

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

1

Flare-On 6: Challenge 3 – flarebear.apk

Challenge Author: Moritz Raabe (@m_r_tz)

INTRODUCTION

flarebear.apk is an Android Package Kit (APK) mobile app for the Android operating system. The app

lets users care for a virtual FLARE Bear. The Tamagotchi and other digital pets inspired the theme for this

challenge.

Using the right dynamic analysis or instrumentation tools such as FRIDA [1] can significantly aid in

reverse engineering apps on the Android platform. However, this write-up mostly relies on static analysis

and only uses the emulator to speed up analysis where appropriate.

The following tools are used in this write-up:

• Android Emulator, https://developer.android.com/studio/run/emulator

• FLARE VM, https://github.com/fireeye/flare-vm, which includes the following tools:
o Apktool, https://ibotpeaches.github.io/Apktool/
o dex2jar, https://github.com/pxb1988/dex2jar
o JD-GUI, http://java-decompiler.github.io/

INITIAL DYNAMIC ANALYSIS

To get a basic understanding of the application we perform initial dynamic analysis using the Android

Emulator integrated into Android Studio. Android Emulator version 2.0 and newer allow to quickly install

APKs via drag and drop. Alternatively, the Android Debug Bridge (ABD) command adb.exe install

flarebear.apk installs the app in a started emulator.

Figure 1 shows screenshots of the app running in the emulator. At the bottom of the game’s main screen,

three buttons enable users to interact with the FLARE Bear.

https://www.frida.re/
https://developer.android.com/studio/run/emulator
https://github.com/fireeye/flare-vm
https://ibotpeaches.github.io/Apktool/
https://github.com/pxb1988/dex2jar
http://java-decompiler.github.io/

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

2

Figure 1: Screenshots of flarebear.apk running on the Android Emulator

INITIAL STATIC ANALYSIS

To get a general understanding of the program structure we first decode the app’s configuration and

resources using Apktool (Figure 2).

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

3

$ apktool decode flarebear.apk

Figure 2: Decoding the app using Apktool

Each app contains general meta information in its AndroidManifest.xml file. Interesting information

from flarebear.apk’s manifest file includes the:

• app’s package name: com.fireeye.flarebear

• name of the app’s main activity: MainActivity

• names of three other activities in the app: NewActivity, CreditsActivity, and
FlareBearActivity

The decoded kotlin directory indicates that this app was likely written using the Kotlin programming

language [2]. However, this does not affect our analysis since Kotlin produces Java compatible bytecode

[3] which gets converted to Dalvik bytecode stored in Dalvik Executable (.dex) files. Hence, we can

perform our analysis using time-tested Java decompilers like JD-GUI.

Before JD-GUI can decompile the app’s code, we use the dex2jar tool to convert the APK file to a Java

archive (JAR) file (see Figure 3). The alternative tool JADX-GUI [4] decompiles APK files directly.

Nevertheless, for this analysis I preferred JD-GUI’s decompilation output.

$ d2j-dex2jar flarebear.apk
dex2jar flarebear.apk -> .\flarebear-dex2jar.jar

Figure 3: Converting the APK file to a JAR file using dex2jar

Figure 4 shows the game’s decompiled FlareBearActivity class in JD-GUI. No obfuscation means that

reverse engineering this app mostly revolves around understanding decompiled Java code.

https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/docs/reference/faq.html#what-does-kotlin-compile-down-to
https://github.com/skylot/jadx

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

4

Figure 4: Decompiled FlareBearActivity in JD-GUI

FLARE BEAR ANALYSIS

Cursory analysis of the app’s four activities indicates that FlareBearActivity implements the game’s main

logic. Subsequent analysis focuses on the relevant parts from this activity. Code fragments which are not

necessary to recover the challenge flag are ignored.

Among the activity’s functions danceWithFlag immediately stands out. Figure 5 lists the decompiled

danceWithFlag function code. The highlighted lines show that the function decrypts two raw resources,

creates drawable objects from the decrypted data, and passes the drawables to another function. The

decrypt method uses a password returned from the getPassword function. getPassword builds a

string based on the values f, p, and c.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

5

public final void danceWithFlag()
{
 Object localObject1 = getResources().openRawResource(2131427328);
 Intrinsics.checkExpressionValueIsNotNull(localObject1, "ecstaticEnc");
 localObject1 = ByteStreamsKt.readBytes((InputStream)localObject1);
 Object localObject2 = getResources().openRawResource(2131427329);
 Intrinsics.checkExpressionValueIsNotNull(localObject2, "ecstaticEnc2");
 localObject2 = ByteStreamsKt.readBytes((InputStream)localObject2);
 String str = getPassword();
 try
 {
 localObject1 = decrypt(str, (byte[])localObject1);
 localObject2 = decrypt(str, (byte[])localObject2);
 localObject1 = BitmapFactory.decodeByteArray((byte[])localObject1, 0,
localObject1.length);
 localObject1 = new BitmapDrawable(getResources(), (Bitmap)localObject1);
 localObject2 = BitmapFactory.decodeByteArray((byte[])localObject2, 0,
localObject2.length);
 localObject2 = new BitmapDrawable(getResources(), (Bitmap)localObject2);
 dance((Drawable)localObject1, (Drawable)localObject2);
 return;
 }
 catch (Exception localException)
 {
 for (;;) {}
 }

}

Figure 5: Function danceWithFlag decompiled using JD-GUI

The function danceWithFlag is only called once in the setMood method. The call is only made if the

functions isHappy and isEcstatic return true. isEcstatic returns true if the following values are

set:

• mass is 72

• happy is 30

• clean is 0

To see an ecstatic and hopefully dancing FLARE Bear we need to recover how these values can be

obtained. The functions changeMass, changeHappy, and changeClean modify the respective internal

values mass, happy, and clean. All value changing functions are called in the functions clean, feed,

and play. FlareBearActivity’s layout file res\layout\activity_flare_bear.xml1 shows that each

of these three functions handles the onClick event for one of the three action buttons.

1 FlareBearActivity’s onCreate method sets the content view to the layout resource with number 2131296285
(0x7F09001D). res\values\public.xml associates this value with activity_flare_bear.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

6

The highlighted lines in the decompiled clean function in Figure 6 show that the clean action modifies

the mass, happy, and clean values as follows:

• mass: 0
• happy: -1
• clean: +6

public final void clean(@NotNull View paramView)
{
 Intrinsics.checkParameterIsNotNull(paramView, "view");
 saveActivity("c");
 removePoo();
 cleanUi();
 changeMass(0);
 changeHappy(-1);
 changeClean(6);
 setMood();
}

Figure 6: Function clean modifying the values mass, happy, and clean

The function feed modifies the values as follows:

• mass: +10
• happy: +2
• clean: -1

And the play function changes the values as follows:

• mass: -2
• happy: +4
• clean: -1

The three equations in

𝒎𝒂𝒔𝒔 𝒗𝒂𝒍𝒖𝒆 = 𝟎 ∗ 𝒄𝒍𝒆𝒂𝒏 + 𝟏𝟎 ∗ 𝒇𝒆𝒆𝒅 − 𝟐 ∗ 𝒑𝒍𝒂𝒚

𝒉𝒂𝒑𝒑𝒚 𝒗𝒂𝒍𝒖𝒆 = −𝟏 ∗ 𝒄𝒍𝒆𝒂𝒏 + 𝟐 ∗ 𝒇𝒆𝒆𝒅 + 𝟒 ∗ 𝒑𝒍𝒂𝒚
𝒄𝒍𝒆𝒂𝒏 𝒗𝒂𝒍𝒖𝒆 = 𝟔 ∗ 𝒄𝒍𝒆𝒂𝒏 − 𝟏 ∗ 𝒇𝒆𝒆𝒅 − 𝟏 ∗ 𝒑𝒍𝒂𝒚

Figure 7 express how the actions clean, feed, and play change each of the values mass, happy, and

clean.

𝒎𝒂𝒔𝒔 𝒗𝒂𝒍𝒖𝒆 = 𝟎 ∗ 𝒄𝒍𝒆𝒂𝒏 + 𝟏𝟎 ∗ 𝒇𝒆𝒆𝒅 − 𝟐 ∗ 𝒑𝒍𝒂𝒚
𝒉𝒂𝒑𝒑𝒚 𝒗𝒂𝒍𝒖𝒆 = −𝟏 ∗ 𝒄𝒍𝒆𝒂𝒏 + 𝟐 ∗ 𝒇𝒆𝒆𝒅 + 𝟒 ∗ 𝒑𝒍𝒂𝒚
𝒄𝒍𝒆𝒂𝒏 𝒗𝒂𝒍𝒖𝒆 = 𝟔 ∗ 𝒄𝒍𝒆𝒂𝒏 − 𝟏 ∗ 𝒇𝒆𝒆𝒅 − 𝟏 ∗ 𝒑𝒍𝒂𝒚

Figure 7: Equations for value modifications per action

Given the target values from the isEcstatic function; 𝑚𝑎𝑠𝑠 = 72, ℎ𝑎𝑝𝑝𝑦 = 30, and 𝑐𝑙𝑒𝑎𝑛 = 0; we

obtain the equations shown in Figure 8.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

7

72 = 0 ∗ 𝑐𝑙𝑒𝑎𝑛 + 10 ∗ 𝑓𝑒𝑒𝑑 − 2 ∗ 𝑝𝑙𝑎𝑦
30 = −1 ∗ 𝑐𝑙𝑒𝑎𝑛 + 2 ∗ 𝑓𝑒𝑒𝑑 + 4 ∗ 𝑝𝑙𝑎𝑦

0 = 6 ∗ 𝑐𝑙𝑒𝑎𝑛 − 1 ∗ 𝑓𝑒𝑒𝑑 − 1 ∗ 𝑝𝑙𝑎𝑦

Figure 8: Equations with ecstatic target values

Solving this system of equations with three variables, e.g. using WolframAlpha [5], gives the solution

𝑐𝑙𝑒𝑎𝑛 = 2, 𝑓𝑒𝑒𝑑 = 8, and 𝑝𝑙𝑎𝑦 = 4.

We use the Android Emulator to verify that feeding the FLARE Bear eight times, playing with it four times,

and cleaning it two times results in an ecstatic pet. And indeed, after creating a new bear and performing

the right number of actions we see a dancing bear revealing the challenge flag

th4t_was_be4rly_a_chall3nge@flare-on.com (see

).

Figure 9: Ecstatic dancing FLARE Bear revealing the challenge flag

https://www.wolframalpha.com/

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

8

THANKS

Marco S. for the inspiration

@marco.tti_ for the art work

LINKS AND RESOURCES

[1] FRIDA, https://www.frida.re/

[2] Kotlin, https://kotlinlang.org/

[3] FAQ – What does Kotlin compile down to, https://kotlinlang.org/docs/reference/faq.html#what-does-

kotlin-compile-down-to

[4] JADX-GUI, https://github.com/skylot/jadx

[5] WolframAlpha, https://www.wolframalpha.com/

https://www.frida.re/
https://kotlinlang.org/
https://kotlinlang.org/docs/reference/faq.html#what-does-kotlin-compile-down-to
https://kotlinlang.org/docs/reference/faq.html#what-does-kotlin-compile-down-to
https://github.com/skylot/jadx
https://www.wolframalpha.com/

	Introduction
	Initial Dynamic Analysis
	Initial Static Analysis
	FLARE Bear Analysis
	Thanks
	Links and Resources

