

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

1

Flare-On 7: Challenge 4 – report.xls
Challenge Author: Moritz Raabe (@m_r_tz)

Introduction
In this challenge we analyze a legacy Microsoft Excel document (OLE2 format). While it can be helpful to
have a copy of the Microsoft Office Suite installed this analysis will rely on freely available tools – most of
them are included in FLARE VM.

Basic Analysis
Figure 1 shows report.xls opened in Excel. We recognize a common social engineering technique to
trick users into enabling Macros. The document contains an image that indicates users must “Enable
Content” before they can access this file. When enabled the embedded Macros can run and perform
malicious activity.

https://github.com/fireeye/flare-vm

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

2

Figure 1: report.xls opened in Excel

As an alternative to Excel we can open the document in LibreOffice which also displays the social
engineering image and indicates that this file contains Macros.

The following analysis focuses on the embedded Macro code.

MACRO EXTRACTION

A quick way to extract all Macros is to use olevba from Philippe Lagadec’s oletools. Figure 2 shows a
shortened olevba output. Besides Macro code the output includes p-code, VBA form string data, and an
analysis results table.

https://github.com/decalage2/oletools/wiki/olevba
http://www.decalage.info/en/python/oletools

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

3

Figure 2: Shortened olevba output showing Macro code and analysis results table

The results table summarizes detections based on olevba’s analysis heuristics. A very helpful heuristic
that matched here is the VBA stomping detection. “VBA stomping is a colloquial term applied to the
manipulation of Office documents where the source code of a Macro is made to mismatch the pseudo-
code (hereto referred to as ‘p-code’) of the document” (see this blog post). More information about VBA
stomping is available at https://vbastomp.com/. The output here includes the p-code because of this
detection.

In typical malware samples that use VBA stomping the fake Macro code is often short and only performs
benign tasks such as displaying a message box. While the extracted code here is short it looks a little
suspicious. So, let’s analyze it. We will look at the p-code afterwards.

https://www.fireeye.com/blog/threat-research/2020/01/stomp-2-dis-brilliance-in-the-visual-basics.html
https://vbastomp.com/

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

4

Advanced Analysis of report.xls
To analyze the Macro, we copy the olevba output to a new text file. This is a workaround for known
encoding issues you may encounter when redirecting output to a file or when using certain consoles.

Figure 3 shows the copied output in Visual Studio Code. Workbook_Open and Auto_Open are common
event handlers to execute when a file is opened (and Macros are enabled). The handlers start the main
function named folderol in the Sheet1 class. This class implements all subsequent discussed
functionality.

Figure 3: Copied olevba output in Visual Studio Code

FOLDEROL – MAIN FUNCTION

On a high-level this function:

• displays a message box and terminates depending on the current environment, for example if no
Internet connection is detected;

• writes a binary file to disk; and
• calls the mciSendString Windows API

https://github.com/decalage2/oletools/issues/323
https://github.com/decalage2/oletools/issues/426

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

5

The function decodes strings at runtime using the rigmarole function. The encoded strings are obtained
from the array named onzo. This array is obtained from splitting the form string F.L into its substrings
separated by dot characters.

RIGMAROLE – STRING DECODING

Per the string decoding routine definition in Figure 4 we see that encoded strings consist of hex encoded
characters. To decode an output character, the function subtracts two subsequent bytes from each other.

Figure 4: VBA code of rigmarole function

The following Python script decodes all strings. With a little knowledge of VBA, translating functionality to
other programming languages is normally not a problem. Here it is done almost verbatim.

def rigmarole(es):
 furphy = ""
 for i in range(0, len(es), 4):
 c = int(es[i:i + 2], 0x10)
 s = int(es[i + 2:i + 2 + 2], 0x10)
 cc = c - s
 furphy += chr(cc)
 return furphy

F_L =
"9655B040B64667238524D15D6201.B95D4E01C55CC562C7557405A532D768C55FA12DD074DC697A06E172992CAF3F
8A5C7306B7476B38.C555AC40A7469C234424.853FA85C470699477D3851249A4B9C4E.A855AF40B84695239D24895
D2101D05CCA62BE5578055232D568C05F902DDC74D2697406D7724C2CA83FCF5C2606B547A73898246B4BC14E941F9
121D464D263B947EB77D36E7F1B8254.853FA85C470699477D3851249A4B9C4E.9A55B240B84692239624.CC55A940
B44690238B24CA5D7501CF5C9C62B15561056032C468D15F9C2DE374DD696206B572752C8C3FB25C3806.A85585409
24668236724B15D2101AA5CC362C2556A055232AE68B15F7C2DC17489695D06DB729A2C723F8E5C65069747AA38932
4AE4BB34E921F9421.CB55A240B5469B23.AC559340A94695238D24CD5D75018A5CB062BA557905A932D768D15F982
D.D074B6696F06D5729E2CAE3FCF5C7506AD47AC388024C14B7C4E8F1F8F21CB64"
for i, es in enumerate(F_L.split(".")):

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

6

 print("%2s: %s" % (i, rigmarole(es)))

Figure 5: Python code to decode strings

All decoded strings and their array index are shown in Figure 6.

 0: AppData
 1: \Microsoft\stomp.mp3
 2: play
 3: FLARE-ON
 4: Sorry, this machine is not supported.
 5: FLARE-ON
 6: Error
 7: winmgmts:\\.\root\CIMV2
 8: SELECT Name FROM Win32_Process
 9: vbox
10: WScript.Network
11: \Microsoft\v.png

Figure 6: Decoded strings obtained using the above Python script

Replacing all decoded strings in the VBA code reveals the use of Windows Management Instrumentation
(WMI) for another environment check. The program obtains all running process names and terminates if
one of them contains any of the substrings vmw, vmt, or vbox. This is a common anti-analysis technique.

If no offending process is found, the function writes data to the file %AppData%\Microsoft\stomp.mp3
and passes its path to the mciSendString function. To recover the written file data, we analyze the
function named canoodle.

CANOODLE – EMBEDDED DATA DECODING

This function receives four arguments; most notably the text value of a VBA form field (F.T.Text) and an
array of 14 numbers. canoodle performs an XOR based decoding. The following script is a Python
reimplementation of the function.

def canoodle(panjandrum, arylo, s, bibble):
 kerfuffle = bytearray()
 quean = 0
 for cattywampus in range(0, len(panjandrum), 4):
 b1 = int(panjandrum[cattywampus + arylo:cattywampus + arylo + 2], 0x10)
 b2 = bibble[quean % len(bibble)]
 kerfuffle.append(b1 ^ b2)
 quean += 1
 if quean == s:
 break
 return kerfuffle

Figure 7: Python reimplementation of decoding function canoodle

Figure 8 shows Python code to decode the data.

58c7661f... text field data copied to text file
with open("F_T_Text.txt", "r") as f:

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

7

 d = f.read()

xertz = [0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE]

wabbit = canoodle(d, 0, 168667, xertz)
with open("stomp.mp3", "wb") as f:
 f.write(wabbit)

Figure 8: Python code to decode the embedded data

The created audio file contains… stomping sounds. Moreover, there are several hints in the file’s meta
data that indicate that we are on the wrong track. So, remembering the VBA stomping detection
discussed earlier we now focus on the p-code.

P-CODE ANALYSIS

Reading p-code directly is not the most enjoyable task. Luckily, we can use pcode2code to obtain the
decompiled VBA code with the command pcode2code report.xls. And although we get some errors,
we can inspect the code almost entirely decompiled.

We closely compare the decompiled to the previously analyzed VBA code and notice only a few
differences. Some of these differences come from an imperfect decompilation. For example, incorrectly
recovered data types, e.g., wabbit’s type is identified as byte and not as a byte array. Moreover,
pcode2code may add superfluous function parameters, e.g. for the rigmarole function.

Figure 9 shows the main functional difference in the folderol function between the fake VBA code and
the decompiled p-code.

https://pypi.org/project/pcode2code/

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

8

Figure 9: Additional code in main function folderol recovered via pcode2code

Using the earlier decoded strings, we see that the program terminates if the computer is not connected to
a domain named FLARE-ON. If it is, the function reverts the string FLARE-ON and passes it to the canoodle
data decoding function. The decoded data is written to the file %AppData%\Microsoft\v.png and then
added to the Excel worksheet Sheet1 as a picture.

Challenge flag
Figure 10 shows the modified Python code to decode this data.

58c7661f... data copied to text file
with open("F_T_Text.txt", "r") as f:
 d = f.read()

buff = "FLARE-ON"[::-1]
buff = [ord(c) for c in buff]

wabbit = canoodle(d, 2, 285729, buff)
with open("v.png", "wb") as f:
 f.write(wabbit)

Figure 10: Python code to decode the other embedded data

The decrypted image revealing the challenge flag is shown in Figure 11.

FireEye, Inc. | 601 McCarthy Blvd. Milpitas, CA 95035 | 408.321.6300 | 877.FIREEYE (347.3393) info@fireeye.com | www.FireEye.com

© 2019 FireEye, Inc. All rights reserved. FireEye is a registered trademark of FireEye, Inc. All other brands, products, or service names are or may be trademarks
or service marks of their respective owners. WRD.EN-US.032019

9

Figure 11: Decrypted image with challenge flag

The flag is: thi5_cou1d_h4v3_b33n_b4d@flare-on.com.

Acknowledgements
Big shoutout to Rick Cole (@a_tweeter_user) for all his support with this challenge!

mailto:thi5_cou1d_h4v3_b33n_b4d@flare-on.com
https://twitter.com/a_tweeter_user

	Introduction
	Basic Analysis
	Macro extraction

	Advanced Analysis of report.xls
	folderol – main function
	rigmarole – string decoding
	canoodle – embedded data decoding
	p-code analysis

	Challenge flag
	Acknowledgements

