunc(HMODULE targetDll, char *import, ULONG_PTR

numParams, ...);

Figure 20: Dynamic import lookup function

This function uses the first two parameters to resolve an API via in-memory export parsing and
then call the original function, passing the rest of the parameters.

The function at 0x180002BD0 is responsible for receiving a command from the network and
sending a corresponding command to the driver. Many of these commands end up at the
function at 0x180001A80 which sends an IOCTL to a driver. The full mapping of the network
commands is shown in Figure 21.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

18

Network Command ID Result Notes

0xCD762BFA Inject Payload DLL Flags aren’t set

0x34B30F3B Inject Payload DLL Flag 1 is TRUE

0x8168AD41 Inject Payload DLL Flag 2 is TRUE

0x427906F4 Open handle and send IOCTL to

driver

0xD180DAB5 Send IOCTL 0x23EAF0 Task user mode payload

0xD44D6B6C Send IOCTL 0xD44D6B6C Load a driver payload

Figure 21: Breakdown of network tasking

Command 0xD180DAB5 also sends a second IOCTL: after sending the IOCTL to task one of the
user-mode payloads and getting the data it then sends IOCTL 0x23EAF0, which from our earlier
analysis looks up the INJECTED_PAYLOADS module where the second flag is set.

To summarize, this DLL listens on port 4444 and is responsible for sending IOCTLs to load and
task payloads that are managed by man.sys. We’ve also confirmed a pattern where
INJECTED_PAYLOADS where flags are set are used in combination with IOCTL 0x23EAF0
when tasking user-mode payloads.

FLAG 1 – SVCHOST.EXE DLL

This DLL is loaded at address 0x00d70000 inside svchost.exe (PID 876). This DLL is very
straightforward – it contains a single export which corresponds to the offset stored in the
INJECTED_PAYLOADS list. It uses the same RC4-based string encryption and the same function
to dynamically resolve and call functions.

This DLL is responsible for sending data over the network. The host IP to send to is hardcoded
to 192.168.1.243 which we can see in our PCAP. The export for this DLL takes the following
structure as a parameter (Figure 22):

typedef struct _NETWORK_EXFIL

{

 ULONG port;

 ULONG dataLength;

 PVOID exfilData;

} NETWORK_EXFIL, *PNETWORK_EXFIL;

Figure 22: Structure used to exfil data

Tracing back through IOCTL 0x23EAF0 in man.sys we can see that the port to exfil through
comes from the INJECTED_PAYLOADS structure for the module, confirming our guess from
earlier.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

19

Now let’s look at the other flag in our INJECTED_PAYLOADS structure to fully understand how
tasking flows through these payloads.

FLAG 2 – DWM.EXE DLL

This DLL is loaded at address 0x02100000 inside dwm.exe. This DLL contains a single export
which corresponds to the offset stored in the INJECTED_PAYLOADS list. It uses the same RC4-
based string encryption and the same function to dynamically resolve and call functions.

This DLL is responsible for encrypting data. It takes the following structure as a parameter
(Figure 23):

typedef struct _CRYPTO_STRUCT

{

 ULONG inDataLength;

 PVOID inData;

 ULONG outDataLength;

 PVOID outData;

} CRYPTO_STRUCT, *PCRYPTO_STRUCT;

Figure 23: Structure used to encrypt data

The algorithm to encrypt data passed to this routine is as follows:

• Resolve and call RtlGetCompressionWorkSpaceSize and RtlCompressBuffer on
inData

• Call GetUserName

• Use the username as an RC4 key on the compressed data

• Store the result in outDataLength and outData

We can extract the username by attaching to dwm.exe and using the !envvar command, as
shown in Figure 24.

kd> .process /p /r 0xfffffa80035fd060

Implicit process is now fffffa80`035fd060

kd> !envvar USERNAME

 USERNAME = FLARE ON 2019

Figure 24: Extracing the username from the crash dump

Note that the NULL byte is included in the RC4 key.

Finally, remember that this DLL is called as part of IOCTL 0x22F378 in man.sys if the target
user-mode payload sets a Boolean in the structure from Figure 17. In other words, each payload

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

20

decides if the data it returns should be encrypted using the payload in dwm.exe.

We now have a full understanding of what the INJECTED_PAYLOADS structure looks like, as
shown in Figure 25.

typedef struct _INJECTED_PAYLOADS

{

 ULONG moduleId;

 LIST_ENTRY link;

 KMUTEX payloadMutex;

 ULONG_PTR baseAddress;

 ULONG_PTR runOffset;

 ULONG_PTR loadedDllSize;

 BOOLEAN isExfilDll; // Sends data to 192.168.1.243

 BOOLEAN isCryptoDll; // Used to encrypt some payloads’ return

data

 ULONG exfilPort; // Set per payload at injection time

 PEPROCESS injectedProcess;

} INJECTED_PAYLOADS, *PINJECTED_PAYLOADS;

Figure 25: Full INJECTED_PAYLOADS structure

We also have a general idea of how payloads are tasked in this framework:

1. Control DLL receives command 0xD180DAB5 over the network
2. Control DLL sends IOCTL 0x22F378 telling man.sys to task a user-mode payload
3. man.sys finds the correct payload by moduleID and creates a user-mode thread

a. The payload is decrypted only while the task is running
4. The target payload specifies whether its data should be encrypted

a. If so, man.sys calls the payload in dwm.exe to encrypt the data
5. The data is returned to the Control DLL
6. The Controll DLL sends IOCTL 0x23EAF0
7. man.sys finds the exfil payload in PID 876 which sends the data

This is shown in Figure 26.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

21

Figure 26: Data flow when tasking a payload

Now that we have a general idea of how tasking flows through these payloads let’s look at what
capabilities our samples provide. There are three total payloads we need to analyze – we’ll
reference them by their exfil port for this analysis. We’ve already seen the tricks that these
payloads use so this next analysis is straightforward.

USER MODE PAYLOAD 1 – PORT 6666

This payload is injected inside procexp64.exe (PID 2508) and loaded at address
0x02930000. The run tasking offset in the INJECTED_PAYLOADS structure is 0x4090.

This payload contains the same RC4-based string encoding and dynamic function resolution
present in other payloads. Note that as before we can rebuild the PE header but the use of
dynamic function resolution means we can also analyze this DLL as a shellcode payload.

The function that corresponds to offset 0x4090 takes the CMD_HEADER structure from Figure
17 as a parameter. This payload contains functionality to interact with the file system and
accepts five different commands. Note that some of these commands instruct man.sys to
encrypt the data returned using the payload in dwm.exe.

A summary of this payload is shown in Figure 27.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

22

Command Code Functionality Encrypt Return Data?

0x1E3258AB Get File Yes

0x358C768A Put File No

0x7268F598 Find File Yes

0x8175AE68 Get File Size No

0xAB55D987 Delete File No

Figure 27: File payload functionality

USER MODE PAYLOAD 2 – PORT 7777

This payload is injected inside explorer.exe (PID 1124) and loaded at address 0x02410000.
The run tasking offset in the INJECTED_PAYLOADS structure is 0x2AB0.

This payload does not take command codes like the previous payload. This payload contains the
same RC4-based string encoding and dynamic function resolution present in other payloads.
Note that as before we can rebuild the PE header but the use of dynamic function resolution
means we can also analyze this DLL as a shellcode payload.

This payload is responsible for taking a single screenshot and returning it as a bitmap. This
screenshot is not encrypted using the payload in dwm.exe.

USER MODE PAYLOAD 3 – PORT 8888

This payload is injected inside explorer.exe (PID 1124) and loaded at address 0x02400000. The
run tasking offset in the INJECTED_PAYLOADS structure is 0x3810.

This payload does not take command codes like file payload. This payload contains the same
RC4-based string encoding and dynamic function resolution present in other payloads. Note
that as before we can rebuild the PE header but the use of dynamic function resolution means
we can also analyze this DLL as a shellcode payload.

This payload implements keylogging functionality. There is a single input parameter – how long,
in milliseconds, to perform keylogging. The payload also keeps track of which window is active
while keylogging and will prepend the keylogger output with the name of the window where
keystrokes were recorded.

We now know all the pieces to complete our payload table from earlier (Figure 28):

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

23

Module ID Injected
Process

Exfil port Flag 1 Flag 2 Notes

/

Functionality

0xDEDEDEDE netsvcs svchost N/A Yes No Exfil payload

0xBEBEBEBE dwm.exe N/A No Yes Encryption

payload

0xDEFA8474 procexp64.exe 6666 No No File payload

0xBEDA4747 explorer.exe 7777 No Nos Screenshot

payload

0xFABADADA explorer.exe 8888 No No Keylogging

payload

N/A netsvcs svchost 4444 (listen) No No Control DLL

Figure 28: Summary of payloads running at time of crash

At this point it appears we have all the pieces to decrypt the PCAP – once we decrypt the data
returned by these payloads we should be able to hunt for the flag. However, quickly glancing at
the PCAP we’ll notice that we still can’t decrypt the payloads. The most obvious clue that
something is wrong is that none of the streams coming over port 4444 contain the command
codes we saw during our earlier analysis. We’re still missing a piece to decrypt the data in the
PCAP.

CRASH TRIAGE REVISITED

We saw all the code responsible for communicating over port 4444 when we analyzed the
control DLL. We can also quickly confirm that neither the driver nor the user-mode payload
performed any hooking prior to executing the control payload.

This means that any transformation of network traffic is probably happening somewhere in
kernel mode. Recall that the crash was due to improperly loading a kernel driver, and that in
the control DLL we saw code to send IOCTLs to an arbitrary device.

There’s two main WinDbg commands we can use to attempt to find the missing payload. All
allocations performed by man.sys use ExAllocatePoolWithTag with the tag FLAR. We can
use !poolfind to see what kind of allocations are present at the time of the crash (Figure 29).

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

24

kd> !poolfind FLAR

Scanning large pool allocation table for tag 0x52414c46 (FLAR)

(fffffa80028ce000 : fffffa800298e000)

fffffa80042d0000 : tag FLAR, size 0xf000, Nonpaged pool

fffffa8001eddc70 : tag FLAR, size 0x90, Nonpaged pool

Searching nonpaged pool (fffffa8001802000 : fffffa805f000000) for tag

0x52414c46 (FLAR)

Figure 29: Finding allocations by man.sys

Dumping and searching this memory reveals some strings that could potentially belong to a PE.
As expected, the loaded headers have been overwritten. To figure out where the payload is,
remember that as part of loading kernel payloads man.sys will create a DRIVER_OBJECT for
the new PE (Figure 30). We can revisit our !object output from Figure 2 to track down the
other payload.

kd> !object \Driver

Object: fffff8a000075060 Type: (fffffa8001846a30) Directory

 ObjectHeader: fffff8a000075030 (new version)

 HandleCount: 0 PointerCount: 109

 Directory Object: fffff8a000004720 Name: Driver

 Hash Address Type Name

 ---- ------- ---- ----

 00 fffffa80018841c0 Driver vdrvroot

 < ... >

 fffffa8001e1f840 Driver Null

 fffffa800428d9a0 Driver FLARE_Loaded_0

 13 fffffa80036ab5c0 Driver FLARE_Loaded_1

 < ... >

Figure 30: Drivers loaded by man.sys

Dumping FLARE_LOADED_1 will show what appears to be an incomplete object, which makes
sense given that the system crashed in the middle of loading a kernel payload.
FLARE_LOADED_0 is a payload that was previously loaded and is our best guess for what’s
modifying the network traffic on the system. The DRIVER_OBJECT contains where the driver is
loaded as well as several entry points we can use to help IDA process the file (Figure 31).

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

25

kd> dt _DRIVER_OBJECT fffffa800428d9a0

hal!_DRIVER_OBJECT

 +0x000 Type : 0n4

 +0x002 Size : 0n336

 +0x008 DeviceObject : 0xfffffa80`041a4120 _DEVICE_OBJECT

 +0x010 Flags : 2

 +0x018 DriverStart : 0xfffffa80`042d0000 Void

 +0x020 DriverSize : 0xf000

 +0x028 DriverSection : 0xfffff8a0`022f6ce0 Void

 +0x030 DriverExtension : 0xfffffa80`0428daf0 _DRIVER_EXTENSION

 +0x038 DriverName : _UNICODE_STRING "--- memory read error at

address 0xfffff880`07dfd510 ---"

 +0x048 HardwareDatabase : (null)

 +0x050 FastIoDispatch : (null)

 +0x058 DriverInit : 0xfffffa80`042d1184 long +fffffa80042d1184

 +0x060 DriverStartIo : (null)

 +0x068 DriverUnload : (null)

 +0x070 MajorFunction : [28] 0xfffffa80`042d5ef8 long

+fffffa80042d5ef8

kd> dqs fffffa800428d9a0+0x70

fffffa80`0428da10 fffffa80`042d5ef8

fffffa80`0428da18 fffff880`00ed319c Wdf01000!FxDevice::Dispatch

fffffa80`0428da20 fffffa80`042d5ef8

fffffa80`0428da28 fffff880`00ed319c Wdf01000!FxDevice::Dispatch

fffffa80`0428da30 fffff880`00ed319c Wdf01000!FxDevice::Dispatch

fffffa80`0428da38 fffff880`00ed319c Wdf01000!FxDevice::Dispatch

fffffa80`0428da40 fffff880`00ed319c Wdf01000!FxDevice::Dispatch

fffffa80`0428da48 fffff880`00ed319c Wdf01000!FxDevice::Dispatch

fffffa80`0428da50 fffff880`00ed319c Wdf01000!FxDevice::Dispatch

fffffa80`0428da58 fffff880`00ed319c Wdf01000!FxDevice::Dispatch

fffffa80`0428da60 fffff880`00ed319c Wdf01000!FxDevice::Dispatch

fffffa80`0428da68 fffff880`00ed319c Wdf01000!FxDevice::Dispatch

fffffa80`0428da70 fffff880`00ed319c Wdf01000!FxDevice::Dispatch

fffffa80`0428da78 fffff880`00ed319c Wdf01000!FxDevice::Dispatch

fffffa80`0428da80 fffffa80`042d5ef8

fffffa80`0428da88 fffff880`00ed319c Wdf01000!FxDevice::Dispatch

Figure 31: DRIVER_OBJECT for our new payload

As before, the PE header has been overwritten. A quick scan through the binary will show that
this driver is using imported functions rather than the runtime lookup seen in the user-mode
payloads so it would speed analysis to repeat the PE-building process we did with man.sys.
The sections in the original compiled binary are given in Figure 32.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

26

Figure 32: Original section boundaries for the new kernel payload

A quick look through the binary will show it using multiple functions imported from
fwpkclnt.sys. This driver implements Windows Filtering Platform (WFP) APIs to modify
network traffic on the infected system. Note that for the next section we will use addresses
relative to where the driver was loaded, 0xfffffa80`042d0000.

WINDOWS FILTERING PLATFORM (WFP) PAYLOAD

The Windows Filtering Platform was added in Vista and allows drivers to install callbacks at
different layers of the network stack. At a high level, the WFP framework consists of sublayers
and filters. Each sublayer is a collection of filters, and a filter corresponds to a direction and
layer in the networking stack. For example, a filter could be responsible for parsing outbound
TCP stream data or connections at the IP layer. When a packet is being transmitted or received
by the system, the OS iterates through each sublayer (weighed by priority) and consults each
filter in that sublayer. Filters are responsible for parsing the packet data available to their layer
(i.e. packet headers, stream data, etc.) and deciding whether a packet should be allowed or
blocked. Once any filter decides if a packet should be allowed or dropped the OS stops iterating
through sublayers.

Filter layers in this framework:

• Can process inbound traffic, outbound traffic, or both

• Can block or allow all or part of a packet

• Can modify a packet prior to allowing it

• Can inject entirely new data into the network stream

A full list and description of filter layers is available on MSDN89.

8 https://docs.microsoft.com/en-us/windows/win32/fwp/management-filtering-layer-identifiers-
9 https://docs.microsoft.com/en-us/windows/win32/fwp/tcp-packet-flows

https://docs.microsoft.com/en-us/windows/win32/fwp/management-filtering-layer-identifiers-
https://docs.microsoft.com/en-us/windows/win32/fwp/tcp-packet-flows

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

27

This driver consists of primarily two workflows: receiving its configuration via an IOCTL, and
registering network callbacks. WFP drivers can be tedious to analyze the first time: there are
multiple APIs that can to be called to access packet data, most WFP APIs use a large number of
nested structures as parameters, and APIs are connected to each other either using GUIDs
passed as parameters or IDs generated by WFP API calls. To limit crawling through architecture
documentation we’ll start with the IOCTL handler.

This driver uses the WDF framework, but the function at fffffa80`042d5f44 creates
another DEVICE_OBJECT with the name FLND which is used to handle IOCTLs. The processing
function for IRP_MJ_DEVICE_CONTROL is at fffffa80`042d5d38.

The function at fffffa80`042d5b0c takes the DEVICE_OBJECT and calls the appropriate
WFP functions to install network callbacks. We will call this function add_layers.
FwpmSubLayerAdd creates a new sublayer for every DeviceIoControl call.

Installing a filter consists of two APIs: FwpsCalloutRegister and FwpmFilterAdd. The
FwpsCalloutRegister takes a FWPS_CALLOUT structure which specifies which functions to
call for a filter. Note that both the API and the structure have different versions depending on
the OS version. For our analysis we only need to focus on the classifyFn function. For WFP
functions this member is the function responsible for processing packet data and deciding
whether it should be allowed or blocked. The FwpmFilterAdd function is used to add a filter
to a layer. This API takes an array of FWPM_FILTER structures where each specify when a filter
function (e.g. direction, target port etc.).

The functions at fffffa80`042d4650 and fffffa80`042d4a30 use these functions to add
callouts at different points during a connection. The configuration for the installed filter (e.g.
which layer to filter, direction, and port) are passed as parameters to these two functions.
These functions install two filters: a FWPM_LAYER_ALE_FLOW_ESTABLISHED_V4 filter which is
called when a connection has been established, and a FWPM_LAYER_STREAM_V4 filter which
allows the driver to have access to the data sent over a TCP connection. Based on the
parameters in the FWPM_FILTER structures, the first filter is used to build a structure
associated with a connection over a specific port/direction, and the second filter is the one that
is used to access data coming across a TCP connection.

Going back to the add_layers function we can see that all of the information used to add the
sublayer and appropriate filters is populated in a structure. Each structure is then inserted into
a global list at fffffa80`042d80d0. We’ll call this list callback_list. We can also see that
all of the parameters relevant to installing the filters (port, direction, etc.) comes as an input
parameter to the IRP_MJ_DEVICE_CONTROL handler.

Associated a stream callout with an inbound connection is done using more indirection in the
WFP API. The function at fffffa80`042d5c90 searches the callback_list by ID. This ID is

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

28

generated from FwpsCalloutRegister. Once the global structure is found the stream layer
ID (FWPS_LAYER_STREAM_V4) and the stream layer callout ID (generated by the second call to
FwpsCalloutRegister) are passed to FwpsFlowAssociateContext. This API allows a
driver to specify a parameter to be passed to another callout’s (the FWPM_LAYER_STREAM_V4
filter callout in this case) classifyFn. This parameter is yet another structure which contains
a pointer to the structure in callback_list. We will call this structure flow_context.

The stream layer’s callout is responsible for accessing data passed over TCP streams. This
function has some utility functionality to copy data to and from a network stream but the
function we are interested in is at fffffa80`042d2204. This function has a flow_context
structure as a parameter and calls FwpsStreamInjectAsync to inject data into the TCP
stream. To see which data was injected we need to look at the function at
fffffa80`042d28c8. This function copies the existing stream data and grabs offset 0x16
from the callback_list structure and uses the next 8 bytes as an XOR key over the old
stream data. These bytes also come from the original list insertion in the
IRP_MJ_DEVICE_CONTROL handler.

This means that in addition to the possible/optional encryption we saw in the user mode crypto
payload in dwm.exe all traffic over ports specified in the global list are also XOR encoded.

We’ve now analyzed enough of the WFP driver to understand how it is modifying traffic. To
summarize:

• The control DLL in user mode has a command to send IOCTLs to arbitrary drivers

• When the WFP gets IOCTL 0x13FFFC (the only accepted code) it installs WFP layers to
track connections and stream data

• Each IOCTL results in a global structure being allocated, which designates the port and
direction of a connection to monitor, as well as an XOR key

• When data is being transmitted or received over one of these ports, the classifyFn
for the stream layer callout XORs this data with what’s in the global list

• All data sent to or from the control or plugin DLLs is XOR’d

We now have all the information necessary to decrypt traffic sent to and from these samples.
We can dump the callback_list to extract all XOR keys needed to decode the PCAP traffic. A
complete list of the plugin table is shown in Figure 33.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

29

Payload Port Direction XOR key

Control 4444 In 0x5d 0xf3 0x4a 0x48 0x48

0x48 0xdd 0x23

File 6666 Out 0xd5 0x69 0x94 0xfa 0x25

0xec 0xdf 0xda

Screenshot 7777 Out 0x4a 0x1f 0x4b 0x1c 0xb0

0xd8 0x25 0xc7

Keylog 8888 Out 0xf7 0x8f 0x78 0x48

0x47 0x1a 0x44 0x9c

Figure 33: Summary of WFP keys for user-mode plugins

PLUGIN DATA

Most of the data in the PCAP is tasking the keylogger and screenshot plugins. Looking through
the screenshots we see some innocuous system usage, followed by the infected user opening
KeePass. Looking at Figure 34, we see that the flag we need is in the database.

Figure 34: The flag we need to solve the challenge is hinted in one of the screenshots

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

30

We can also see that after running a find-like command to locate it, the only file that is pulled
from the infected system is the KeePass database, keys.kbd. KeePass databases are protected
with a master password, but since we have traffic from a keylogging plugin we can grab the
password from this. Looking through the keylogger output we can find something that looks
like a password: th1sisth33nd111. However, if we try this password on the decrypted
KeePass database (MD5: c36a854510bb52933714e2dc2871aeb8) it fails to decrypt.

Without any other clues we need to revisit the output data from the plugins. We’ve also
already seen in both the help.txt file and the fact that this challenge started with a BSOD that
the samples on this system have bugs and other logic flaws. In fact, if we compare the
screenshot output to the keylogger output we’ll see some discrepancies. Some of these
discrepancies can be seen when comparing Figure 35 and Figure 36.

Figure 35: Sample keylogger output

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

31

Figure 36: Screenshot corresponding to Figure 35

Comparing the output between screenshots and keyloggers, we’ll see that the keylogger does
not handle punctuation and capitalization (for letters or special characters). This means that the
correct master password to the KeePass database is a mutation of th1sisth33nd111 with
the insertion of punctuation, likely underscores to keep with the Flare-On key formats.

This means that our only option is to attempt to use the data we know as a basis to write a
minimal brute force for the password. For this version of KeePass we can use a tool like John
the Ripper or Hashcat to perform the brute force10. To put a feasible boundary on the brute
force we can generate a custom key list using our known seed password and possible character
combinations. One possible script to do this is shown in Figure 37.

10 https://www.rubydevices.com.au/blog/how-to-hack-keepass

https://www.rubydevices.com.au/blog/how-to-hack-keepass

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

32

from itertools import product

charset = {
 'd': ['d','D',],
 'e': ['e','E'],
 '3': ['3', '#'],
 'h': ['h','H'],
 'i': ['i','I'],
 'n': ['n','N'],
 's': ['s','S'],
 't': ['t','T'],
 '1': ['1', '!'],
 ' ': [' ', '_', '-', '']
}

def generate(password):
 letters = []
 for v in password:
 if v in charset.keys():
 letters.append(charset[v])
 else:
 letters.append(v)
 return [''.join(item) for item in product(*letters)]

with open('wordlist', 'wb') as f:
 wordlist = generate('th1s is th3 3nd111')
 f.write(wordlist)

Figure 37: Sample script to generate a keylist to brute force our KeePass database

Once this keylist is generated, our brute force will give us the correct master password:
Th!s_iS_th3_3Nd!!!. Using this to open the database will give us the final flag:
f0ll0w_th3_br34dcrumbs@flare-on.com

	Initial Crash Triage
	man.sys Analysis
	User-Mode Payloads
	Control DLL
	Flag 1 – svchost.exe DLL
	Flag 2 – dwm.exe DLL
	User Mode Payload 1 – Port 6666
	User Mode Payload 2 – Port 7777
	User Mode Payload 3 – Port 8888

	Crash Triage Revisited
	Windows Filtering Platform (WFP) Payload
	Plugin Data

