

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

1

Flare-On 7: Challenge 8 – Aardvark
Challenge Author: Jacob Thompson

The name Aardvark is in reference to the AARD code1, a section of code in early versions of Windows
that verified they were running on Microsoft’s version of DOS, as opposed to another version. This
challenge binary verifies that it is running on Microsoft’s Windows Subsystem for Linux, as opposed to
another version of Linux.

Running ttt2.exe on Windows 7 produces an error dialog (Figure 1):

Figure 1. The binary fails on Windows 7 due to an error creating a Unix domain socket.

A Unix domain socket is a special type of socket on POSIX operating systems designed for
communication between processes on the same machine, with greater efficiency than using IP over the
loopback 127.0.0.1 interface.

Reviewing the socket() call in IDA (Figure 2), we see that the code is indeed calling socket(1, 1, 0);
which would have been compiled from socket(AF_UNIX, SOCK_STREAM, 0);. In addition, we see
indications that the name of the Unix domain socket is 496b9b4b.ed5.

1 https://en.wikipedia.org/wiki/AARD_code

https://en.wikipedia.org/wiki/AARD_code

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

2

loc_140001649:
; __unwind { // __GSHandlerCheck
mov [rsp+3B8h+arg_0], rbx
xor eax, eax
lea r8, FileName ; "496b9b4b.ed5"
mov ebx, 1
 ...
xor r8d, r8d ; protocol
mov edx, ebx ; type
mov ecx, ebx ; af
call cs:socket

Figure 2. The binary attempts to create a Unix domain socket on startup.

It makes sense that the socket call for AF_UNIX fails since this is Windows 7, not Unix. Why would a
Windows EXE file attempt to create such a socket? It turns out that Windows began supporting Unix
domain sockets with Windows 10 build 17063 (https://devblogs.microsoft.com/commandline/af_unix-
comes-to-windows/), so we’ll have to do the rest of the analysis on a sufficiently recent Windows 10.

When we re-run ttt2.exe on a fresh install of Windows 10 2004, we get a new error –
CoCreateInstance() failed, as shown in Figure 3.

Figure 3. The CoCreateInstance function fails when running on a fresh install of Windows 10 2004.

CoCreateInstance() is the Windows COM function that allows a program to specify a COM Class ID
and Interface ID, and obtain a pointer table allowing the program to call functions on that interface. If we
use IDA’s Imports tab and cross-reference feature to find the call to CoCreateInstance(), we find there
are many calls. Using a debugger, we can set a breakpoint on the CoCreateInstance() function and
find that the first call occurs at 0x14000223c (running on Windows 10 2004). Then we can go to that
address in IDA, as shown in Figure 4, and see the parameters to the CoCreateInstance() function.

https://devblogs.microsoft.com/commandline/af_unix-comes-to-windows/
https://devblogs.microsoft.com/commandline/af_unix-comes-to-windows/

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

3

loc_140002204:
; __unwind { // __GSHandlerCheck
mov [r11-18h], rsi
lea rax, [rbp+250h+var_2C8]
mov [r11-20h], r14
lea r9, riid ; riid
xor edi, edi
mov [r11-28h], r15
mov r15, r8
mov [rbp+250h+var_2C8], rdi
mov r14d, edx
mov [rsp+380h+ppv], rax ; ppv
mov rsi, rcx
xor edx, edx ; pUnkOuter
lea r8d, [rdi+4] ; dwClsContext
lea rcx, rclsid ; rclsid
call cs:CoCreateInstance

Figure 4. When running on Windows 10 2004, the first CoCreateInstance call occurs at 0x14000223c.

We can use IDA to determine what the rclsid and riid values are, as shown in Figure 5. That will help us
determine what this binary is trying to do with COM.

.data:000000014001E008 ; IID rclsid

.data:000000014001E008 rclsid dd 4F476546h ; Data1

.data:000000014001E008 ; DATA XREF:
sub_140001B10+55↑o
.data:000000014001E008 ; sub_140001D60+54↑o ...
.data:000000014001E008 dw 0B412h ; Data2
.data:000000014001E008 dw 4579h ; Data3
.data:000000014001E008 db 0B6h, 4Ch, 12h, 3Dh, 0F3h, 31h, 0E3h, 0D6h; Data4
.data:000000014001E018 ; IID riid
.data:000000014001E018 riid dd 536A6BCFh ; Data1
.data:000000014001E018 ; DATA XREF:
sub_140001B10+4E↑o
.data:000000014001E018 ; sub_140001D60+30↑o ...
.data:000000014001E018 dw 0FE04h ; Data2
.data:000000014001E018 dw 41D9h ; Data3
.data:000000014001E018 db 0B9h, 78h, 0DCh, 0ACh, 2 dup(0A9h), 0B5h, 0B9h;
Data4

Figure 5. IDA cross-references allow us to determine the COM Class ID and Interface ID.

This tells us that the binary calls CoCreateInstance() with a CLSID of {4f476546-b412-4579-b64c-
123df331e3d6} and an IID of {536a6bcf-fe04-41d9-b978-dcaca9a9b5b9}. Performing a Google search for
the CLSID, as of this writing there are only nine results, and for the IID, only one result. As can be
confirmed on a Windows 10 machine with Windows Subsystem for Linux installed, this IID and CLSID
correspond to the ILxssUserSession interface of the LxssUserSession class. It turns out that this is an
undocumented COM interface that an application can use to interact with WSL without going through the
wsl.exe command line utility.

Despite being undocumented, several analysts have publicly published information that they have

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

4

reverse-engineered about this interface, including GitHub user Biswa96
(https://github.com/Biswa96/wslbridge2/blob/master/src/GetVmId.cpp,
https://github.com/Biswa96/WslReverse/blob/master/common/LxssUserSession.h) and Alex Ionescu
(https://github.com/ionescu007/lxss/blob/master/inc/lxssmanager.h).

The reason there are multiple calls to CoCreateInstance() is that this interface is undocumented, and
Microsoft therefore has changed it between different builds of Windows 10. The interface definition
changed in Windows 10 1803, 1809, and 1903, and has remained compatible since 1903. This (along
with testing for WSL 1 vs. WSL 2) is why the binary has multiple calls to CoCreateInstance() and tests
the Windows build number to determine which to call.

The use of the ILxssUserSession interface, and the fact that CoCreateInstance() fails, suggests that
WSL must be installed. After using the “Turn Windows features on or off” control panel option to enable
WSL and rebooting, ttt2.exe can be re-launched. This time, the binary complains that the
GetDefaultDistribution() call failed (Figure 6).

Figure 6. The binary complains that GetDefaultDistribution failed.

WSL does not include any Linux software itself; it manages multiple distributions. It is possible to
download and install Ubuntu 20.04 without going through the Windows store by downloading the install
package from https://docs.microsoft.com/en-us/windows/wsl/install-manual and launching it.

After downloading, installing, and launching Ubuntu 20.04 for the first time, we can try to open ttt2.exe
again. This time, we are greeted with a Tic-Tac-Toe game (Figure 7). As shown in Figure 8, however, the
game is rigged as the computer player always goes first as the “X” player, and has just enough
intelligence to not allow the “O” player to ever win.

https://github.com/Biswa96/wslbridge2/blob/master/src/GetVmId.cpp
https://github.com/Biswa96/WslReverse/blob/master/common/LxssUserSession.h
https://github.com/ionescu007/lxss/blob/master/inc/lxssmanager.h
https://docs.microsoft.com/en-us/windows/wsl/install-manual

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

5

Figure 7. Once WSL and a Linux distribution are installed, ttt2.exe opens a Tic-Tac-Toe game.

Figure 8. The Tic-Tac-Toe game has a computer player that will not allow the human player to win.

The remainder of the challenge therefore is how to win the game!

Using Procmon, we can find that ttt2.exe always deletes and re-creates a zero-byte file named
%TEMP%\496b9b4b.ed5. This is a placeholder file for the program’s Unix domain socket.

Another 10KB file is created under %TEMP%, with a random filename, as shown in Figure 9.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

6

Figure 9. ttt2.exe always creates and writes 10KB to a temp file with a random name.

If we run the file utility, we find that e2a6.tmp is a 64-bit Linux ELF executable, and if we run the ps utility,
we find a copy is already running (Figure 10):

Figure 10. The temp file written by ttt2.exe is an ELF executable that executes inside WSL.

Next, we can take a look at an excerpt from the ELF executable’s main() function in IDA in Figure 11. If
we look at the arguments to the socket() call, we can see that, after accounting for byte order, the
program opens the same 496b9b4b.ed5 Unix domain socket that ttt2.exe creates.

MOV ECX, 1
MOV RAX, 'B4B9B694'
MOV EDI, 1 ; DOMAIN
MOV [RSP+188H+ADDR.SA_FAMILY], CX
MOV QWORD PTR [RSP+188H+ADDR.SA_DATA], RAX

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

7

MOV DWORD PTR [RSP+188H+ADDR.SA_DATA+8], '5DE.'
MOV [RSP+188H+ADDR.SA_DATA+0CH], 0

Figure 11. The ELF binary opens the same Unix domain socket that ttt2.exe created.

This means that ttt2.exe and the ELF binary perform interprocess communication despite one being a
Windows binary and one being for Linux, running inside WSL. Such is the capability of WSL.

Early in the ELF binary’s main() function, the program has a loop where a variable at 0x2020a0 is
initializes with 9 spaces—suspiciously like a [3][3] array. We correctly surmise that the variable at
0x2020a0 holds the current board state.

Figure 12. Early in the main function, the ELF binary initializes the board.

The simplest way to cheat and win the tic-tac-toe game is to “preload” the initial board state with some “O”
marks. Because the computer player still goes first, if the supposedly-empty initial board is preloaded with

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

8

two-ways for the human player to win, the computer player cannot block both opportunities on the “first”
move.

To create the following “empty” board, we need to set the rax contents at loc_b98 to 202020204f204f4f.

O O
O

Using Resource Hacker, we find the ELF file is stored in ttt2.exe as a resource, as shown in Figure 13.
We know that the 2020202020202020 initial board load was at 0xb98 from Figure 12, so combining this
with the file offset from Resource Hacker, we know the instruction must be at 0x1ebe0 within the ttt2.exe
file.

Figure 13. The dropped ELF executable is stored in ttt2.exe as a resource.

Armed with that information, we can use xxd and xxd -r as a hex editor to patch in the new initial board
state (Figure 14):

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

9

Figure 14. The initial board state can be changed so as to give the human player the opportunity to win.

Playing the hacked tic-tac-toe game, we can now win and get the flag:

You will find that the flag does not appear in ttt2.exe anywhere, and also, we did not attempt to copy the
ELF binary to a native Linux virtual machine and analyze it there. It turns out that the ELF binary is
designed to XOR-decode the flag, not using a static key, but using information obtained from its
environment. This makes static analysis to determine the flag frustrating.

By tracing through the ELF code in IDA as shown in Figure 14, we find that the main function takes a
code path to 0xec2 if the “O” (the human player) wins. At 0xf09 we see a pointer to 0x202010 loaded into
rdi; Figure 15 shows that this looks much like an encrypted key. Indeed, further reversing of sub_14b0
would find that it determines the winner and places the winning marker into al; the loop at 0xf20-0x0xf31
XORs each byte in the array at 0x202010 with the ASCII code for the winning marker. This is only the first
level of encryption.

.TEXT:0000000000000EC2 LOC_EC2: ; CODE
XREF: MAIN+2B8↑J
.TEXT:0000000000000EC2 XOR ECX, ECX ; FLAGS
.TEXT:0000000000000EC4 MOV EDX, 0AH ; N
.TEXT:0000000000000EC9 MOV RSI, RBP ; BUF

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

10

.TEXT:0000000000000ECC CALL _SEND

.TEXT:0000000000000ED1 PXOR XMM0, XMM0

.TEXT:0000000000000ED5 MOV RAX, 0A21736E6977204FH

.TEXT:0000000000000EDF XOR EDX, EDX

.TEXT:0000000000000EE1 MOV QWORD PTR
CS:XMMWORD_202060, RAX
.TEXT:0000000000000EE8 MOV QWORD PTR
CS:XMMWORD_202060+8, RDX
.TEXT:0000000000000EEF MOVAPS CS:XMMWORD_202070,
XMM0
.TEXT:0000000000000EF6 MOVAPS CS:XMMWORD_202080,
XMM0
.TEXT:0000000000000EFD MOVAPS CS:XMMWORD_202090,
XMM0
.TEXT:0000000000000F04 CALL SUB_14B0
.TEXT:0000000000000F09 LEA RDI, UNK_202010
.TEXT:0000000000000F10 MOV [RSP+188H+VAR_160],
RDI
.TEXT:0000000000000F15 MOV R13, RDI
.TEXT:0000000000000F18 MOV R15, RDI
.TEXT:0000000000000F1B NOP DWORD PTR
[RAX+RAX+00H]
.TEXT:0000000000000F20 LOC_F20: ; CODE
XREF: MAIN+471↓J
.TEXT:0000000000000F20 LEA RDI, UNK_202020
.TEXT:0000000000000F27 XOR [R15], AL
.TEXT:0000000000000F2A ADD R15, 1
.TEXT:0000000000000F2E CMP RDI, R15
.TEXT:0000000000000F31 JNZ SHORT LOC_F20

.DATA:0000000000202010 UNK_202010 DB 4AH ; J ; DATA
XREF: MAIN+449↑O
.DATA:0000000000202010 ;
MAIN+7EA↑O
.DATA:0000000000202011 DB 82H
.DATA:0000000000202012 DB 43H ; C
.DATA:0000000000202013 DB 0ABH
.DATA:0000000000202014 DB 95H
.DATA:0000000000202015 DB 0EDH
.DATA:0000000000202016 DB 8FH
.DATA:0000000000202017 DB 7EH ; ~
.DATA:0000000000202018 DB 9CH
.DATA:0000000000202019 DB 0BCH
.DATA:000000000020201A DB 0ADH
.DATA:000000000020201B DB 84H
.DATA:000000000020201C DB 17H
.DATA:000000000020201D DB 91H
.DATA:000000000020201E DB 6
.DATA:000000000020201F DB 15H

Figure 15. At 0x202010 is a byte array that looks like it could be an encrypted string.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

11

Further analysis of the decryption code reveals what ties the binary to WSL. These are some interesting
differences between WSL 1 and native Linux that allow the code to detect on which version it is running.

• At 0xf33, the code opens the /proc/modules file and looks for a module name starting with
cpufreq_, and XORs the flag with the full name of that module. As /proc/modules is not present
on WSL 1, this only serves to corrupt the flag when run on native Linux.

• At 0xfa3, the code opens the /proc/mounts file and looks for the type of the root file system. It
looks for the ‘f’ character in the file system type, and XORs characters from the file system type
against the flag. For WSL, the root file system type is lxfs or wslfs, so this is always the
characters ‘f’ ‘s’. On native Linux, the file system type is likely ext4 which contains no ‘f’ ‘s’ suffix,
so the flag would not be decrypted properly.

• At 0x1010, the code opens /proc/version_signature and XORs against the first 9 characters in the
file; these are expected to be “Microsoft”.

• At 0x1073, the code parses the auxiliary vector (somewhat like a PEB) to find the ELF header for
the VDSO shared library. This is a shared library injected into processes by the Linux kernel (not
on disk). The code iterates over each program header in the VDSO, XORing the flag with the
upper 48 bits of each program header’s virtual offset. On WSL 1 these bits are 0xffffffffff70 while
on native Linux they are 0.

• At 0x10c3, the code iterates over each non-directory entry in the /proc file system, XOR-ing the
flag with the upper 16 bits of each file’s i-number. On WSL 1 these i-numbers are low sequential
numbers (1, 2, 3, …) with all-zero upper 16 bits, while on native Linux, some of those upper 16
bits are set, corrupting the flag.

As a result of these checks, the embedded ELF binary will fail to decrypt the flag on native Linux (or WSL
2, for that matter), while succeeding on WSL 1. It is a Linux program, but only for Microsoft’s Linux, and
thus the Aardvark name, harkening back to Microsoft’s AARD code that allowed their programs to detect
when they were running on cloned DOS versions.

	mov ecx, 1
	mov rax, 'b4b9b694'
	mov edi, 1 ; domain
	mov [rsp+188h+addr.sa_family], cx
	mov qword ptr [rsp+188h+addr.sa_data], rax
	mov dword ptr [rsp+188h+addr.sa_data+8], '5de.'
	mov [rsp+188h+addr.sa_data+0Ch], 0
	.text:0000000000000EC2 loc_EC2: ; CODE XREF: main+2B8↑j
	.text:0000000000000EC2 xor ecx, ecx ; flags
	.text:0000000000000EC4 mov edx, 0Ah ; n
	.text:0000000000000EC9 mov rsi, rbp ; buf
	.text:0000000000000ECC call _send
	.text:0000000000000ED1 pxor xmm0, xmm0
	.text:0000000000000ED5 mov rax, 0A21736E6977204Fh
	.text:0000000000000EDF xor edx, edx
	.text:0000000000000EE1 mov qword ptr cs:xmmword_202060, rax
	.text:0000000000000EE8 mov qword ptr cs:xmmword_202060+8, rdx
	.text:0000000000000EEF movaps cs:xmmword_202070, xmm0
	.text:0000000000000EF6 movaps cs:xmmword_202080, xmm0
	.text:0000000000000EFD movaps cs:xmmword_202090, xmm0
	.text:0000000000000F04 call sub_14B0
	.text:0000000000000F09 lea rdi, unk_202010
	.text:0000000000000F10 mov [rsp+188h+var_160], rdi
	.text:0000000000000F15 mov r13, rdi
	.text:0000000000000F18 mov r15, rdi
	.text:0000000000000F1B nop dword ptr [rax+rax+00h]
	.text:0000000000000F20 loc_F20: ; CODE XREF: main+471↓j
	.text:0000000000000F20 lea rdi, unk_202020
	.text:0000000000000F27 xor [r15], al
	.text:0000000000000F2A add r15, 1
	.text:0000000000000F2E cmp rdi, r15
	.text:0000000000000F31 jnz short loc_F20
	.data:0000000000202010 unk_202010 db 4Ah ; J ; DATA XREF: main+449↑o
	.data:0000000000202010 ; main+7EA↑o
	.data:0000000000202011 db 82h
	.data:0000000000202012 db 43h ; C
	.data:0000000000202013 db 0ABh
	.data:0000000000202014 db 95h
	.data:0000000000202015 db 0EDh
	.data:0000000000202016 db 8Fh
	.data:0000000000202017 db 7Eh ; ~
	.data:0000000000202018 db 9Ch
	.data:0000000000202019 db 0BCh
	.data:000000000020201A db 0ADh
	.data:000000000020201B db 84h
	.data:000000000020201C db 17h
	.data:000000000020201D db 91h
	.data:000000000020201E db 6
	.data:000000000020201F db 15h

