

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

1

Flare-On 7: Challenge 5 – TKApp.tpk
Challenge Author: Moritz Raabe (@m_r_tz)

Introduction
This challenge targets the Tizen operating system that runs on millions of Samsung devices, including
TVs and wearables. Luckily, we can resort to familiar reverse engineering tools for our analysis. FLARE
VM contains all of them including the most important tool dnSpy.

You can run (and solve) the challenge via the emulator included with Tizen Studio. While this write-up
focuses on static analysis it contains screenshots of the running app. As we will see the app helps
someone crazy about big cats organize their day.

Basic Analysis
Inspecting TKApp.tpk with a hex editor or the file utility reveals that we are dealing with a Zip archive.
Unzipping the archive reveals a file and directory structure of an app – similar to an unpacked Android
Package Kit (APK) file. Various image files hint at the theme of this challenge: tigers. In the bin directory
we notice multiple DLLs. These suggest the use of Xamarin.Forms and the Tizen Wearable Circular UI.

In tizen-manifest.xml we notice a reference to TKApp.dll. Judging from all files’ timestamps, this DLL
appears to be the most interesting to us.

We open TKApp.dll in a PE viewer such as CFF Explorer and quickly notice that this is a .NET DLL.
Before throwing the file into dnSpy for advanced static analysis, a look at the file’s strings can provide
some additional insights. Figure 1 shows the application running in the Tizen Studio emulator.

https://github.com/fireeye/flare-vm
https://github.com/fireeye/flare-vm
https://github.com/0xd4d/dnSpy
https://docs.tizen.org/application/tizen-studio/
https://dotnet.microsoft.com/apps/xamarin/xamarin-forms
https://docs.tizen.org/application/dotnet/guides/wcircularui/overview/

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

2

Figure 1: Start screen of TKApp running in the Tizen Studio emulator

While it’s helpful to have some understanding of Xamarin.Forms and Tizen.Net it’s not really required
here. If you want to learn more about these technologies check out
https://dotnet.microsoft.com/apps/xamarin/xamarin-forms and
https://docs.tizen.org/application/dotnet/index.

Advanced Analysis of TKApp.dll
Figure 2 shows dnSpy’s Assembly Explorer view of the DLL. The app contains multiple resources and
classes. They don’t appear to be obfuscated.

https://dotnet.microsoft.com/apps/xamarin/xamarin-forms
https://docs.tizen.org/application/dotnet/index

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

3

Figure 2: TKApp.dll overview in dnSpy's Assembly Explorer

A right click in the Assembly Explorer and then selecting “Go to Entry Point” brings us to the file’s entry
point in the Program class. Here we see that the main implementation starts in the App class.

Depending on the App.IsLoggedIn state, one of the two pages UnlockPage or MainPage is run. By
default, IsLoggedIn is false and the application displays the UnlockPage.

With Xamarin.Forms user interfaces can be defined with an XML-based language called eXtensible
Application Markup Language (XAML). The DLL’s resources contain three such XAML files.

UNLOCKPAGE

Per its XAML file (Resources/TKApp.UnlockPage.xaml) the UnlockPage contains a password entry
field and a button (shown in Figure 1). Per the class’ implementation the app loads the MainPage if the
provided password is correct. To verify this, the program compares the user input to the decoded
TKData.Password field. The decode function Util.Decode shown in Figure 3 is a simple one-byte XOR
function using the decimal key 83. The decoded password is mullethat.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

4

Figure 3: Util.Decode function used for the password verification

MAINPAGE

Figure 4: MainPage running in the emulator

In MainPage the GetImage function stands out. Figure 5 shows that the function generates a SHA256
hash value and decodes Base64 data based on data obtained from the Util.GetString function.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

5

Figure 5: Key functionality of MainPage.GetImage function

The GetString function decrypts data using the RijndaelManaged class (AES). The arguments passed
to this function are:

• cipherText: Runtime.Runtime_dll data which the ResourceManager obtains from the binary

resource named Runtime.dll

• Key: SHA256 hash value of bytes of text variable

• IV (initialization vector): bytes of string NoSaltOfTheEarth

We use dnSpy to save the resource via right click, “Raw Save…” as shown in Figure 6.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

6

Figure 6: Saving the resource via right click, “Raw Save Runtime.dll”

To decrypt the saved resource data, we only miss the key derived from the fields App.Desc,
App.Password, App.Note, and App.Step.

We use dnSpy’s cross references feature via right click, “Analyze” on each field to inspect where the
respective value is set. The Analyzer view for the App.Desc field is shown in Figure 7.

Figure 7: Usage of field App.Desc in Analyzer view (bottom)

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

7

APP.DESC

In the GalleryPage the Desc field is set from EXIF data of the file res\gallery\05.jpg. Inspecting the
file using an EXIF tool or using the Windows Properties view reveals the image description value water.

Figure 8: Image description value in EXIF data of 05.jpg

APP.PASSWORD

When analyzing the UnlockPage we’ve already identified that the Password value is mullethat.

APP.NOTE

The app sets the Note field in the function TodoPage.SetupList shown in Figure 9. The value is the
Note property of the first unfinished Todo object. The selected Todo depends on the Boolean variable
isHome.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

8

Figure 9: Decompiled TodoPage.SetupList function

The app sets isHome to true only if a specific condition is satisfied. So, we assume that the multiple items
from the else branch are what is expected here. Hence, keep steaks for dinner is the value we
need. If the decryption using this value fails, we can also try the alternative value and enable GPS since
these are the only two options. Challenge authors must be careful to not allow for too many shortcuts like
this
����. For extra credit figure out how the isHome check works and where “home” is.

Running the app with the correct settings results in the TodoPage screen shown in Figure 10.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

9

Figure 10: TodoPage running with correct configuration

APP.STEP

The app sets the Step field from the application metadata referenced by the key its. The value is
specified in the tizen-manifest.xml file. We noticed this from carefully inspecting the file in the
beginning or by grepping the entire unzipped directory for the key name. The metadata value is magic.

Combining the individual characters from the recovered fields results in the following string:

the kind of challenges we are gonna make here

The AES decryption key is the SHA256 hash of this string:

248e9d7323a1a3c5d5b3283dcb2b40211a14415b6dcd2a86181721fd74b4befd

AES decrypting the data with this key results in a Base64 encoded string. The Base64 decoded string
contains a JFIF marker which indicates JPEG image data. Figure 11 shows how to decrypt, Base64
decode and render the data from Runtime.dll using CyberChef. The exported CyberChef recipe in Chef
format is shown below.

AES_Decrypt({'option':'Hex','string':'248e9d7323a1a3c5d5b3283dcb2b40211a14415
b6dcd2a86181721fd74b4befd'},{'option':'UTF8','string':'NoSaltOfTheEarth'},'CB
C','Raw','Raw',{'option':'Hex','string':''})
From_Base64('A-Za-z0-9+/=',true)
Render_Image('Raw')

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

10

Figure 11: AES decrypting, Base64 decoding and rendering the data from Runtime.dll

Challenge Flag
As shown in the CyberChef output pane the flag for this challenge is:

n3ver_go1ng_to_recov3r@flare-on.com

Figure 12 shows how the app displays the decrypted and Base64 decoded image after successfully
following all required steps.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

11

Figure 12: GalleryPage displaying the decoded image data with the challenge flag

	Introduction
	Basic Analysis
	Advanced Analysis of TKApp.dll
	UnlockPage
	MainPage
	App.Desc
	App.Password
	App.Note
	App.Step

	Challenge Flag

